| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <asm/page.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| |
| #include "vmx.h" |
| #include "kvm.h" |
| |
| #undef MMU_DEBUG |
| |
| #undef AUDIT |
| |
| #ifdef AUDIT |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg); |
| #else |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {} |
| #endif |
| |
| #ifdef MMU_DEBUG |
| |
| #define pgprintk(x...) do { if (dbg) printk(x); } while (0) |
| #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) |
| |
| #else |
| |
| #define pgprintk(x...) do { } while (0) |
| #define rmap_printk(x...) do { } while (0) |
| |
| #endif |
| |
| #if defined(MMU_DEBUG) || defined(AUDIT) |
| static int dbg = 1; |
| #endif |
| |
| #define ASSERT(x) \ |
| if (!(x)) { \ |
| printk(KERN_WARNING "assertion failed %s:%d: %s\n", \ |
| __FILE__, __LINE__, #x); \ |
| } |
| |
| #define PT64_PT_BITS 9 |
| #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) |
| #define PT32_PT_BITS 10 |
| #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) |
| |
| #define PT_WRITABLE_SHIFT 1 |
| |
| #define PT_PRESENT_MASK (1ULL << 0) |
| #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) |
| #define PT_USER_MASK (1ULL << 2) |
| #define PT_PWT_MASK (1ULL << 3) |
| #define PT_PCD_MASK (1ULL << 4) |
| #define PT_ACCESSED_MASK (1ULL << 5) |
| #define PT_DIRTY_MASK (1ULL << 6) |
| #define PT_PAGE_SIZE_MASK (1ULL << 7) |
| #define PT_PAT_MASK (1ULL << 7) |
| #define PT_GLOBAL_MASK (1ULL << 8) |
| #define PT64_NX_MASK (1ULL << 63) |
| |
| #define PT_PAT_SHIFT 7 |
| #define PT_DIR_PAT_SHIFT 12 |
| #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) |
| |
| #define PT32_DIR_PSE36_SIZE 4 |
| #define PT32_DIR_PSE36_SHIFT 13 |
| #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) |
| |
| |
| #define PT32_PTE_COPY_MASK \ |
| (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK) |
| |
| #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK) |
| |
| #define PT_FIRST_AVAIL_BITS_SHIFT 9 |
| #define PT64_SECOND_AVAIL_BITS_SHIFT 52 |
| |
| #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) |
| #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) |
| |
| #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1) |
| #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT) |
| |
| #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1) |
| #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT)) |
| |
| #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT) |
| |
| #define VALID_PAGE(x) ((x) != INVALID_PAGE) |
| |
| #define PT64_LEVEL_BITS 9 |
| |
| #define PT64_LEVEL_SHIFT(level) \ |
| ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS ) |
| |
| #define PT64_LEVEL_MASK(level) \ |
| (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level)) |
| |
| #define PT64_INDEX(address, level)\ |
| (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) |
| |
| |
| #define PT32_LEVEL_BITS 10 |
| |
| #define PT32_LEVEL_SHIFT(level) \ |
| ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS ) |
| |
| #define PT32_LEVEL_MASK(level) \ |
| (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level)) |
| |
| #define PT32_INDEX(address, level)\ |
| (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) |
| |
| |
| #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK) |
| #define PT64_DIR_BASE_ADDR_MASK \ |
| (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) |
| |
| #define PT32_BASE_ADDR_MASK PAGE_MASK |
| #define PT32_DIR_BASE_ADDR_MASK \ |
| (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) |
| |
| |
| #define PFERR_PRESENT_MASK (1U << 0) |
| #define PFERR_WRITE_MASK (1U << 1) |
| #define PFERR_USER_MASK (1U << 2) |
| |
| #define PT64_ROOT_LEVEL 4 |
| #define PT32_ROOT_LEVEL 2 |
| #define PT32E_ROOT_LEVEL 3 |
| |
| #define PT_DIRECTORY_LEVEL 2 |
| #define PT_PAGE_TABLE_LEVEL 1 |
| |
| #define RMAP_EXT 4 |
| |
| struct kvm_rmap_desc { |
| u64 *shadow_ptes[RMAP_EXT]; |
| struct kvm_rmap_desc *more; |
| }; |
| |
| static int is_write_protection(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->cr0 & CR0_WP_MASK; |
| } |
| |
| static int is_cpuid_PSE36(void) |
| { |
| return 1; |
| } |
| |
| static int is_present_pte(unsigned long pte) |
| { |
| return pte & PT_PRESENT_MASK; |
| } |
| |
| static int is_writeble_pte(unsigned long pte) |
| { |
| return pte & PT_WRITABLE_MASK; |
| } |
| |
| static int is_io_pte(unsigned long pte) |
| { |
| return pte & PT_SHADOW_IO_MARK; |
| } |
| |
| static int is_rmap_pte(u64 pte) |
| { |
| return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK)) |
| == (PT_WRITABLE_MASK | PT_PRESENT_MASK); |
| } |
| |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
| size_t objsize, int min) |
| { |
| void *obj; |
| |
| if (cache->nobjs >= min) |
| return 0; |
| while (cache->nobjs < ARRAY_SIZE(cache->objects)) { |
| obj = kzalloc(objsize, GFP_NOWAIT); |
| if (!obj) |
| return -ENOMEM; |
| cache->objects[cache->nobjs++] = obj; |
| } |
| return 0; |
| } |
| |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) |
| { |
| while (mc->nobjs) |
| kfree(mc->objects[--mc->nobjs]); |
| } |
| |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache, |
| sizeof(struct kvm_pte_chain), 4); |
| if (r) |
| goto out; |
| r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache, |
| sizeof(struct kvm_rmap_desc), 1); |
| out: |
| return r; |
| } |
| |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| { |
| mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache); |
| mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache); |
| } |
| |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc, |
| size_t size) |
| { |
| void *p; |
| |
| BUG_ON(!mc->nobjs); |
| p = mc->objects[--mc->nobjs]; |
| memset(p, 0, size); |
| return p; |
| } |
| |
| static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj) |
| { |
| if (mc->nobjs < KVM_NR_MEM_OBJS) |
| mc->objects[mc->nobjs++] = obj; |
| else |
| kfree(obj); |
| } |
| |
| static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu) |
| { |
| return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache, |
| sizeof(struct kvm_pte_chain)); |
| } |
| |
| static void mmu_free_pte_chain(struct kvm_vcpu *vcpu, |
| struct kvm_pte_chain *pc) |
| { |
| mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc); |
| } |
| |
| static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu) |
| { |
| return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache, |
| sizeof(struct kvm_rmap_desc)); |
| } |
| |
| static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu, |
| struct kvm_rmap_desc *rd) |
| { |
| mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd); |
| } |
| |
| /* |
| * Reverse mapping data structures: |
| * |
| * If page->private bit zero is zero, then page->private points to the |
| * shadow page table entry that points to page_address(page). |
| * |
| * If page->private bit zero is one, (then page->private & ~1) points |
| * to a struct kvm_rmap_desc containing more mappings. |
| */ |
| static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte) |
| { |
| struct page *page; |
| struct kvm_rmap_desc *desc; |
| int i; |
| |
| if (!is_rmap_pte(*spte)) |
| return; |
| page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); |
| if (!page->private) { |
| rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte); |
| page->private = (unsigned long)spte; |
| } else if (!(page->private & 1)) { |
| rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte); |
| desc = mmu_alloc_rmap_desc(vcpu); |
| desc->shadow_ptes[0] = (u64 *)page->private; |
| desc->shadow_ptes[1] = spte; |
| page->private = (unsigned long)desc | 1; |
| } else { |
| rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); |
| desc = (struct kvm_rmap_desc *)(page->private & ~1ul); |
| while (desc->shadow_ptes[RMAP_EXT-1] && desc->more) |
| desc = desc->more; |
| if (desc->shadow_ptes[RMAP_EXT-1]) { |
| desc->more = mmu_alloc_rmap_desc(vcpu); |
| desc = desc->more; |
| } |
| for (i = 0; desc->shadow_ptes[i]; ++i) |
| ; |
| desc->shadow_ptes[i] = spte; |
| } |
| } |
| |
| static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu, |
| struct page *page, |
| struct kvm_rmap_desc *desc, |
| int i, |
| struct kvm_rmap_desc *prev_desc) |
| { |
| int j; |
| |
| for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j) |
| ; |
| desc->shadow_ptes[i] = desc->shadow_ptes[j]; |
| desc->shadow_ptes[j] = 0; |
| if (j != 0) |
| return; |
| if (!prev_desc && !desc->more) |
| page->private = (unsigned long)desc->shadow_ptes[0]; |
| else |
| if (prev_desc) |
| prev_desc->more = desc->more; |
| else |
| page->private = (unsigned long)desc->more | 1; |
| mmu_free_rmap_desc(vcpu, desc); |
| } |
| |
| static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte) |
| { |
| struct page *page; |
| struct kvm_rmap_desc *desc; |
| struct kvm_rmap_desc *prev_desc; |
| int i; |
| |
| if (!is_rmap_pte(*spte)) |
| return; |
| page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); |
| if (!page->private) { |
| printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte); |
| BUG(); |
| } else if (!(page->private & 1)) { |
| rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte); |
| if ((u64 *)page->private != spte) { |
| printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n", |
| spte, *spte); |
| BUG(); |
| } |
| page->private = 0; |
| } else { |
| rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte); |
| desc = (struct kvm_rmap_desc *)(page->private & ~1ul); |
| prev_desc = NULL; |
| while (desc) { |
| for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) |
| if (desc->shadow_ptes[i] == spte) { |
| rmap_desc_remove_entry(vcpu, page, |
| desc, i, |
| prev_desc); |
| return; |
| } |
| prev_desc = desc; |
| desc = desc->more; |
| } |
| BUG(); |
| } |
| } |
| |
| static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct page *page; |
| struct kvm_memory_slot *slot; |
| struct kvm_rmap_desc *desc; |
| u64 *spte; |
| |
| slot = gfn_to_memslot(kvm, gfn); |
| BUG_ON(!slot); |
| page = gfn_to_page(slot, gfn); |
| |
| while (page->private) { |
| if (!(page->private & 1)) |
| spte = (u64 *)page->private; |
| else { |
| desc = (struct kvm_rmap_desc *)(page->private & ~1ul); |
| spte = desc->shadow_ptes[0]; |
| } |
| BUG_ON(!spte); |
| BUG_ON((*spte & PT64_BASE_ADDR_MASK) != |
| page_to_pfn(page) << PAGE_SHIFT); |
| BUG_ON(!(*spte & PT_PRESENT_MASK)); |
| BUG_ON(!(*spte & PT_WRITABLE_MASK)); |
| rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte); |
| rmap_remove(vcpu, spte); |
| kvm_arch_ops->tlb_flush(vcpu); |
| *spte &= ~(u64)PT_WRITABLE_MASK; |
| } |
| } |
| |
| static int is_empty_shadow_page(hpa_t page_hpa) |
| { |
| u64 *pos; |
| u64 *end; |
| |
| for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64); |
| pos != end; pos++) |
| if (*pos != 0) { |
| printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__, |
| pos, *pos); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa) |
| { |
| struct kvm_mmu_page *page_head = page_header(page_hpa); |
| |
| ASSERT(is_empty_shadow_page(page_hpa)); |
| list_del(&page_head->link); |
| page_head->page_hpa = page_hpa; |
| list_add(&page_head->link, &vcpu->free_pages); |
| ++vcpu->kvm->n_free_mmu_pages; |
| } |
| |
| static unsigned kvm_page_table_hashfn(gfn_t gfn) |
| { |
| return gfn; |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, |
| u64 *parent_pte) |
| { |
| struct kvm_mmu_page *page; |
| |
| if (list_empty(&vcpu->free_pages)) |
| return NULL; |
| |
| page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link); |
| list_del(&page->link); |
| list_add(&page->link, &vcpu->kvm->active_mmu_pages); |
| ASSERT(is_empty_shadow_page(page->page_hpa)); |
| page->slot_bitmap = 0; |
| page->global = 1; |
| page->multimapped = 0; |
| page->parent_pte = parent_pte; |
| --vcpu->kvm->n_free_mmu_pages; |
| return page; |
| } |
| |
| static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *page, u64 *parent_pte) |
| { |
| struct kvm_pte_chain *pte_chain; |
| struct hlist_node *node; |
| int i; |
| |
| if (!parent_pte) |
| return; |
| if (!page->multimapped) { |
| u64 *old = page->parent_pte; |
| |
| if (!old) { |
| page->parent_pte = parent_pte; |
| return; |
| } |
| page->multimapped = 1; |
| pte_chain = mmu_alloc_pte_chain(vcpu); |
| INIT_HLIST_HEAD(&page->parent_ptes); |
| hlist_add_head(&pte_chain->link, &page->parent_ptes); |
| pte_chain->parent_ptes[0] = old; |
| } |
| hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) { |
| if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1]) |
| continue; |
| for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) |
| if (!pte_chain->parent_ptes[i]) { |
| pte_chain->parent_ptes[i] = parent_pte; |
| return; |
| } |
| } |
| pte_chain = mmu_alloc_pte_chain(vcpu); |
| BUG_ON(!pte_chain); |
| hlist_add_head(&pte_chain->link, &page->parent_ptes); |
| pte_chain->parent_ptes[0] = parent_pte; |
| } |
| |
| static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *page, |
| u64 *parent_pte) |
| { |
| struct kvm_pte_chain *pte_chain; |
| struct hlist_node *node; |
| int i; |
| |
| if (!page->multimapped) { |
| BUG_ON(page->parent_pte != parent_pte); |
| page->parent_pte = NULL; |
| return; |
| } |
| hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) |
| for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { |
| if (!pte_chain->parent_ptes[i]) |
| break; |
| if (pte_chain->parent_ptes[i] != parent_pte) |
| continue; |
| while (i + 1 < NR_PTE_CHAIN_ENTRIES |
| && pte_chain->parent_ptes[i + 1]) { |
| pte_chain->parent_ptes[i] |
| = pte_chain->parent_ptes[i + 1]; |
| ++i; |
| } |
| pte_chain->parent_ptes[i] = NULL; |
| if (i == 0) { |
| hlist_del(&pte_chain->link); |
| mmu_free_pte_chain(vcpu, pte_chain); |
| if (hlist_empty(&page->parent_ptes)) { |
| page->multimapped = 0; |
| page->parent_pte = NULL; |
| } |
| } |
| return; |
| } |
| BUG(); |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu, |
| gfn_t gfn) |
| { |
| unsigned index; |
| struct hlist_head *bucket; |
| struct kvm_mmu_page *page; |
| struct hlist_node *node; |
| |
| pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn); |
| index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; |
| bucket = &vcpu->kvm->mmu_page_hash[index]; |
| hlist_for_each_entry(page, node, bucket, hash_link) |
| if (page->gfn == gfn && !page->role.metaphysical) { |
| pgprintk("%s: found role %x\n", |
| __FUNCTION__, page->role.word); |
| return page; |
| } |
| return NULL; |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, |
| gfn_t gfn, |
| gva_t gaddr, |
| unsigned level, |
| int metaphysical, |
| u64 *parent_pte) |
| { |
| union kvm_mmu_page_role role; |
| unsigned index; |
| unsigned quadrant; |
| struct hlist_head *bucket; |
| struct kvm_mmu_page *page; |
| struct hlist_node *node; |
| |
| role.word = 0; |
| role.glevels = vcpu->mmu.root_level; |
| role.level = level; |
| role.metaphysical = metaphysical; |
| if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) { |
| quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); |
| quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; |
| role.quadrant = quadrant; |
| } |
| pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__, |
| gfn, role.word); |
| index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; |
| bucket = &vcpu->kvm->mmu_page_hash[index]; |
| hlist_for_each_entry(page, node, bucket, hash_link) |
| if (page->gfn == gfn && page->role.word == role.word) { |
| mmu_page_add_parent_pte(vcpu, page, parent_pte); |
| pgprintk("%s: found\n", __FUNCTION__); |
| return page; |
| } |
| page = kvm_mmu_alloc_page(vcpu, parent_pte); |
| if (!page) |
| return page; |
| pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word); |
| page->gfn = gfn; |
| page->role = role; |
| hlist_add_head(&page->hash_link, bucket); |
| if (!metaphysical) |
| rmap_write_protect(vcpu, gfn); |
| return page; |
| } |
| |
| static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *page) |
| { |
| unsigned i; |
| u64 *pt; |
| u64 ent; |
| |
| pt = __va(page->page_hpa); |
| |
| if (page->role.level == PT_PAGE_TABLE_LEVEL) { |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { |
| if (pt[i] & PT_PRESENT_MASK) |
| rmap_remove(vcpu, &pt[i]); |
| pt[i] = 0; |
| } |
| kvm_arch_ops->tlb_flush(vcpu); |
| return; |
| } |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { |
| ent = pt[i]; |
| |
| pt[i] = 0; |
| if (!(ent & PT_PRESENT_MASK)) |
| continue; |
| ent &= PT64_BASE_ADDR_MASK; |
| mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]); |
| } |
| } |
| |
| static void kvm_mmu_put_page(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *page, |
| u64 *parent_pte) |
| { |
| mmu_page_remove_parent_pte(vcpu, page, parent_pte); |
| } |
| |
| static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *page) |
| { |
| u64 *parent_pte; |
| |
| while (page->multimapped || page->parent_pte) { |
| if (!page->multimapped) |
| parent_pte = page->parent_pte; |
| else { |
| struct kvm_pte_chain *chain; |
| |
| chain = container_of(page->parent_ptes.first, |
| struct kvm_pte_chain, link); |
| parent_pte = chain->parent_ptes[0]; |
| } |
| BUG_ON(!parent_pte); |
| kvm_mmu_put_page(vcpu, page, parent_pte); |
| *parent_pte = 0; |
| } |
| kvm_mmu_page_unlink_children(vcpu, page); |
| if (!page->root_count) { |
| hlist_del(&page->hash_link); |
| kvm_mmu_free_page(vcpu, page->page_hpa); |
| } else { |
| list_del(&page->link); |
| list_add(&page->link, &vcpu->kvm->active_mmu_pages); |
| } |
| } |
| |
| static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| unsigned index; |
| struct hlist_head *bucket; |
| struct kvm_mmu_page *page; |
| struct hlist_node *node, *n; |
| int r; |
| |
| pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn); |
| r = 0; |
| index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; |
| bucket = &vcpu->kvm->mmu_page_hash[index]; |
| hlist_for_each_entry_safe(page, node, n, bucket, hash_link) |
| if (page->gfn == gfn && !page->role.metaphysical) { |
| pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn, |
| page->role.word); |
| kvm_mmu_zap_page(vcpu, page); |
| r = 1; |
| } |
| return r; |
| } |
| |
| static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa) |
| { |
| int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT)); |
| struct kvm_mmu_page *page_head = page_header(__pa(pte)); |
| |
| __set_bit(slot, &page_head->slot_bitmap); |
| } |
| |
| hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa) |
| { |
| hpa_t hpa = gpa_to_hpa(vcpu, gpa); |
| |
| return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa; |
| } |
| |
| hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa) |
| { |
| struct kvm_memory_slot *slot; |
| struct page *page; |
| |
| ASSERT((gpa & HPA_ERR_MASK) == 0); |
| slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT); |
| if (!slot) |
| return gpa | HPA_ERR_MASK; |
| page = gfn_to_page(slot, gpa >> PAGE_SHIFT); |
| return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT) |
| | (gpa & (PAGE_SIZE-1)); |
| } |
| |
| hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); |
| |
| if (gpa == UNMAPPED_GVA) |
| return UNMAPPED_GVA; |
| return gpa_to_hpa(vcpu, gpa); |
| } |
| |
| static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p) |
| { |
| int level = PT32E_ROOT_LEVEL; |
| hpa_t table_addr = vcpu->mmu.root_hpa; |
| |
| for (; ; level--) { |
| u32 index = PT64_INDEX(v, level); |
| u64 *table; |
| u64 pte; |
| |
| ASSERT(VALID_PAGE(table_addr)); |
| table = __va(table_addr); |
| |
| if (level == 1) { |
| pte = table[index]; |
| if (is_present_pte(pte) && is_writeble_pte(pte)) |
| return 0; |
| mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT); |
| page_header_update_slot(vcpu->kvm, table, v); |
| table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK | |
| PT_USER_MASK; |
| rmap_add(vcpu, &table[index]); |
| return 0; |
| } |
| |
| if (table[index] == 0) { |
| struct kvm_mmu_page *new_table; |
| gfn_t pseudo_gfn; |
| |
| pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK) |
| >> PAGE_SHIFT; |
| new_table = kvm_mmu_get_page(vcpu, pseudo_gfn, |
| v, level - 1, |
| 1, &table[index]); |
| if (!new_table) { |
| pgprintk("nonpaging_map: ENOMEM\n"); |
| return -ENOMEM; |
| } |
| |
| table[index] = new_table->page_hpa | PT_PRESENT_MASK |
| | PT_WRITABLE_MASK | PT_USER_MASK; |
| } |
| table_addr = table[index] & PT64_BASE_ADDR_MASK; |
| } |
| } |
| |
| static void mmu_free_roots(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_mmu_page *page; |
| |
| #ifdef CONFIG_X86_64 |
| if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) { |
| hpa_t root = vcpu->mmu.root_hpa; |
| |
| ASSERT(VALID_PAGE(root)); |
| page = page_header(root); |
| --page->root_count; |
| vcpu->mmu.root_hpa = INVALID_PAGE; |
| return; |
| } |
| #endif |
| for (i = 0; i < 4; ++i) { |
| hpa_t root = vcpu->mmu.pae_root[i]; |
| |
| ASSERT(VALID_PAGE(root)); |
| root &= PT64_BASE_ADDR_MASK; |
| page = page_header(root); |
| --page->root_count; |
| vcpu->mmu.pae_root[i] = INVALID_PAGE; |
| } |
| vcpu->mmu.root_hpa = INVALID_PAGE; |
| } |
| |
| static void mmu_alloc_roots(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| gfn_t root_gfn; |
| struct kvm_mmu_page *page; |
| |
| root_gfn = vcpu->cr3 >> PAGE_SHIFT; |
| |
| #ifdef CONFIG_X86_64 |
| if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) { |
| hpa_t root = vcpu->mmu.root_hpa; |
| |
| ASSERT(!VALID_PAGE(root)); |
| root = kvm_mmu_get_page(vcpu, root_gfn, 0, |
| PT64_ROOT_LEVEL, 0, NULL)->page_hpa; |
| page = page_header(root); |
| ++page->root_count; |
| vcpu->mmu.root_hpa = root; |
| return; |
| } |
| #endif |
| for (i = 0; i < 4; ++i) { |
| hpa_t root = vcpu->mmu.pae_root[i]; |
| |
| ASSERT(!VALID_PAGE(root)); |
| if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) |
| root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT; |
| else if (vcpu->mmu.root_level == 0) |
| root_gfn = 0; |
| root = kvm_mmu_get_page(vcpu, root_gfn, i << 30, |
| PT32_ROOT_LEVEL, !is_paging(vcpu), |
| NULL)->page_hpa; |
| page = page_header(root); |
| ++page->root_count; |
| vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK; |
| } |
| vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root); |
| } |
| |
| static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr) |
| { |
| return vaddr; |
| } |
| |
| static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, |
| u32 error_code) |
| { |
| gpa_t addr = gva; |
| hpa_t paddr; |
| int r; |
| |
| r = mmu_topup_memory_caches(vcpu); |
| if (r) |
| return r; |
| |
| ASSERT(vcpu); |
| ASSERT(VALID_PAGE(vcpu->mmu.root_hpa)); |
| |
| |
| paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK); |
| |
| if (is_error_hpa(paddr)) |
| return 1; |
| |
| return nonpaging_map(vcpu, addr & PAGE_MASK, paddr); |
| } |
| |
| static void nonpaging_free(struct kvm_vcpu *vcpu) |
| { |
| mmu_free_roots(vcpu); |
| } |
| |
| static int nonpaging_init_context(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *context = &vcpu->mmu; |
| |
| context->new_cr3 = nonpaging_new_cr3; |
| context->page_fault = nonpaging_page_fault; |
| context->gva_to_gpa = nonpaging_gva_to_gpa; |
| context->free = nonpaging_free; |
| context->root_level = 0; |
| context->shadow_root_level = PT32E_ROOT_LEVEL; |
| mmu_alloc_roots(vcpu); |
| ASSERT(VALID_PAGE(context->root_hpa)); |
| kvm_arch_ops->set_cr3(vcpu, context->root_hpa); |
| return 0; |
| } |
| |
| static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| ++kvm_stat.tlb_flush; |
| kvm_arch_ops->tlb_flush(vcpu); |
| } |
| |
| static void paging_new_cr3(struct kvm_vcpu *vcpu) |
| { |
| pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3); |
| mmu_free_roots(vcpu); |
| mmu_alloc_roots(vcpu); |
| kvm_mmu_flush_tlb(vcpu); |
| kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa); |
| } |
| |
| static void mark_pagetable_nonglobal(void *shadow_pte) |
| { |
| page_header(__pa(shadow_pte))->global = 0; |
| } |
| |
| static inline void set_pte_common(struct kvm_vcpu *vcpu, |
| u64 *shadow_pte, |
| gpa_t gaddr, |
| int dirty, |
| u64 access_bits, |
| gfn_t gfn) |
| { |
| hpa_t paddr; |
| |
| *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET; |
| if (!dirty) |
| access_bits &= ~PT_WRITABLE_MASK; |
| |
| paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK); |
| |
| *shadow_pte |= access_bits; |
| |
| if (!(*shadow_pte & PT_GLOBAL_MASK)) |
| mark_pagetable_nonglobal(shadow_pte); |
| |
| if (is_error_hpa(paddr)) { |
| *shadow_pte |= gaddr; |
| *shadow_pte |= PT_SHADOW_IO_MARK; |
| *shadow_pte &= ~PT_PRESENT_MASK; |
| return; |
| } |
| |
| *shadow_pte |= paddr; |
| |
| if (access_bits & PT_WRITABLE_MASK) { |
| struct kvm_mmu_page *shadow; |
| |
| shadow = kvm_mmu_lookup_page(vcpu, gfn); |
| if (shadow) { |
| pgprintk("%s: found shadow page for %lx, marking ro\n", |
| __FUNCTION__, gfn); |
| access_bits &= ~PT_WRITABLE_MASK; |
| if (is_writeble_pte(*shadow_pte)) { |
| *shadow_pte &= ~PT_WRITABLE_MASK; |
| kvm_arch_ops->tlb_flush(vcpu); |
| } |
| } |
| } |
| |
| if (access_bits & PT_WRITABLE_MASK) |
| mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT); |
| |
| page_header_update_slot(vcpu->kvm, shadow_pte, gaddr); |
| rmap_add(vcpu, shadow_pte); |
| } |
| |
| static void inject_page_fault(struct kvm_vcpu *vcpu, |
| u64 addr, |
| u32 err_code) |
| { |
| kvm_arch_ops->inject_page_fault(vcpu, addr, err_code); |
| } |
| |
| static inline int fix_read_pf(u64 *shadow_ent) |
| { |
| if ((*shadow_ent & PT_SHADOW_USER_MASK) && |
| !(*shadow_ent & PT_USER_MASK)) { |
| /* |
| * If supervisor write protect is disabled, we shadow kernel |
| * pages as user pages so we can trap the write access. |
| */ |
| *shadow_ent |= PT_USER_MASK; |
| *shadow_ent &= ~PT_WRITABLE_MASK; |
| |
| return 1; |
| |
| } |
| return 0; |
| } |
| |
| static int may_access(u64 pte, int write, int user) |
| { |
| |
| if (user && !(pte & PT_USER_MASK)) |
| return 0; |
| if (write && !(pte & PT_WRITABLE_MASK)) |
| return 0; |
| return 1; |
| } |
| |
| static void paging_free(struct kvm_vcpu *vcpu) |
| { |
| nonpaging_free(vcpu); |
| } |
| |
| #define PTTYPE 64 |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| #define PTTYPE 32 |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level) |
| { |
| struct kvm_mmu *context = &vcpu->mmu; |
| |
| ASSERT(is_pae(vcpu)); |
| context->new_cr3 = paging_new_cr3; |
| context->page_fault = paging64_page_fault; |
| context->gva_to_gpa = paging64_gva_to_gpa; |
| context->free = paging_free; |
| context->root_level = level; |
| context->shadow_root_level = level; |
| mmu_alloc_roots(vcpu); |
| ASSERT(VALID_PAGE(context->root_hpa)); |
| kvm_arch_ops->set_cr3(vcpu, context->root_hpa | |
| (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); |
| return 0; |
| } |
| |
| static int paging64_init_context(struct kvm_vcpu *vcpu) |
| { |
| return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL); |
| } |
| |
| static int paging32_init_context(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *context = &vcpu->mmu; |
| |
| context->new_cr3 = paging_new_cr3; |
| context->page_fault = paging32_page_fault; |
| context->gva_to_gpa = paging32_gva_to_gpa; |
| context->free = paging_free; |
| context->root_level = PT32_ROOT_LEVEL; |
| context->shadow_root_level = PT32E_ROOT_LEVEL; |
| mmu_alloc_roots(vcpu); |
| ASSERT(VALID_PAGE(context->root_hpa)); |
| kvm_arch_ops->set_cr3(vcpu, context->root_hpa | |
| (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); |
| return 0; |
| } |
| |
| static int paging32E_init_context(struct kvm_vcpu *vcpu) |
| { |
| return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL); |
| } |
| |
| static int init_kvm_mmu(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); |
| |
| if (!is_paging(vcpu)) |
| return nonpaging_init_context(vcpu); |
| else if (is_long_mode(vcpu)) |
| return paging64_init_context(vcpu); |
| else if (is_pae(vcpu)) |
| return paging32E_init_context(vcpu); |
| else |
| return paging32_init_context(vcpu); |
| } |
| |
| static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| if (VALID_PAGE(vcpu->mmu.root_hpa)) { |
| vcpu->mmu.free(vcpu); |
| vcpu->mmu.root_hpa = INVALID_PAGE; |
| } |
| } |
| |
| int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| destroy_kvm_mmu(vcpu); |
| r = init_kvm_mmu(vcpu); |
| if (r < 0) |
| goto out; |
| r = mmu_topup_memory_caches(vcpu); |
| out: |
| return r; |
| } |
| |
| void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes) |
| { |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| struct kvm_mmu_page *page; |
| struct kvm_mmu_page *child; |
| struct hlist_node *node, *n; |
| struct hlist_head *bucket; |
| unsigned index; |
| u64 *spte; |
| u64 pte; |
| unsigned offset = offset_in_page(gpa); |
| unsigned pte_size; |
| unsigned page_offset; |
| unsigned misaligned; |
| int level; |
| int flooded = 0; |
| |
| pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes); |
| if (gfn == vcpu->last_pt_write_gfn) { |
| ++vcpu->last_pt_write_count; |
| if (vcpu->last_pt_write_count >= 3) |
| flooded = 1; |
| } else { |
| vcpu->last_pt_write_gfn = gfn; |
| vcpu->last_pt_write_count = 1; |
| } |
| index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; |
| bucket = &vcpu->kvm->mmu_page_hash[index]; |
| hlist_for_each_entry_safe(page, node, n, bucket, hash_link) { |
| if (page->gfn != gfn || page->role.metaphysical) |
| continue; |
| pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8; |
| misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); |
| if (misaligned || flooded) { |
| /* |
| * Misaligned accesses are too much trouble to fix |
| * up; also, they usually indicate a page is not used |
| * as a page table. |
| * |
| * If we're seeing too many writes to a page, |
| * it may no longer be a page table, or we may be |
| * forking, in which case it is better to unmap the |
| * page. |
| */ |
| pgprintk("misaligned: gpa %llx bytes %d role %x\n", |
| gpa, bytes, page->role.word); |
| kvm_mmu_zap_page(vcpu, page); |
| continue; |
| } |
| page_offset = offset; |
| level = page->role.level; |
| if (page->role.glevels == PT32_ROOT_LEVEL) { |
| page_offset <<= 1; /* 32->64 */ |
| page_offset &= ~PAGE_MASK; |
| } |
| spte = __va(page->page_hpa); |
| spte += page_offset / sizeof(*spte); |
| pte = *spte; |
| if (is_present_pte(pte)) { |
| if (level == PT_PAGE_TABLE_LEVEL) |
| rmap_remove(vcpu, spte); |
| else { |
| child = page_header(pte & PT64_BASE_ADDR_MASK); |
| mmu_page_remove_parent_pte(vcpu, child, spte); |
| } |
| } |
| *spte = 0; |
| } |
| } |
| |
| void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes) |
| { |
| } |
| |
| int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); |
| |
| return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT); |
| } |
| |
| void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) |
| { |
| while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) { |
| struct kvm_mmu_page *page; |
| |
| page = container_of(vcpu->kvm->active_mmu_pages.prev, |
| struct kvm_mmu_page, link); |
| kvm_mmu_zap_page(vcpu, page); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages); |
| |
| static void free_mmu_pages(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu_page *page; |
| |
| while (!list_empty(&vcpu->kvm->active_mmu_pages)) { |
| page = container_of(vcpu->kvm->active_mmu_pages.next, |
| struct kvm_mmu_page, link); |
| kvm_mmu_zap_page(vcpu, page); |
| } |
| while (!list_empty(&vcpu->free_pages)) { |
| page = list_entry(vcpu->free_pages.next, |
| struct kvm_mmu_page, link); |
| list_del(&page->link); |
| __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT)); |
| page->page_hpa = INVALID_PAGE; |
| } |
| free_page((unsigned long)vcpu->mmu.pae_root); |
| } |
| |
| static int alloc_mmu_pages(struct kvm_vcpu *vcpu) |
| { |
| struct page *page; |
| int i; |
| |
| ASSERT(vcpu); |
| |
| for (i = 0; i < KVM_NUM_MMU_PAGES; i++) { |
| struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i]; |
| |
| INIT_LIST_HEAD(&page_header->link); |
| if ((page = alloc_page(GFP_KERNEL)) == NULL) |
| goto error_1; |
| page->private = (unsigned long)page_header; |
| page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT; |
| memset(__va(page_header->page_hpa), 0, PAGE_SIZE); |
| list_add(&page_header->link, &vcpu->free_pages); |
| ++vcpu->kvm->n_free_mmu_pages; |
| } |
| |
| /* |
| * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. |
| * Therefore we need to allocate shadow page tables in the first |
| * 4GB of memory, which happens to fit the DMA32 zone. |
| */ |
| page = alloc_page(GFP_KERNEL | __GFP_DMA32); |
| if (!page) |
| goto error_1; |
| vcpu->mmu.pae_root = page_address(page); |
| for (i = 0; i < 4; ++i) |
| vcpu->mmu.pae_root[i] = INVALID_PAGE; |
| |
| return 0; |
| |
| error_1: |
| free_mmu_pages(vcpu); |
| return -ENOMEM; |
| } |
| |
| int kvm_mmu_create(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); |
| ASSERT(list_empty(&vcpu->free_pages)); |
| |
| return alloc_mmu_pages(vcpu); |
| } |
| |
| int kvm_mmu_setup(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); |
| ASSERT(!list_empty(&vcpu->free_pages)); |
| |
| return init_kvm_mmu(vcpu); |
| } |
| |
| void kvm_mmu_destroy(struct kvm_vcpu *vcpu) |
| { |
| ASSERT(vcpu); |
| |
| destroy_kvm_mmu(vcpu); |
| free_mmu_pages(vcpu); |
| mmu_free_memory_caches(vcpu); |
| } |
| |
| void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_mmu_page *page; |
| |
| list_for_each_entry(page, &kvm->active_mmu_pages, link) { |
| int i; |
| u64 *pt; |
| |
| if (!test_bit(slot, &page->slot_bitmap)) |
| continue; |
| |
| pt = __va(page->page_hpa); |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) |
| /* avoid RMW */ |
| if (pt[i] & PT_WRITABLE_MASK) { |
| rmap_remove(vcpu, &pt[i]); |
| pt[i] &= ~PT_WRITABLE_MASK; |
| } |
| } |
| } |
| |
| #ifdef AUDIT |
| |
| static const char *audit_msg; |
| |
| static gva_t canonicalize(gva_t gva) |
| { |
| #ifdef CONFIG_X86_64 |
| gva = (long long)(gva << 16) >> 16; |
| #endif |
| return gva; |
| } |
| |
| static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte, |
| gva_t va, int level) |
| { |
| u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK); |
| int i; |
| gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1)); |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) { |
| u64 ent = pt[i]; |
| |
| if (!ent & PT_PRESENT_MASK) |
| continue; |
| |
| va = canonicalize(va); |
| if (level > 1) |
| audit_mappings_page(vcpu, ent, va, level - 1); |
| else { |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va); |
| hpa_t hpa = gpa_to_hpa(vcpu, gpa); |
| |
| if ((ent & PT_PRESENT_MASK) |
| && (ent & PT64_BASE_ADDR_MASK) != hpa) |
| printk(KERN_ERR "audit error: (%s) levels %d" |
| " gva %lx gpa %llx hpa %llx ent %llx\n", |
| audit_msg, vcpu->mmu.root_level, |
| va, gpa, hpa, ent); |
| } |
| } |
| } |
| |
| static void audit_mappings(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| |
| if (vcpu->mmu.root_level == 4) |
| audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4); |
| else |
| for (i = 0; i < 4; ++i) |
| if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK) |
| audit_mappings_page(vcpu, |
| vcpu->mmu.pae_root[i], |
| i << 30, |
| 2); |
| } |
| |
| static int count_rmaps(struct kvm_vcpu *vcpu) |
| { |
| int nmaps = 0; |
| int i, j, k; |
| |
| for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { |
| struct kvm_memory_slot *m = &vcpu->kvm->memslots[i]; |
| struct kvm_rmap_desc *d; |
| |
| for (j = 0; j < m->npages; ++j) { |
| struct page *page = m->phys_mem[j]; |
| |
| if (!page->private) |
| continue; |
| if (!(page->private & 1)) { |
| ++nmaps; |
| continue; |
| } |
| d = (struct kvm_rmap_desc *)(page->private & ~1ul); |
| while (d) { |
| for (k = 0; k < RMAP_EXT; ++k) |
| if (d->shadow_ptes[k]) |
| ++nmaps; |
| else |
| break; |
| d = d->more; |
| } |
| } |
| } |
| return nmaps; |
| } |
| |
| static int count_writable_mappings(struct kvm_vcpu *vcpu) |
| { |
| int nmaps = 0; |
| struct kvm_mmu_page *page; |
| int i; |
| |
| list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) { |
| u64 *pt = __va(page->page_hpa); |
| |
| if (page->role.level != PT_PAGE_TABLE_LEVEL) |
| continue; |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { |
| u64 ent = pt[i]; |
| |
| if (!(ent & PT_PRESENT_MASK)) |
| continue; |
| if (!(ent & PT_WRITABLE_MASK)) |
| continue; |
| ++nmaps; |
| } |
| } |
| return nmaps; |
| } |
| |
| static void audit_rmap(struct kvm_vcpu *vcpu) |
| { |
| int n_rmap = count_rmaps(vcpu); |
| int n_actual = count_writable_mappings(vcpu); |
| |
| if (n_rmap != n_actual) |
| printk(KERN_ERR "%s: (%s) rmap %d actual %d\n", |
| __FUNCTION__, audit_msg, n_rmap, n_actual); |
| } |
| |
| static void audit_write_protection(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu_page *page; |
| |
| list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) { |
| hfn_t hfn; |
| struct page *pg; |
| |
| if (page->role.metaphysical) |
| continue; |
| |
| hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT) |
| >> PAGE_SHIFT; |
| pg = pfn_to_page(hfn); |
| if (pg->private) |
| printk(KERN_ERR "%s: (%s) shadow page has writable" |
| " mappings: gfn %lx role %x\n", |
| __FUNCTION__, audit_msg, page->gfn, |
| page->role.word); |
| } |
| } |
| |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) |
| { |
| int olddbg = dbg; |
| |
| dbg = 0; |
| audit_msg = msg; |
| audit_rmap(vcpu); |
| audit_write_protection(vcpu); |
| audit_mappings(vcpu); |
| dbg = olddbg; |
| } |
| |
| #endif |