| #ifndef _ASM_IA64_SYSTEM_H |
| #define _ASM_IA64_SYSTEM_H |
| |
| /* |
| * System defines. Note that this is included both from .c and .S |
| * files, so it does only defines, not any C code. This is based |
| * on information published in the Processor Abstraction Layer |
| * and the System Abstraction Layer manual. |
| * |
| * Copyright (C) 1998-2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> |
| * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> |
| */ |
| #include <linux/config.h> |
| |
| #include <asm/kregs.h> |
| #include <asm/page.h> |
| #include <asm/pal.h> |
| #include <asm/percpu.h> |
| |
| #define GATE_ADDR RGN_BASE(RGN_GATE) |
| |
| /* |
| * 0xa000000000000000+2*PERCPU_PAGE_SIZE |
| * - 0xa000000000000000+3*PERCPU_PAGE_SIZE remain unmapped (guard page) |
| */ |
| #define KERNEL_START (GATE_ADDR+0x100000000) |
| #define PERCPU_ADDR (-PERCPU_PAGE_SIZE) |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| |
| struct pci_vector_struct { |
| __u16 segment; /* PCI Segment number */ |
| __u16 bus; /* PCI Bus number */ |
| __u32 pci_id; /* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */ |
| __u8 pin; /* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */ |
| __u32 irq; /* IRQ assigned */ |
| }; |
| |
| extern struct ia64_boot_param { |
| __u64 command_line; /* physical address of command line arguments */ |
| __u64 efi_systab; /* physical address of EFI system table */ |
| __u64 efi_memmap; /* physical address of EFI memory map */ |
| __u64 efi_memmap_size; /* size of EFI memory map */ |
| __u64 efi_memdesc_size; /* size of an EFI memory map descriptor */ |
| __u32 efi_memdesc_version; /* memory descriptor version */ |
| struct { |
| __u16 num_cols; /* number of columns on console output device */ |
| __u16 num_rows; /* number of rows on console output device */ |
| __u16 orig_x; /* cursor's x position */ |
| __u16 orig_y; /* cursor's y position */ |
| } console_info; |
| __u64 fpswa; /* physical address of the fpswa interface */ |
| __u64 initrd_start; |
| __u64 initrd_size; |
| } *ia64_boot_param; |
| |
| /* |
| * Macros to force memory ordering. In these descriptions, "previous" |
| * and "subsequent" refer to program order; "visible" means that all |
| * architecturally visible effects of a memory access have occurred |
| * (at a minimum, this means the memory has been read or written). |
| * |
| * wmb(): Guarantees that all preceding stores to memory- |
| * like regions are visible before any subsequent |
| * stores and that all following stores will be |
| * visible only after all previous stores. |
| * rmb(): Like wmb(), but for reads. |
| * mb(): wmb()/rmb() combo, i.e., all previous memory |
| * accesses are visible before all subsequent |
| * accesses and vice versa. This is also known as |
| * a "fence." |
| * |
| * Note: "mb()" and its variants cannot be used as a fence to order |
| * accesses to memory mapped I/O registers. For that, mf.a needs to |
| * be used. However, we don't want to always use mf.a because (a) |
| * it's (presumably) much slower than mf and (b) mf.a is supported for |
| * sequential memory pages only. |
| */ |
| #define mb() ia64_mf() |
| #define rmb() mb() |
| #define wmb() mb() |
| #define read_barrier_depends() do { } while(0) |
| |
| #ifdef CONFIG_SMP |
| # define smp_mb() mb() |
| # define smp_rmb() rmb() |
| # define smp_wmb() wmb() |
| # define smp_read_barrier_depends() read_barrier_depends() |
| #else |
| # define smp_mb() barrier() |
| # define smp_rmb() barrier() |
| # define smp_wmb() barrier() |
| # define smp_read_barrier_depends() do { } while(0) |
| #endif |
| |
| /* |
| * XXX check on these---I suspect what Linus really wants here is |
| * acquire vs release semantics but we can't discuss this stuff with |
| * Linus just yet. Grrr... |
| */ |
| #define set_mb(var, value) do { (var) = (value); mb(); } while (0) |
| #define set_wmb(var, value) do { (var) = (value); mb(); } while (0) |
| |
| #define safe_halt() ia64_pal_halt_light() /* PAL_HALT_LIGHT */ |
| |
| /* |
| * The group barrier in front of the rsm & ssm are necessary to ensure |
| * that none of the previous instructions in the same group are |
| * affected by the rsm/ssm. |
| */ |
| /* For spinlocks etc */ |
| |
| /* |
| * - clearing psr.i is implicitly serialized (visible by next insn) |
| * - setting psr.i requires data serialization |
| * - we need a stop-bit before reading PSR because we sometimes |
| * write a floating-point register right before reading the PSR |
| * and that writes to PSR.mfl |
| */ |
| #define __local_irq_save(x) \ |
| do { \ |
| ia64_stop(); \ |
| (x) = ia64_getreg(_IA64_REG_PSR); \ |
| ia64_stop(); \ |
| ia64_rsm(IA64_PSR_I); \ |
| } while (0) |
| |
| #define __local_irq_disable() \ |
| do { \ |
| ia64_stop(); \ |
| ia64_rsm(IA64_PSR_I); \ |
| } while (0) |
| |
| #define __local_irq_restore(x) ia64_intrin_local_irq_restore((x) & IA64_PSR_I) |
| |
| #ifdef CONFIG_IA64_DEBUG_IRQ |
| |
| extern unsigned long last_cli_ip; |
| |
| # define __save_ip() last_cli_ip = ia64_getreg(_IA64_REG_IP) |
| |
| # define local_irq_save(x) \ |
| do { \ |
| unsigned long psr; \ |
| \ |
| __local_irq_save(psr); \ |
| if (psr & IA64_PSR_I) \ |
| __save_ip(); \ |
| (x) = psr; \ |
| } while (0) |
| |
| # define local_irq_disable() do { unsigned long x; local_irq_save(x); } while (0) |
| |
| # define local_irq_restore(x) \ |
| do { \ |
| unsigned long old_psr, psr = (x); \ |
| \ |
| local_save_flags(old_psr); \ |
| __local_irq_restore(psr); \ |
| if ((old_psr & IA64_PSR_I) && !(psr & IA64_PSR_I)) \ |
| __save_ip(); \ |
| } while (0) |
| |
| #else /* !CONFIG_IA64_DEBUG_IRQ */ |
| # define local_irq_save(x) __local_irq_save(x) |
| # define local_irq_disable() __local_irq_disable() |
| # define local_irq_restore(x) __local_irq_restore(x) |
| #endif /* !CONFIG_IA64_DEBUG_IRQ */ |
| |
| #define local_irq_enable() ({ ia64_stop(); ia64_ssm(IA64_PSR_I); ia64_srlz_d(); }) |
| #define local_save_flags(flags) ({ ia64_stop(); (flags) = ia64_getreg(_IA64_REG_PSR); }) |
| |
| #define irqs_disabled() \ |
| ({ \ |
| unsigned long __ia64_id_flags; \ |
| local_save_flags(__ia64_id_flags); \ |
| (__ia64_id_flags & IA64_PSR_I) == 0; \ |
| }) |
| |
| #ifdef __KERNEL__ |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| # define IS_IA32_PROCESS(regs) (ia64_psr(regs)->is != 0) |
| #else |
| # define IS_IA32_PROCESS(regs) 0 |
| struct task_struct; |
| static inline void ia32_save_state(struct task_struct *t __attribute__((unused))){} |
| static inline void ia32_load_state(struct task_struct *t __attribute__((unused))){} |
| #endif |
| |
| /* |
| * Context switch from one thread to another. If the two threads have |
| * different address spaces, schedule() has already taken care of |
| * switching to the new address space by calling switch_mm(). |
| * |
| * Disabling access to the fph partition and the debug-register |
| * context switch MUST be done before calling ia64_switch_to() since a |
| * newly created thread returns directly to |
| * ia64_ret_from_syscall_clear_r8. |
| */ |
| extern struct task_struct *ia64_switch_to (void *next_task); |
| |
| struct task_struct; |
| |
| extern void ia64_save_extra (struct task_struct *task); |
| extern void ia64_load_extra (struct task_struct *task); |
| |
| #ifdef CONFIG_PERFMON |
| DECLARE_PER_CPU(unsigned long, pfm_syst_info); |
| # define PERFMON_IS_SYSWIDE() (__get_cpu_var(pfm_syst_info) & 0x1) |
| #else |
| # define PERFMON_IS_SYSWIDE() (0) |
| #endif |
| |
| #define IA64_HAS_EXTRA_STATE(t) \ |
| ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID) \ |
| || IS_IA32_PROCESS(ia64_task_regs(t)) || PERFMON_IS_SYSWIDE()) |
| |
| #define __switch_to(prev,next,last) do { \ |
| if (IA64_HAS_EXTRA_STATE(prev)) \ |
| ia64_save_extra(prev); \ |
| if (IA64_HAS_EXTRA_STATE(next)) \ |
| ia64_load_extra(next); \ |
| ia64_psr(ia64_task_regs(next))->dfh = !ia64_is_local_fpu_owner(next); \ |
| (last) = ia64_switch_to((next)); \ |
| } while (0) |
| |
| #ifdef CONFIG_SMP |
| /* |
| * In the SMP case, we save the fph state when context-switching away from a thread that |
| * modified fph. This way, when the thread gets scheduled on another CPU, the CPU can |
| * pick up the state from task->thread.fph, avoiding the complication of having to fetch |
| * the latest fph state from another CPU. In other words: eager save, lazy restore. |
| */ |
| # define switch_to(prev,next,last) do { \ |
| if (ia64_psr(ia64_task_regs(prev))->mfh && ia64_is_local_fpu_owner(prev)) { \ |
| ia64_psr(ia64_task_regs(prev))->mfh = 0; \ |
| (prev)->thread.flags |= IA64_THREAD_FPH_VALID; \ |
| __ia64_save_fpu((prev)->thread.fph); \ |
| } \ |
| __switch_to(prev, next, last); \ |
| } while (0) |
| #else |
| # define switch_to(prev,next,last) __switch_to(prev, next, last) |
| #endif |
| |
| /* |
| * On IA-64, we don't want to hold the runqueue's lock during the low-level context-switch, |
| * because that could cause a deadlock. Here is an example by Erich Focht: |
| * |
| * Example: |
| * CPU#0: |
| * schedule() |
| * -> spin_lock_irq(&rq->lock) |
| * -> context_switch() |
| * -> wrap_mmu_context() |
| * -> read_lock(&tasklist_lock) |
| * |
| * CPU#1: |
| * sys_wait4() or release_task() or forget_original_parent() |
| * -> write_lock(&tasklist_lock) |
| * -> do_notify_parent() |
| * -> wake_up_parent() |
| * -> try_to_wake_up() |
| * -> spin_lock_irq(&parent_rq->lock) |
| * |
| * If the parent's rq happens to be on CPU#0, we'll wait for the rq->lock |
| * of that CPU which will not be released, because there we wait for the |
| * tasklist_lock to become available. |
| */ |
| #define __ARCH_WANT_UNLOCKED_CTXSW |
| |
| #define ia64_platform_is(x) (strcmp(x, platform_name) == 0) |
| |
| void cpu_idle_wait(void); |
| |
| #define arch_align_stack(x) (x) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_IA64_SYSTEM_H */ |