| /* |
| cx24110 - Single Chip Satellite Channel Receiver driver module |
| |
| Copyright (C) 2002 Peter Hettkamp <peter.hettkamp@htp-tel.de> based on |
| work |
| Copyright (C) 1999 Convergence Integrated Media GmbH <ralph@convergence.de> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| |
| #include "dvb_frontend.h" |
| #include "cx24110.h" |
| |
| |
| struct cx24110_state { |
| |
| struct i2c_adapter* i2c; |
| |
| struct dvb_frontend_ops ops; |
| |
| const struct cx24110_config* config; |
| |
| struct dvb_frontend frontend; |
| |
| u32 lastber; |
| u32 lastbler; |
| u32 lastesn0; |
| }; |
| |
| static int debug; |
| #define dprintk(args...) \ |
| do { \ |
| if (debug) printk(KERN_DEBUG "cx24110: " args); \ |
| } while (0) |
| |
| static struct {u8 reg; u8 data;} cx24110_regdata[]= |
| /* Comments beginning with @ denote this value should |
| be the default */ |
| {{0x09,0x01}, /* SoftResetAll */ |
| {0x09,0x00}, /* release reset */ |
| {0x01,0xe8}, /* MSB of code rate 27.5MS/s */ |
| {0x02,0x17}, /* middle byte " */ |
| {0x03,0x29}, /* LSB " */ |
| {0x05,0x03}, /* @ DVB mode, standard code rate 3/4 */ |
| {0x06,0xa5}, /* @ PLL 60MHz */ |
| {0x07,0x01}, /* @ Fclk, i.e. sampling clock, 60MHz */ |
| {0x0a,0x00}, /* @ partial chip disables, do not set */ |
| {0x0b,0x01}, /* set output clock in gapped mode, start signal low |
| active for first byte */ |
| {0x0c,0x11}, /* no parity bytes, large hold time, serial data out */ |
| {0x0d,0x6f}, /* @ RS Sync/Unsync thresholds */ |
| {0x10,0x40}, /* chip doc is misleading here: write bit 6 as 1 |
| to avoid starting the BER counter. Reset the |
| CRC test bit. Finite counting selected */ |
| {0x15,0xff}, /* @ size of the limited time window for RS BER |
| estimation. It is <value>*256 RS blocks, this |
| gives approx. 2.6 sec at 27.5MS/s, rate 3/4 */ |
| {0x16,0x00}, /* @ enable all RS output ports */ |
| {0x17,0x04}, /* @ time window allowed for the RS to sync */ |
| {0x18,0xae}, /* @ allow all standard DVB code rates to be scanned |
| for automatically */ |
| /* leave the current code rate and normalization |
| registers as they are after reset... */ |
| {0x21,0x10}, /* @ during AutoAcq, search each viterbi setting |
| only once */ |
| {0x23,0x18}, /* @ size of the limited time window for Viterbi BER |
| estimation. It is <value>*65536 channel bits, i.e. |
| approx. 38ms at 27.5MS/s, rate 3/4 */ |
| {0x24,0x24}, /* do not trigger Viterbi CRC test. Finite count window */ |
| /* leave front-end AGC parameters at default values */ |
| /* leave decimation AGC parameters at default values */ |
| {0x35,0x40}, /* disable all interrupts. They are not connected anyway */ |
| {0x36,0xff}, /* clear all interrupt pending flags */ |
| {0x37,0x00}, /* @ fully enable AutoAcqq state machine */ |
| {0x38,0x07}, /* @ enable fade recovery, but not autostart AutoAcq */ |
| /* leave the equalizer parameters on their default values */ |
| /* leave the final AGC parameters on their default values */ |
| {0x41,0x00}, /* @ MSB of front-end derotator frequency */ |
| {0x42,0x00}, /* @ middle bytes " */ |
| {0x43,0x00}, /* @ LSB " */ |
| /* leave the carrier tracking loop parameters on default */ |
| /* leave the bit timing loop parameters at gefault */ |
| {0x56,0x4d}, /* set the filtune voltage to 2.7V, as recommended by */ |
| /* the cx24108 data sheet for symbol rates above 15MS/s */ |
| {0x57,0x00}, /* @ Filter sigma delta enabled, positive */ |
| {0x61,0x95}, /* GPIO pins 1-4 have special function */ |
| {0x62,0x05}, /* GPIO pin 5 has special function, pin 6 is GPIO */ |
| {0x63,0x00}, /* All GPIO pins use CMOS output characteristics */ |
| {0x64,0x20}, /* GPIO 6 is input, all others are outputs */ |
| {0x6d,0x30}, /* tuner auto mode clock freq 62kHz */ |
| {0x70,0x15}, /* use auto mode, tuner word is 21 bits long */ |
| {0x73,0x00}, /* @ disable several demod bypasses */ |
| {0x74,0x00}, /* @ " */ |
| {0x75,0x00} /* @ " */ |
| /* the remaining registers are for SEC */ |
| }; |
| |
| |
| static int cx24110_writereg (struct cx24110_state* state, int reg, int data) |
| { |
| u8 buf [] = { reg, data }; |
| struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; |
| int err; |
| |
| if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) { |
| dprintk ("%s: writereg error (err == %i, reg == 0x%02x," |
| " data == 0x%02x)\n", __FUNCTION__, err, reg, data); |
| return -EREMOTEIO; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24110_readreg (struct cx24110_state* state, u8 reg) |
| { |
| int ret; |
| u8 b0 [] = { reg }; |
| u8 b1 [] = { 0 }; |
| struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, |
| { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; |
| |
| ret = i2c_transfer(state->i2c, msg, 2); |
| |
| if (ret != 2) return ret; |
| |
| return b1[0]; |
| } |
| |
| static int cx24110_set_inversion (struct cx24110_state* state, fe_spectral_inversion_t inversion) |
| { |
| /* fixme (low): error handling */ |
| |
| switch (inversion) { |
| case INVERSION_OFF: |
| cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1); |
| /* AcqSpectrInvDis on. No idea why someone should want this */ |
| cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)&0xf7); |
| /* Initial value 0 at start of acq */ |
| cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)&0xef); |
| /* current value 0 */ |
| /* The cx24110 manual tells us this reg is read-only. |
| But what the heck... set it ayways */ |
| break; |
| case INVERSION_ON: |
| cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1); |
| /* AcqSpectrInvDis on. No idea why someone should want this */ |
| cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)|0x08); |
| /* Initial value 1 at start of acq */ |
| cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)|0x10); |
| /* current value 1 */ |
| break; |
| case INVERSION_AUTO: |
| cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xfe); |
| /* AcqSpectrInvDis off. Leave initial & current states as is */ |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24110_set_fec (struct cx24110_state* state, fe_code_rate_t fec) |
| { |
| /* fixme (low): error handling */ |
| |
| static const int rate[]={-1,1,2,3,5,7,-1}; |
| static const int g1[]={-1,0x01,0x02,0x05,0x15,0x45,-1}; |
| static const int g2[]={-1,0x01,0x03,0x06,0x1a,0x7a,-1}; |
| |
| /* Well, the AutoAcq engine of the cx24106 and 24110 automatically |
| searches all enabled viterbi rates, and can handle non-standard |
| rates as well. */ |
| |
| if (fec>FEC_AUTO) |
| fec=FEC_AUTO; |
| |
| if (fec==FEC_AUTO) { /* (re-)establish AutoAcq behaviour */ |
| cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xdf); |
| /* clear AcqVitDis bit */ |
| cx24110_writereg(state,0x18,0xae); |
| /* allow all DVB standard code rates */ |
| cx24110_writereg(state,0x05,(cx24110_readreg(state,0x05)&0xf0)|0x3); |
| /* set nominal Viterbi rate 3/4 */ |
| cx24110_writereg(state,0x22,(cx24110_readreg(state,0x22)&0xf0)|0x3); |
| /* set current Viterbi rate 3/4 */ |
| cx24110_writereg(state,0x1a,0x05); cx24110_writereg(state,0x1b,0x06); |
| /* set the puncture registers for code rate 3/4 */ |
| return 0; |
| } else { |
| cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x20); |
| /* set AcqVitDis bit */ |
| if(rate[fec]>0) { |
| cx24110_writereg(state,0x05,(cx24110_readreg(state,0x05)&0xf0)|rate[fec]); |
| /* set nominal Viterbi rate */ |
| cx24110_writereg(state,0x22,(cx24110_readreg(state,0x22)&0xf0)|rate[fec]); |
| /* set current Viterbi rate */ |
| cx24110_writereg(state,0x1a,g1[fec]); |
| cx24110_writereg(state,0x1b,g2[fec]); |
| /* not sure if this is the right way: I always used AutoAcq mode */ |
| } else |
| return -EOPNOTSUPP; |
| /* fixme (low): which is the correct return code? */ |
| }; |
| return 0; |
| } |
| |
| static fe_code_rate_t cx24110_get_fec (struct cx24110_state* state) |
| { |
| int i; |
| |
| i=cx24110_readreg(state,0x22)&0x0f; |
| if(!(i&0x08)) { |
| return FEC_1_2 + i - 1; |
| } else { |
| /* fixme (low): a special code rate has been selected. In theory, we need to |
| return a denominator value, a numerator value, and a pair of puncture |
| maps to correctly describe this mode. But this should never happen in |
| practice, because it cannot be set by cx24110_get_fec. */ |
| return FEC_NONE; |
| } |
| } |
| |
| static int cx24110_set_symbolrate (struct cx24110_state* state, u32 srate) |
| { |
| /* fixme (low): add error handling */ |
| u32 ratio; |
| u32 tmp, fclk, BDRI; |
| |
| static const u32 bands[]={5000000UL,15000000UL,90999000UL/2}; |
| int i; |
| |
| dprintk("cx24110 debug: entering %s(%d)\n",__FUNCTION__,srate); |
| if (srate>90999000UL/2) |
| srate=90999000UL/2; |
| if (srate<500000) |
| srate=500000; |
| |
| for(i=0;(i<sizeof(bands)/sizeof(bands[0]))&&(srate>bands[i]);i++) |
| ; |
| /* first, check which sample rate is appropriate: 45, 60 80 or 90 MHz, |
| and set the PLL accordingly (R07[1:0] Fclk, R06[7:4] PLLmult, |
| R06[3:0] PLLphaseDetGain */ |
| tmp=cx24110_readreg(state,0x07)&0xfc; |
| if(srate<90999000UL/4) { /* sample rate 45MHz*/ |
| cx24110_writereg(state,0x07,tmp); |
| cx24110_writereg(state,0x06,0x78); |
| fclk=90999000UL/2; |
| } else if(srate<60666000UL/2) { /* sample rate 60MHz */ |
| cx24110_writereg(state,0x07,tmp|0x1); |
| cx24110_writereg(state,0x06,0xa5); |
| fclk=60666000UL; |
| } else if(srate<80888000UL/2) { /* sample rate 80MHz */ |
| cx24110_writereg(state,0x07,tmp|0x2); |
| cx24110_writereg(state,0x06,0x87); |
| fclk=80888000UL; |
| } else { /* sample rate 90MHz */ |
| cx24110_writereg(state,0x07,tmp|0x3); |
| cx24110_writereg(state,0x06,0x78); |
| fclk=90999000UL; |
| }; |
| dprintk("cx24110 debug: fclk %d Hz\n",fclk); |
| /* we need to divide two integers with approx. 27 bits in 32 bit |
| arithmetic giving a 25 bit result */ |
| /* the maximum dividend is 90999000/2, 0x02b6446c, this number is |
| also the most complex divisor. Hence, the dividend has, |
| assuming 32bit unsigned arithmetic, 6 clear bits on top, the |
| divisor 2 unused bits at the bottom. Also, the quotient is |
| always less than 1/2. Borrowed from VES1893.c, of course */ |
| |
| tmp=srate<<6; |
| BDRI=fclk>>2; |
| ratio=(tmp/BDRI); |
| |
| tmp=(tmp%BDRI)<<8; |
| ratio=(ratio<<8)+(tmp/BDRI); |
| |
| tmp=(tmp%BDRI)<<8; |
| ratio=(ratio<<8)+(tmp/BDRI); |
| |
| tmp=(tmp%BDRI)<<1; |
| ratio=(ratio<<1)+(tmp/BDRI); |
| |
| dprintk("srate= %d (range %d, up to %d)\n", srate,i,bands[i]); |
| dprintk("fclk = %d\n", fclk); |
| dprintk("ratio= %08x\n", ratio); |
| |
| cx24110_writereg(state, 0x1, (ratio>>16)&0xff); |
| cx24110_writereg(state, 0x2, (ratio>>8)&0xff); |
| cx24110_writereg(state, 0x3, (ratio)&0xff); |
| |
| return 0; |
| |
| } |
| |
| int cx24110_pll_write (struct dvb_frontend* fe, u32 data) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| /* tuner data is 21 bits long, must be left-aligned in data */ |
| /* tuner cx24108 is written through a dedicated 3wire interface on the demod chip */ |
| /* FIXME (low): add error handling, avoid infinite loops if HW fails... */ |
| |
| dprintk("cx24110 debug: cx24108_write(%8.8x)\n",data); |
| |
| cx24110_writereg(state,0x6d,0x30); /* auto mode at 62kHz */ |
| cx24110_writereg(state,0x70,0x15); /* auto mode 21 bits */ |
| |
| /* if the auto tuner writer is still busy, clear it out */ |
| while (cx24110_readreg(state,0x6d)&0x80) |
| cx24110_writereg(state,0x72,0); |
| |
| /* write the topmost 8 bits */ |
| cx24110_writereg(state,0x72,(data>>24)&0xff); |
| |
| /* wait for the send to be completed */ |
| while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) |
| ; |
| |
| /* send another 8 bytes */ |
| cx24110_writereg(state,0x72,(data>>16)&0xff); |
| while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) |
| ; |
| |
| /* and the topmost 5 bits of this byte */ |
| cx24110_writereg(state,0x72,(data>>8)&0xff); |
| while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) |
| ; |
| |
| /* now strobe the enable line once */ |
| cx24110_writereg(state,0x6d,0x32); |
| cx24110_writereg(state,0x6d,0x30); |
| |
| return 0; |
| } |
| |
| static int cx24110_initfe(struct dvb_frontend* fe) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| /* fixme (low): error handling */ |
| int i; |
| |
| dprintk("%s: init chip\n", __FUNCTION__); |
| |
| for(i=0;i<sizeof(cx24110_regdata)/sizeof(cx24110_regdata[0]);i++) { |
| cx24110_writereg(state, cx24110_regdata[i].reg, cx24110_regdata[i].data); |
| }; |
| |
| if (state->config->pll_init) state->config->pll_init(fe); |
| |
| return 0; |
| } |
| |
| static int cx24110_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| switch (voltage) { |
| case SEC_VOLTAGE_13: |
| return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0xc0); |
| case SEC_VOLTAGE_18: |
| return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0x40); |
| default: |
| return -EINVAL; |
| }; |
| } |
| |
| static int cx24110_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst) |
| { |
| int rv, bit, i; |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| if (burst == SEC_MINI_A) |
| bit = 0x00; |
| else if (burst == SEC_MINI_B) |
| bit = 0x08; |
| else |
| return -EINVAL; |
| |
| rv = cx24110_readreg(state, 0x77); |
| if (!(rv & 0x04)) |
| cx24110_writereg(state, 0x77, rv | 0x04); |
| |
| rv = cx24110_readreg(state, 0x76); |
| cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40 | bit)); |
| for (i = 500; i-- > 0 && !(cx24110_readreg(state,0x76)&0x40) ; ) |
| ; /* wait for LNB ready */ |
| |
| return 0; |
| } |
| |
| static int cx24110_send_diseqc_msg(struct dvb_frontend* fe, |
| struct dvb_diseqc_master_cmd *cmd) |
| { |
| int i, rv; |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| for (i = 0; i < cmd->msg_len; i++) |
| cx24110_writereg(state, 0x79 + i, cmd->msg[i]); |
| |
| rv = cx24110_readreg(state, 0x77); |
| if (rv & 0x04) { |
| cx24110_writereg(state, 0x77, rv & ~0x04); |
| msleep(30); /* reportedly fixes switching problems */ |
| } |
| |
| rv = cx24110_readreg(state, 0x76); |
| |
| cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40) | ((cmd->msg_len-3) & 3)); |
| for (i=100; i-- > 0 && !(cx24110_readreg(state,0x76)&0x40);) |
| msleep(1); /* wait for LNB ready */ |
| |
| return 0; |
| } |
| |
| static int cx24110_read_status(struct dvb_frontend* fe, fe_status_t* status) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| int sync = cx24110_readreg (state, 0x55); |
| |
| *status = 0; |
| |
| if (sync & 0x10) |
| *status |= FE_HAS_SIGNAL; |
| |
| if (sync & 0x08) |
| *status |= FE_HAS_CARRIER; |
| |
| sync = cx24110_readreg (state, 0x08); |
| |
| if (sync & 0x40) |
| *status |= FE_HAS_VITERBI; |
| |
| if (sync & 0x20) |
| *status |= FE_HAS_SYNC; |
| |
| if ((sync & 0x60) == 0x60) |
| *status |= FE_HAS_LOCK; |
| |
| return 0; |
| } |
| |
| static int cx24110_read_ber(struct dvb_frontend* fe, u32* ber) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| /* fixme (maybe): value range is 16 bit. Scale? */ |
| if(cx24110_readreg(state,0x24)&0x10) { |
| /* the Viterbi error counter has finished one counting window */ |
| cx24110_writereg(state,0x24,0x04); /* select the ber reg */ |
| state->lastber=cx24110_readreg(state,0x25)| |
| (cx24110_readreg(state,0x26)<<8); |
| cx24110_writereg(state,0x24,0x04); /* start new count window */ |
| cx24110_writereg(state,0x24,0x14); |
| } |
| *ber = state->lastber; |
| |
| return 0; |
| } |
| |
| static int cx24110_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| /* no provision in hardware. Read the frontend AGC accumulator. No idea how to scale this, but I know it is 2s complement */ |
| u8 signal = cx24110_readreg (state, 0x27)+128; |
| *signal_strength = (signal << 8) | signal; |
| |
| return 0; |
| } |
| |
| static int cx24110_read_snr(struct dvb_frontend* fe, u16* snr) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| /* no provision in hardware. Can be computed from the Es/N0 estimator, but I don't know how. */ |
| if(cx24110_readreg(state,0x6a)&0x80) { |
| /* the Es/N0 error counter has finished one counting window */ |
| state->lastesn0=cx24110_readreg(state,0x69)| |
| (cx24110_readreg(state,0x68)<<8); |
| cx24110_writereg(state,0x6a,0x84); /* start new count window */ |
| } |
| *snr = state->lastesn0; |
| |
| return 0; |
| } |
| |
| static int cx24110_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| u32 lastbyer; |
| |
| if(cx24110_readreg(state,0x10)&0x40) { |
| /* the RS error counter has finished one counting window */ |
| cx24110_writereg(state,0x10,0x60); /* select the byer reg */ |
| lastbyer=cx24110_readreg(state,0x12)| |
| (cx24110_readreg(state,0x13)<<8)| |
| (cx24110_readreg(state,0x14)<<16); |
| cx24110_writereg(state,0x10,0x70); /* select the bler reg */ |
| state->lastbler=cx24110_readreg(state,0x12)| |
| (cx24110_readreg(state,0x13)<<8)| |
| (cx24110_readreg(state,0x14)<<16); |
| cx24110_writereg(state,0x10,0x20); /* start new count window */ |
| } |
| *ucblocks = state->lastbler; |
| |
| return 0; |
| } |
| |
| static int cx24110_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| state->config->pll_set(fe, p); |
| cx24110_set_inversion (state, p->inversion); |
| cx24110_set_fec (state, p->u.qpsk.fec_inner); |
| cx24110_set_symbolrate (state, p->u.qpsk.symbol_rate); |
| cx24110_writereg(state,0x04,0x05); /* start aquisition */ |
| |
| return 0; |
| } |
| |
| static int cx24110_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| s32 afc; unsigned sclk; |
| |
| /* cannot read back tuner settings (freq). Need to have some private storage */ |
| |
| sclk = cx24110_readreg (state, 0x07) & 0x03; |
| /* ok, real AFC (FEDR) freq. is afc/2^24*fsamp, fsamp=45/60/80/90MHz. |
| * Need 64 bit arithmetic. Is thiss possible in the kernel? */ |
| if (sclk==0) sclk=90999000L/2L; |
| else if (sclk==1) sclk=60666000L; |
| else if (sclk==2) sclk=80888000L; |
| else sclk=90999000L; |
| sclk>>=8; |
| afc = sclk*(cx24110_readreg (state, 0x44)&0x1f)+ |
| ((sclk*cx24110_readreg (state, 0x45))>>8)+ |
| ((sclk*cx24110_readreg (state, 0x46))>>16); |
| |
| p->frequency += afc; |
| p->inversion = (cx24110_readreg (state, 0x22) & 0x10) ? |
| INVERSION_ON : INVERSION_OFF; |
| p->u.qpsk.fec_inner = cx24110_get_fec (state); |
| |
| return 0; |
| } |
| |
| static int cx24110_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone) |
| { |
| struct cx24110_state *state = fe->demodulator_priv; |
| |
| return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&~0x10)|(((tone==SEC_TONE_ON))?0x10:0)); |
| } |
| |
| static void cx24110_release(struct dvb_frontend* fe) |
| { |
| struct cx24110_state* state = fe->demodulator_priv; |
| kfree(state); |
| } |
| |
| static struct dvb_frontend_ops cx24110_ops; |
| |
| struct dvb_frontend* cx24110_attach(const struct cx24110_config* config, |
| struct i2c_adapter* i2c) |
| { |
| struct cx24110_state* state = NULL; |
| int ret; |
| |
| /* allocate memory for the internal state */ |
| state = kmalloc(sizeof(struct cx24110_state), GFP_KERNEL); |
| if (state == NULL) goto error; |
| |
| /* setup the state */ |
| state->config = config; |
| state->i2c = i2c; |
| memcpy(&state->ops, &cx24110_ops, sizeof(struct dvb_frontend_ops)); |
| state->lastber = 0; |
| state->lastbler = 0; |
| state->lastesn0 = 0; |
| |
| /* check if the demod is there */ |
| ret = cx24110_readreg(state, 0x00); |
| if ((ret != 0x5a) && (ret != 0x69)) goto error; |
| |
| /* create dvb_frontend */ |
| state->frontend.ops = &state->ops; |
| state->frontend.demodulator_priv = state; |
| return &state->frontend; |
| |
| error: |
| kfree(state); |
| return NULL; |
| } |
| |
| static struct dvb_frontend_ops cx24110_ops = { |
| |
| .info = { |
| .name = "Conexant CX24110 DVB-S", |
| .type = FE_QPSK, |
| .frequency_min = 950000, |
| .frequency_max = 2150000, |
| .frequency_stepsize = 1011, /* kHz for QPSK frontends */ |
| .frequency_tolerance = 29500, |
| .symbol_rate_min = 1000000, |
| .symbol_rate_max = 45000000, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_RECOVER |
| }, |
| |
| .release = cx24110_release, |
| |
| .init = cx24110_initfe, |
| .set_frontend = cx24110_set_frontend, |
| .get_frontend = cx24110_get_frontend, |
| .read_status = cx24110_read_status, |
| .read_ber = cx24110_read_ber, |
| .read_signal_strength = cx24110_read_signal_strength, |
| .read_snr = cx24110_read_snr, |
| .read_ucblocks = cx24110_read_ucblocks, |
| |
| .diseqc_send_master_cmd = cx24110_send_diseqc_msg, |
| .set_tone = cx24110_set_tone, |
| .set_voltage = cx24110_set_voltage, |
| .diseqc_send_burst = cx24110_diseqc_send_burst, |
| }; |
| |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); |
| |
| MODULE_DESCRIPTION("Conexant CX24110 DVB-S Demodulator driver"); |
| MODULE_AUTHOR("Peter Hettkamp"); |
| MODULE_LICENSE("GPL"); |
| |
| EXPORT_SYMBOL(cx24110_attach); |
| EXPORT_SYMBOL(cx24110_pll_write); |