| #include <linux/init.h> |
| |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/cpu.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cache.h> |
| #include <asm/apic.h> |
| #include <asm/uv/uv.h> |
| |
| DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) |
| = { &init_mm, 0, }; |
| |
| /* |
| * Smarter SMP flushing macros. |
| * c/o Linus Torvalds. |
| * |
| * These mean you can really definitely utterly forget about |
| * writing to user space from interrupts. (Its not allowed anyway). |
| * |
| * Optimizations Manfred Spraul <manfred@colorfullife.com> |
| * |
| * More scalable flush, from Andi Kleen |
| * |
| * To avoid global state use 8 different call vectors. |
| * Each CPU uses a specific vector to trigger flushes on other |
| * CPUs. Depending on the received vector the target CPUs look into |
| * the right array slot for the flush data. |
| * |
| * With more than 8 CPUs they are hashed to the 8 available |
| * vectors. The limited global vector space forces us to this right now. |
| * In future when interrupts are split into per CPU domains this could be |
| * fixed, at the cost of triggering multiple IPIs in some cases. |
| */ |
| |
| union smp_flush_state { |
| struct { |
| struct mm_struct *flush_mm; |
| unsigned long flush_va; |
| raw_spinlock_t tlbstate_lock; |
| DECLARE_BITMAP(flush_cpumask, NR_CPUS); |
| }; |
| char pad[INTERNODE_CACHE_BYTES]; |
| } ____cacheline_internodealigned_in_smp; |
| |
| /* State is put into the per CPU data section, but padded |
| to a full cache line because other CPUs can access it and we don't |
| want false sharing in the per cpu data segment. */ |
| static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS]; |
| |
| static DEFINE_PER_CPU_READ_MOSTLY(int, tlb_vector_offset); |
| |
| /* |
| * We cannot call mmdrop() because we are in interrupt context, |
| * instead update mm->cpu_vm_mask. |
| */ |
| void leave_mm(int cpu) |
| { |
| if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) |
| BUG(); |
| cpumask_clear_cpu(cpu, |
| mm_cpumask(this_cpu_read(cpu_tlbstate.active_mm))); |
| load_cr3(swapper_pg_dir); |
| } |
| EXPORT_SYMBOL_GPL(leave_mm); |
| |
| /* |
| * |
| * The flush IPI assumes that a thread switch happens in this order: |
| * [cpu0: the cpu that switches] |
| * 1) switch_mm() either 1a) or 1b) |
| * 1a) thread switch to a different mm |
| * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); |
| * Stop ipi delivery for the old mm. This is not synchronized with |
| * the other cpus, but smp_invalidate_interrupt ignore flush ipis |
| * for the wrong mm, and in the worst case we perform a superfluous |
| * tlb flush. |
| * 1a2) set cpu mmu_state to TLBSTATE_OK |
| * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 |
| * was in lazy tlb mode. |
| * 1a3) update cpu active_mm |
| * Now cpu0 accepts tlb flushes for the new mm. |
| * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); |
| * Now the other cpus will send tlb flush ipis. |
| * 1a4) change cr3. |
| * 1b) thread switch without mm change |
| * cpu active_mm is correct, cpu0 already handles |
| * flush ipis. |
| * 1b1) set cpu mmu_state to TLBSTATE_OK |
| * 1b2) test_and_set the cpu bit in cpu_vm_mask. |
| * Atomically set the bit [other cpus will start sending flush ipis], |
| * and test the bit. |
| * 1b3) if the bit was 0: leave_mm was called, flush the tlb. |
| * 2) switch %%esp, ie current |
| * |
| * The interrupt must handle 2 special cases: |
| * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. |
| * - the cpu performs speculative tlb reads, i.e. even if the cpu only |
| * runs in kernel space, the cpu could load tlb entries for user space |
| * pages. |
| * |
| * The good news is that cpu mmu_state is local to each cpu, no |
| * write/read ordering problems. |
| */ |
| |
| /* |
| * TLB flush IPI: |
| * |
| * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. |
| * 2) Leave the mm if we are in the lazy tlb mode. |
| * |
| * Interrupts are disabled. |
| */ |
| |
| /* |
| * FIXME: use of asmlinkage is not consistent. On x86_64 it's noop |
| * but still used for documentation purpose but the usage is slightly |
| * inconsistent. On x86_32, asmlinkage is regparm(0) but interrupt |
| * entry calls in with the first parameter in %eax. Maybe define |
| * intrlinkage? |
| */ |
| #ifdef CONFIG_X86_64 |
| asmlinkage |
| #endif |
| void smp_invalidate_interrupt(struct pt_regs *regs) |
| { |
| unsigned int cpu; |
| unsigned int sender; |
| union smp_flush_state *f; |
| |
| cpu = smp_processor_id(); |
| /* |
| * orig_rax contains the negated interrupt vector. |
| * Use that to determine where the sender put the data. |
| */ |
| sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START; |
| f = &flush_state[sender]; |
| |
| if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask))) |
| goto out; |
| /* |
| * This was a BUG() but until someone can quote me the |
| * line from the intel manual that guarantees an IPI to |
| * multiple CPUs is retried _only_ on the erroring CPUs |
| * its staying as a return |
| * |
| * BUG(); |
| */ |
| |
| if (f->flush_mm == this_cpu_read(cpu_tlbstate.active_mm)) { |
| if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) { |
| if (f->flush_va == TLB_FLUSH_ALL) |
| local_flush_tlb(); |
| else |
| __flush_tlb_one(f->flush_va); |
| } else |
| leave_mm(cpu); |
| } |
| out: |
| ack_APIC_irq(); |
| smp_mb__before_clear_bit(); |
| cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask)); |
| smp_mb__after_clear_bit(); |
| inc_irq_stat(irq_tlb_count); |
| } |
| |
| static void flush_tlb_others_ipi(const struct cpumask *cpumask, |
| struct mm_struct *mm, unsigned long va) |
| { |
| unsigned int sender; |
| union smp_flush_state *f; |
| |
| /* Caller has disabled preemption */ |
| sender = this_cpu_read(tlb_vector_offset); |
| f = &flush_state[sender]; |
| |
| if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS) |
| raw_spin_lock(&f->tlbstate_lock); |
| |
| f->flush_mm = mm; |
| f->flush_va = va; |
| if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) { |
| /* |
| * We have to send the IPI only to |
| * CPUs affected. |
| */ |
| apic->send_IPI_mask(to_cpumask(f->flush_cpumask), |
| INVALIDATE_TLB_VECTOR_START + sender); |
| |
| while (!cpumask_empty(to_cpumask(f->flush_cpumask))) |
| cpu_relax(); |
| } |
| |
| f->flush_mm = NULL; |
| f->flush_va = 0; |
| if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS) |
| raw_spin_unlock(&f->tlbstate_lock); |
| } |
| |
| void native_flush_tlb_others(const struct cpumask *cpumask, |
| struct mm_struct *mm, unsigned long va) |
| { |
| if (is_uv_system()) { |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu); |
| if (cpumask) |
| flush_tlb_others_ipi(cpumask, mm, va); |
| return; |
| } |
| flush_tlb_others_ipi(cpumask, mm, va); |
| } |
| |
| static void __cpuinit calculate_tlb_offset(void) |
| { |
| int cpu, node, nr_node_vecs, idx = 0; |
| /* |
| * we are changing tlb_vector_offset for each CPU in runtime, but this |
| * will not cause inconsistency, as the write is atomic under X86. we |
| * might see more lock contentions in a short time, but after all CPU's |
| * tlb_vector_offset are changed, everything should go normal |
| * |
| * Note: if NUM_INVALIDATE_TLB_VECTORS % nr_online_nodes !=0, we might |
| * waste some vectors. |
| **/ |
| if (nr_online_nodes > NUM_INVALIDATE_TLB_VECTORS) |
| nr_node_vecs = 1; |
| else |
| nr_node_vecs = NUM_INVALIDATE_TLB_VECTORS/nr_online_nodes; |
| |
| for_each_online_node(node) { |
| int node_offset = (idx % NUM_INVALIDATE_TLB_VECTORS) * |
| nr_node_vecs; |
| int cpu_offset = 0; |
| for_each_cpu(cpu, cpumask_of_node(node)) { |
| per_cpu(tlb_vector_offset, cpu) = node_offset + |
| cpu_offset; |
| cpu_offset++; |
| cpu_offset = cpu_offset % nr_node_vecs; |
| } |
| idx++; |
| } |
| } |
| |
| static int __cpuinit tlb_cpuhp_notify(struct notifier_block *n, |
| unsigned long action, void *hcpu) |
| { |
| switch (action & 0xf) { |
| case CPU_ONLINE: |
| case CPU_DEAD: |
| calculate_tlb_offset(); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static int __cpuinit init_smp_flush(void) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(flush_state); i++) |
| raw_spin_lock_init(&flush_state[i].tlbstate_lock); |
| |
| calculate_tlb_offset(); |
| hotcpu_notifier(tlb_cpuhp_notify, 0); |
| return 0; |
| } |
| core_initcall(init_smp_flush); |
| |
| void flush_tlb_current_task(void) |
| { |
| struct mm_struct *mm = current->mm; |
| |
| preempt_disable(); |
| |
| local_flush_tlb(); |
| if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) |
| flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL); |
| preempt_enable(); |
| } |
| |
| void flush_tlb_mm(struct mm_struct *mm) |
| { |
| preempt_disable(); |
| |
| if (current->active_mm == mm) { |
| if (current->mm) |
| local_flush_tlb(); |
| else |
| leave_mm(smp_processor_id()); |
| } |
| if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) |
| flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL); |
| |
| preempt_enable(); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long va) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| |
| preempt_disable(); |
| |
| if (current->active_mm == mm) { |
| if (current->mm) |
| __flush_tlb_one(va); |
| else |
| leave_mm(smp_processor_id()); |
| } |
| |
| if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) |
| flush_tlb_others(mm_cpumask(mm), mm, va); |
| |
| preempt_enable(); |
| } |
| |
| static void do_flush_tlb_all(void *info) |
| { |
| __flush_tlb_all(); |
| if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY) |
| leave_mm(smp_processor_id()); |
| } |
| |
| void flush_tlb_all(void) |
| { |
| on_each_cpu(do_flush_tlb_all, NULL, 1); |
| } |