| /* |
| * Ultra Wide Band |
| * AES-128 CCM Encryption |
| * |
| * Copyright (C) 2007 Intel Corporation |
| * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License version |
| * 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| * |
| * |
| * We don't do any encryption here; we use the Linux Kernel's AES-128 |
| * crypto modules to construct keys and payload blocks in a way |
| * defined by WUSB1.0[6]. Check the erratas, as typos are are patched |
| * there. |
| * |
| * Thanks a zillion to John Keys for his help and clarifications over |
| * the designed-by-a-committee text. |
| * |
| * So the idea is that there is this basic Pseudo-Random-Function |
| * defined in WUSB1.0[6.5] which is the core of everything. It works |
| * by tweaking some blocks, AES crypting them and then xoring |
| * something else with them (this seems to be called CBC(AES) -- can |
| * you tell I know jack about crypto?). So we just funnel it into the |
| * Linux Crypto API. |
| * |
| * We leave a crypto test module so we can verify that vectors match, |
| * every now and then. |
| * |
| * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I |
| * am learning a lot... |
| * |
| * Conveniently, some data structures that need to be |
| * funneled through AES are...16 bytes in size! |
| */ |
| |
| #include <linux/crypto.h> |
| #include <linux/module.h> |
| #include <linux/err.h> |
| #include <linux/uwb.h> |
| #include <linux/usb/wusb.h> |
| #include <linux/scatterlist.h> |
| |
| static int debug_crypto_verify = 0; |
| |
| module_param(debug_crypto_verify, int, 0); |
| MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms"); |
| |
| static void wusb_key_dump(const void *buf, size_t len) |
| { |
| print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1, |
| buf, len, 0); |
| } |
| |
| /* |
| * Block of data, as understood by AES-CCM |
| * |
| * The code assumes this structure is nothing but a 16 byte array |
| * (packed in a struct to avoid common mess ups that I usually do with |
| * arrays and enforcing type checking). |
| */ |
| struct aes_ccm_block { |
| u8 data[16]; |
| } __attribute__((packed)); |
| |
| /* |
| * Counter-mode Blocks (WUSB1.0[6.4]) |
| * |
| * According to CCM (or so it seems), for the purpose of calculating |
| * the MIC, the message is broken in N counter-mode blocks, B0, B1, |
| * ... BN. |
| * |
| * B0 contains flags, the CCM nonce and l(m). |
| * |
| * B1 contains l(a), the MAC header, the encryption offset and padding. |
| * |
| * If EO is nonzero, additional blocks are built from payload bytes |
| * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The |
| * padding is not xmitted. |
| */ |
| |
| /* WUSB1.0[T6.4] */ |
| struct aes_ccm_b0 { |
| u8 flags; /* 0x59, per CCM spec */ |
| struct aes_ccm_nonce ccm_nonce; |
| __be16 lm; |
| } __attribute__((packed)); |
| |
| /* WUSB1.0[T6.5] */ |
| struct aes_ccm_b1 { |
| __be16 la; |
| u8 mac_header[10]; |
| __le16 eo; |
| u8 security_reserved; /* This is always zero */ |
| u8 padding; /* 0 */ |
| } __attribute__((packed)); |
| |
| /* |
| * Encryption Blocks (WUSB1.0[6.4.4]) |
| * |
| * CCM uses Ax blocks to generate a keystream with which the MIC and |
| * the message's payload are encoded. A0 always encrypts/decrypts the |
| * MIC. Ax (x>0) are used for the successive payload blocks. |
| * |
| * The x is the counter, and is increased for each block. |
| */ |
| struct aes_ccm_a { |
| u8 flags; /* 0x01, per CCM spec */ |
| struct aes_ccm_nonce ccm_nonce; |
| __be16 counter; /* Value of x */ |
| } __attribute__((packed)); |
| |
| static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2, |
| size_t size) |
| { |
| u8 *bo = _bo; |
| const u8 *bi1 = _bi1, *bi2 = _bi2; |
| size_t itr; |
| for (itr = 0; itr < size; itr++) |
| bo[itr] = bi1[itr] ^ bi2[itr]; |
| } |
| |
| /* |
| * CC-MAC function WUSB1.0[6.5] |
| * |
| * Take a data string and produce the encrypted CBC Counter-mode MIC |
| * |
| * Note the names for most function arguments are made to (more or |
| * less) match those used in the pseudo-function definition given in |
| * WUSB1.0[6.5]. |
| * |
| * @tfm_cbc: CBC(AES) blkcipher handle (initialized) |
| * |
| * @tfm_aes: AES cipher handle (initialized) |
| * |
| * @mic: buffer for placing the computed MIC (Message Integrity |
| * Code). This is exactly 8 bytes, and we expect the buffer to |
| * be at least eight bytes in length. |
| * |
| * @key: 128 bit symmetric key |
| * |
| * @n: CCM nonce |
| * |
| * @a: ASCII string, 14 bytes long (I guess zero padded if needed; |
| * we use exactly 14 bytes). |
| * |
| * @b: data stream to be processed; cannot be a global or const local |
| * (will confuse the scatterlists) |
| * |
| * @blen: size of b... |
| * |
| * Still not very clear how this is done, but looks like this: we |
| * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with |
| * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we |
| * take the payload and divide it in blocks (16 bytes), xor them with |
| * the previous crypto result (16 bytes) and crypt it, repeat the next |
| * block with the output of the previous one, rinse wash (I guess this |
| * is what AES CBC mode means...but I truly have no idea). So we use |
| * the CBC(AES) blkcipher, that does precisely that. The IV (Initial |
| * Vector) is 16 bytes and is set to zero, so |
| * |
| * See rfc3610. Linux crypto has a CBC implementation, but the |
| * documentation is scarce, to say the least, and the example code is |
| * so intricated that is difficult to understand how things work. Most |
| * of this is guess work -- bite me. |
| * |
| * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and |
| * using the 14 bytes of @a to fill up |
| * b1.{mac_header,e0,security_reserved,padding}. |
| * |
| * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of |
| * l(m) is orthogonal, they bear no relationship, so it is not |
| * in conflict with the parameter's relation that |
| * WUSB1.0[6.4.2]) defines. |
| * |
| * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in |
| * first errata released on 2005/07. |
| * |
| * NOTE: we need to clean IV to zero at each invocation to make sure |
| * we start with a fresh empty Initial Vector, so that the CBC |
| * works ok. |
| * |
| * NOTE: blen is not aligned to a block size, we'll pad zeros, that's |
| * what sg[4] is for. Maybe there is a smarter way to do this. |
| */ |
| static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc, |
| struct crypto_cipher *tfm_aes, void *mic, |
| const struct aes_ccm_nonce *n, |
| const struct aes_ccm_label *a, const void *b, |
| size_t blen) |
| { |
| int result = 0; |
| struct blkcipher_desc desc; |
| struct aes_ccm_b0 b0; |
| struct aes_ccm_b1 b1; |
| struct aes_ccm_a ax; |
| struct scatterlist sg[4], sg_dst; |
| void *iv, *dst_buf; |
| size_t ivsize, dst_size; |
| const u8 bzero[16] = { 0 }; |
| size_t zero_padding; |
| |
| /* |
| * These checks should be compile time optimized out |
| * ensure @a fills b1's mac_header and following fields |
| */ |
| WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la)); |
| WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block)); |
| WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block)); |
| WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block)); |
| |
| result = -ENOMEM; |
| zero_padding = sizeof(struct aes_ccm_block) |
| - blen % sizeof(struct aes_ccm_block); |
| zero_padding = blen % sizeof(struct aes_ccm_block); |
| if (zero_padding) |
| zero_padding = sizeof(struct aes_ccm_block) - zero_padding; |
| dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding; |
| dst_buf = kzalloc(dst_size, GFP_KERNEL); |
| if (dst_buf == NULL) { |
| printk(KERN_ERR "E: can't alloc destination buffer\n"); |
| goto error_dst_buf; |
| } |
| |
| iv = crypto_blkcipher_crt(tfm_cbc)->iv; |
| ivsize = crypto_blkcipher_ivsize(tfm_cbc); |
| memset(iv, 0, ivsize); |
| |
| /* Setup B0 */ |
| b0.flags = 0x59; /* Format B0 */ |
| b0.ccm_nonce = *n; |
| b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */ |
| |
| /* Setup B1 |
| * |
| * The WUSB spec is anything but clear! WUSB1.0[6.5] |
| * says that to initialize B1 from A with 'l(a) = blen + |
| * 14'--after clarification, it means to use A's contents |
| * for MAC Header, EO, sec reserved and padding. |
| */ |
| b1.la = cpu_to_be16(blen + 14); |
| memcpy(&b1.mac_header, a, sizeof(*a)); |
| |
| sg_init_table(sg, ARRAY_SIZE(sg)); |
| sg_set_buf(&sg[0], &b0, sizeof(b0)); |
| sg_set_buf(&sg[1], &b1, sizeof(b1)); |
| sg_set_buf(&sg[2], b, blen); |
| /* 0 if well behaved :) */ |
| sg_set_buf(&sg[3], bzero, zero_padding); |
| sg_init_one(&sg_dst, dst_buf, dst_size); |
| |
| desc.tfm = tfm_cbc; |
| desc.flags = 0; |
| result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size); |
| if (result < 0) { |
| printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n", |
| result); |
| goto error_cbc_crypt; |
| } |
| |
| /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5] |
| * The procedure is to AES crypt the A0 block and XOR the MIC |
| * Tag agains it; we only do the first 8 bytes and place it |
| * directly in the destination buffer. |
| * |
| * POS Crypto API: size is assumed to be AES's block size. |
| * Thanks for documenting it -- tip taken from airo.c |
| */ |
| ax.flags = 0x01; /* as per WUSB 1.0 spec */ |
| ax.ccm_nonce = *n; |
| ax.counter = 0; |
| crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax); |
| bytewise_xor(mic, &ax, iv, 8); |
| result = 8; |
| error_cbc_crypt: |
| kfree(dst_buf); |
| error_dst_buf: |
| return result; |
| } |
| |
| /* |
| * WUSB Pseudo Random Function (WUSB1.0[6.5]) |
| * |
| * @b: buffer to the source data; cannot be a global or const local |
| * (will confuse the scatterlists) |
| */ |
| ssize_t wusb_prf(void *out, size_t out_size, |
| const u8 key[16], const struct aes_ccm_nonce *_n, |
| const struct aes_ccm_label *a, |
| const void *b, size_t blen, size_t len) |
| { |
| ssize_t result, bytes = 0, bitr; |
| struct aes_ccm_nonce n = *_n; |
| struct crypto_blkcipher *tfm_cbc; |
| struct crypto_cipher *tfm_aes; |
| u64 sfn = 0; |
| __le64 sfn_le; |
| |
| tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(tfm_cbc)) { |
| result = PTR_ERR(tfm_cbc); |
| printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result); |
| goto error_alloc_cbc; |
| } |
| result = crypto_blkcipher_setkey(tfm_cbc, key, 16); |
| if (result < 0) { |
| printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result); |
| goto error_setkey_cbc; |
| } |
| |
| tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(tfm_aes)) { |
| result = PTR_ERR(tfm_aes); |
| printk(KERN_ERR "E: can't load AES: %d\n", (int)result); |
| goto error_alloc_aes; |
| } |
| result = crypto_cipher_setkey(tfm_aes, key, 16); |
| if (result < 0) { |
| printk(KERN_ERR "E: can't set AES key: %d\n", (int)result); |
| goto error_setkey_aes; |
| } |
| |
| for (bitr = 0; bitr < (len + 63) / 64; bitr++) { |
| sfn_le = cpu_to_le64(sfn++); |
| memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */ |
| result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes, |
| &n, a, b, blen); |
| if (result < 0) |
| goto error_ccm_mac; |
| bytes += result; |
| } |
| result = bytes; |
| error_ccm_mac: |
| error_setkey_aes: |
| crypto_free_cipher(tfm_aes); |
| error_alloc_aes: |
| error_setkey_cbc: |
| crypto_free_blkcipher(tfm_cbc); |
| error_alloc_cbc: |
| return result; |
| } |
| |
| /* WUSB1.0[A.2] test vectors */ |
| static const u8 stv_hsmic_key[16] = { |
| 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d, |
| 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f |
| }; |
| |
| static const struct aes_ccm_nonce stv_hsmic_n = { |
| .sfn = { 0 }, |
| .tkid = { 0x76, 0x98, 0x01, }, |
| .dest_addr = { .data = { 0xbe, 0x00 } }, |
| .src_addr = { .data = { 0x76, 0x98 } }, |
| }; |
| |
| /* |
| * Out-of-band MIC Generation verification code |
| * |
| */ |
| static int wusb_oob_mic_verify(void) |
| { |
| int result; |
| u8 mic[8]; |
| /* WUSB1.0[A.2] test vectors |
| * |
| * Need to keep it in the local stack as GCC 4.1.3something |
| * messes up and generates noise. |
| */ |
| struct usb_handshake stv_hsmic_hs = { |
| .bMessageNumber = 2, |
| .bStatus = 00, |
| .tTKID = { 0x76, 0x98, 0x01 }, |
| .bReserved = 00, |
| .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, |
| 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, |
| 0x3c, 0x3d, 0x3e, 0x3f }, |
| .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, |
| 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, |
| 0x2c, 0x2d, 0x2e, 0x2f }, |
| .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c, |
| 0x14, 0x7b } , |
| }; |
| size_t hs_size; |
| |
| result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs); |
| if (result < 0) |
| printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result); |
| else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) { |
| printk(KERN_ERR "E: OOB MIC test: " |
| "mismatch between MIC result and WUSB1.0[A2]\n"); |
| hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC); |
| printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size); |
| wusb_key_dump(&stv_hsmic_hs, hs_size); |
| printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n", |
| sizeof(stv_hsmic_n)); |
| wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n)); |
| printk(KERN_ERR "E: MIC out:\n"); |
| wusb_key_dump(mic, sizeof(mic)); |
| printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n"); |
| wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC)); |
| result = -EINVAL; |
| } else |
| result = 0; |
| return result; |
| } |
| |
| /* |
| * Test vectors for Key derivation |
| * |
| * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1] |
| * (errata corrected in 2005/07). |
| */ |
| static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = { |
| 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87, |
| 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f |
| }; |
| |
| static const struct aes_ccm_nonce stv_keydvt_n_a1 = { |
| .sfn = { 0 }, |
| .tkid = { 0x76, 0x98, 0x01, }, |
| .dest_addr = { .data = { 0xbe, 0x00 } }, |
| .src_addr = { .data = { 0x76, 0x98 } }, |
| }; |
| |
| static const struct wusb_keydvt_out stv_keydvt_out_a1 = { |
| .kck = { |
| 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d, |
| 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f |
| }, |
| .ptk = { |
| 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06, |
| 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d |
| } |
| }; |
| |
| /* |
| * Performa a test to make sure we match the vectors defined in |
| * WUSB1.0[A.1](Errata2006/12) |
| */ |
| static int wusb_key_derive_verify(void) |
| { |
| int result = 0; |
| struct wusb_keydvt_out keydvt_out; |
| /* These come from WUSB1.0[A.1] + 2006/12 errata |
| * NOTE: can't make this const or global -- somehow it seems |
| * the scatterlists for crypto get confused and we get |
| * bad data. There is no doc on this... */ |
| struct wusb_keydvt_in stv_keydvt_in_a1 = { |
| .hnonce = { |
| 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
| 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f |
| }, |
| .dnonce = { |
| 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, |
| 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f |
| } |
| }; |
| |
| result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1, |
| &stv_keydvt_in_a1); |
| if (result < 0) |
| printk(KERN_ERR "E: WUSB key derivation test: " |
| "derivation failed: %d\n", result); |
| if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) { |
| printk(KERN_ERR "E: WUSB key derivation test: " |
| "mismatch between key derivation result " |
| "and WUSB1.0[A1] Errata 2006/12\n"); |
| printk(KERN_ERR "E: keydvt in: key\n"); |
| wusb_key_dump(stv_key_a1, sizeof(stv_key_a1)); |
| printk(KERN_ERR "E: keydvt in: nonce\n"); |
| wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1)); |
| printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n"); |
| wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1)); |
| printk(KERN_ERR "E: keydvt out: KCK\n"); |
| wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck)); |
| printk(KERN_ERR "E: keydvt out: PTK\n"); |
| wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk)); |
| result = -EINVAL; |
| } else |
| result = 0; |
| return result; |
| } |
| |
| /* |
| * Initialize crypto system |
| * |
| * FIXME: we do nothing now, other than verifying. Later on we'll |
| * cache the encryption stuff, so that's why we have a separate init. |
| */ |
| int wusb_crypto_init(void) |
| { |
| int result; |
| |
| if (debug_crypto_verify) { |
| result = wusb_key_derive_verify(); |
| if (result < 0) |
| return result; |
| return wusb_oob_mic_verify(); |
| } |
| return 0; |
| } |
| |
| void wusb_crypto_exit(void) |
| { |
| /* FIXME: free cached crypto transforms */ |
| } |