| #ifdef CONFIG_CPU_SUP_AMD |
| |
| static DEFINE_RAW_SPINLOCK(amd_nb_lock); |
| |
| static __initconst const u64 amd_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ |
| [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */ |
| [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */ |
| [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */ |
| [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ |
| [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */ |
| [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */ |
| [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| /* |
| * AMD Performance Monitor K7 and later. |
| */ |
| static const u64 amd_perfmon_event_map[] = |
| { |
| [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, |
| [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080, |
| [PERF_COUNT_HW_CACHE_MISSES] = 0x0081, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, |
| [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, |
| }; |
| |
| static u64 amd_pmu_event_map(int hw_event) |
| { |
| return amd_perfmon_event_map[hw_event]; |
| } |
| |
| static int amd_pmu_hw_config(struct perf_event *event) |
| { |
| int ret = x86_pmu_hw_config(event); |
| |
| if (ret) |
| return ret; |
| |
| if (event->attr.type != PERF_TYPE_RAW) |
| return 0; |
| |
| event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK; |
| |
| return 0; |
| } |
| |
| /* |
| * AMD64 events are detected based on their event codes. |
| */ |
| static inline int amd_is_nb_event(struct hw_perf_event *hwc) |
| { |
| return (hwc->config & 0xe0) == 0xe0; |
| } |
| |
| static inline int amd_has_nb(struct cpu_hw_events *cpuc) |
| { |
| struct amd_nb *nb = cpuc->amd_nb; |
| |
| return nb && nb->nb_id != -1; |
| } |
| |
| static void amd_put_event_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct amd_nb *nb = cpuc->amd_nb; |
| int i; |
| |
| /* |
| * only care about NB events |
| */ |
| if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc))) |
| return; |
| |
| /* |
| * need to scan whole list because event may not have |
| * been assigned during scheduling |
| * |
| * no race condition possible because event can only |
| * be removed on one CPU at a time AND PMU is disabled |
| * when we come here |
| */ |
| for (i = 0; i < x86_pmu.num_counters; i++) { |
| if (nb->owners[i] == event) { |
| cmpxchg(nb->owners+i, event, NULL); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * AMD64 NorthBridge events need special treatment because |
| * counter access needs to be synchronized across all cores |
| * of a package. Refer to BKDG section 3.12 |
| * |
| * NB events are events measuring L3 cache, Hypertransport |
| * traffic. They are identified by an event code >= 0xe00. |
| * They measure events on the NorthBride which is shared |
| * by all cores on a package. NB events are counted on a |
| * shared set of counters. When a NB event is programmed |
| * in a counter, the data actually comes from a shared |
| * counter. Thus, access to those counters needs to be |
| * synchronized. |
| * |
| * We implement the synchronization such that no two cores |
| * can be measuring NB events using the same counters. Thus, |
| * we maintain a per-NB allocation table. The available slot |
| * is propagated using the event_constraint structure. |
| * |
| * We provide only one choice for each NB event based on |
| * the fact that only NB events have restrictions. Consequently, |
| * if a counter is available, there is a guarantee the NB event |
| * will be assigned to it. If no slot is available, an empty |
| * constraint is returned and scheduling will eventually fail |
| * for this event. |
| * |
| * Note that all cores attached the same NB compete for the same |
| * counters to host NB events, this is why we use atomic ops. Some |
| * multi-chip CPUs may have more than one NB. |
| * |
| * Given that resources are allocated (cmpxchg), they must be |
| * eventually freed for others to use. This is accomplished by |
| * calling amd_put_event_constraints(). |
| * |
| * Non NB events are not impacted by this restriction. |
| */ |
| static struct event_constraint * |
| amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct amd_nb *nb = cpuc->amd_nb; |
| struct perf_event *old = NULL; |
| int max = x86_pmu.num_counters; |
| int i, j, k = -1; |
| |
| /* |
| * if not NB event or no NB, then no constraints |
| */ |
| if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc))) |
| return &unconstrained; |
| |
| /* |
| * detect if already present, if so reuse |
| * |
| * cannot merge with actual allocation |
| * because of possible holes |
| * |
| * event can already be present yet not assigned (in hwc->idx) |
| * because of successive calls to x86_schedule_events() from |
| * hw_perf_group_sched_in() without hw_perf_enable() |
| */ |
| for (i = 0; i < max; i++) { |
| /* |
| * keep track of first free slot |
| */ |
| if (k == -1 && !nb->owners[i]) |
| k = i; |
| |
| /* already present, reuse */ |
| if (nb->owners[i] == event) |
| goto done; |
| } |
| /* |
| * not present, so grab a new slot |
| * starting either at: |
| */ |
| if (hwc->idx != -1) { |
| /* previous assignment */ |
| i = hwc->idx; |
| } else if (k != -1) { |
| /* start from free slot found */ |
| i = k; |
| } else { |
| /* |
| * event not found, no slot found in |
| * first pass, try again from the |
| * beginning |
| */ |
| i = 0; |
| } |
| j = i; |
| do { |
| old = cmpxchg(nb->owners+i, NULL, event); |
| if (!old) |
| break; |
| if (++i == max) |
| i = 0; |
| } while (i != j); |
| done: |
| if (!old) |
| return &nb->event_constraints[i]; |
| |
| return &emptyconstraint; |
| } |
| |
| static struct amd_nb *amd_alloc_nb(int cpu, int nb_id) |
| { |
| struct amd_nb *nb; |
| int i; |
| |
| nb = kmalloc_node(sizeof(struct amd_nb), GFP_KERNEL | __GFP_ZERO, |
| cpu_to_node(cpu)); |
| if (!nb) |
| return NULL; |
| |
| nb->nb_id = nb_id; |
| |
| /* |
| * initialize all possible NB constraints |
| */ |
| for (i = 0; i < x86_pmu.num_counters; i++) { |
| __set_bit(i, nb->event_constraints[i].idxmsk); |
| nb->event_constraints[i].weight = 1; |
| } |
| return nb; |
| } |
| |
| static int amd_pmu_cpu_prepare(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| |
| WARN_ON_ONCE(cpuc->amd_nb); |
| |
| if (boot_cpu_data.x86_max_cores < 2) |
| return NOTIFY_OK; |
| |
| cpuc->amd_nb = amd_alloc_nb(cpu, -1); |
| if (!cpuc->amd_nb) |
| return NOTIFY_BAD; |
| |
| return NOTIFY_OK; |
| } |
| |
| static void amd_pmu_cpu_starting(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| struct amd_nb *nb; |
| int i, nb_id; |
| |
| if (boot_cpu_data.x86_max_cores < 2) |
| return; |
| |
| nb_id = amd_get_nb_id(cpu); |
| WARN_ON_ONCE(nb_id == BAD_APICID); |
| |
| raw_spin_lock(&amd_nb_lock); |
| |
| for_each_online_cpu(i) { |
| nb = per_cpu(cpu_hw_events, i).amd_nb; |
| if (WARN_ON_ONCE(!nb)) |
| continue; |
| |
| if (nb->nb_id == nb_id) { |
| kfree(cpuc->amd_nb); |
| cpuc->amd_nb = nb; |
| break; |
| } |
| } |
| |
| cpuc->amd_nb->nb_id = nb_id; |
| cpuc->amd_nb->refcnt++; |
| |
| raw_spin_unlock(&amd_nb_lock); |
| } |
| |
| static void amd_pmu_cpu_dead(int cpu) |
| { |
| struct cpu_hw_events *cpuhw; |
| |
| if (boot_cpu_data.x86_max_cores < 2) |
| return; |
| |
| cpuhw = &per_cpu(cpu_hw_events, cpu); |
| |
| raw_spin_lock(&amd_nb_lock); |
| |
| if (cpuhw->amd_nb) { |
| struct amd_nb *nb = cpuhw->amd_nb; |
| |
| if (nb->nb_id == -1 || --nb->refcnt == 0) |
| kfree(nb); |
| |
| cpuhw->amd_nb = NULL; |
| } |
| |
| raw_spin_unlock(&amd_nb_lock); |
| } |
| |
| static __initconst const struct x86_pmu amd_pmu = { |
| .name = "AMD", |
| .handle_irq = x86_pmu_handle_irq, |
| .disable_all = x86_pmu_disable_all, |
| .enable_all = x86_pmu_enable_all, |
| .enable = x86_pmu_enable_event, |
| .disable = x86_pmu_disable_event, |
| .hw_config = amd_pmu_hw_config, |
| .schedule_events = x86_schedule_events, |
| .eventsel = MSR_K7_EVNTSEL0, |
| .perfctr = MSR_K7_PERFCTR0, |
| .event_map = amd_pmu_event_map, |
| .max_events = ARRAY_SIZE(amd_perfmon_event_map), |
| .num_counters = 4, |
| .cntval_bits = 48, |
| .cntval_mask = (1ULL << 48) - 1, |
| .apic = 1, |
| /* use highest bit to detect overflow */ |
| .max_period = (1ULL << 47) - 1, |
| .get_event_constraints = amd_get_event_constraints, |
| .put_event_constraints = amd_put_event_constraints, |
| |
| .cpu_prepare = amd_pmu_cpu_prepare, |
| .cpu_starting = amd_pmu_cpu_starting, |
| .cpu_dead = amd_pmu_cpu_dead, |
| }; |
| |
| static __init int amd_pmu_init(void) |
| { |
| /* Performance-monitoring supported from K7 and later: */ |
| if (boot_cpu_data.x86 < 6) |
| return -ENODEV; |
| |
| x86_pmu = amd_pmu; |
| |
| /* Events are common for all AMDs */ |
| memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| return 0; |
| } |
| |
| #else /* CONFIG_CPU_SUP_AMD */ |
| |
| static int amd_pmu_init(void) |
| { |
| return 0; |
| } |
| |
| #endif |