| /* |
| * Copyright (c) 2008-2009 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/io.h> |
| #include <asm/unaligned.h> |
| |
| #include "hw.h" |
| #include "rc.h" |
| #include "initvals.h" |
| |
| #define ATH9K_CLOCK_RATE_CCK 22 |
| #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40 |
| #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44 |
| |
| static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); |
| static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan); |
| static u32 ath9k_hw_ini_fixup(struct ath_hw *ah, |
| struct ar5416_eeprom_def *pEepData, |
| u32 reg, u32 value); |
| |
| MODULE_AUTHOR("Atheros Communications"); |
| MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); |
| MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| static int __init ath9k_init(void) |
| { |
| return 0; |
| } |
| module_init(ath9k_init); |
| |
| static void __exit ath9k_exit(void) |
| { |
| return; |
| } |
| module_exit(ath9k_exit); |
| |
| /********************/ |
| /* Helper Functions */ |
| /********************/ |
| |
| static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks) |
| { |
| struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; |
| |
| if (!ah->curchan) /* should really check for CCK instead */ |
| return clks / ATH9K_CLOCK_RATE_CCK; |
| if (conf->channel->band == IEEE80211_BAND_2GHZ) |
| return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM; |
| |
| return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM; |
| } |
| |
| static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks) |
| { |
| struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; |
| |
| if (conf_is_ht40(conf)) |
| return ath9k_hw_mac_usec(ah, clks) / 2; |
| else |
| return ath9k_hw_mac_usec(ah, clks); |
| } |
| |
| static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs) |
| { |
| struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; |
| |
| if (!ah->curchan) /* should really check for CCK instead */ |
| return usecs *ATH9K_CLOCK_RATE_CCK; |
| if (conf->channel->band == IEEE80211_BAND_2GHZ) |
| return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM; |
| return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM; |
| } |
| |
| static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) |
| { |
| struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; |
| |
| if (conf_is_ht40(conf)) |
| return ath9k_hw_mac_clks(ah, usecs) * 2; |
| else |
| return ath9k_hw_mac_clks(ah, usecs); |
| } |
| |
| bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) |
| { |
| int i; |
| |
| BUG_ON(timeout < AH_TIME_QUANTUM); |
| |
| for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { |
| if ((REG_READ(ah, reg) & mask) == val) |
| return true; |
| |
| udelay(AH_TIME_QUANTUM); |
| } |
| |
| ath_print(ath9k_hw_common(ah), ATH_DBG_ANY, |
| "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", |
| timeout, reg, REG_READ(ah, reg), mask, val); |
| |
| return false; |
| } |
| EXPORT_SYMBOL(ath9k_hw_wait); |
| |
| u32 ath9k_hw_reverse_bits(u32 val, u32 n) |
| { |
| u32 retval; |
| int i; |
| |
| for (i = 0, retval = 0; i < n; i++) { |
| retval = (retval << 1) | (val & 1); |
| val >>= 1; |
| } |
| return retval; |
| } |
| |
| bool ath9k_get_channel_edges(struct ath_hw *ah, |
| u16 flags, u16 *low, |
| u16 *high) |
| { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| |
| if (flags & CHANNEL_5GHZ) { |
| *low = pCap->low_5ghz_chan; |
| *high = pCap->high_5ghz_chan; |
| return true; |
| } |
| if ((flags & CHANNEL_2GHZ)) { |
| *low = pCap->low_2ghz_chan; |
| *high = pCap->high_2ghz_chan; |
| return true; |
| } |
| return false; |
| } |
| |
| u16 ath9k_hw_computetxtime(struct ath_hw *ah, |
| u8 phy, int kbps, |
| u32 frameLen, u16 rateix, |
| bool shortPreamble) |
| { |
| u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; |
| |
| if (kbps == 0) |
| return 0; |
| |
| switch (phy) { |
| case WLAN_RC_PHY_CCK: |
| phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; |
| if (shortPreamble) |
| phyTime >>= 1; |
| numBits = frameLen << 3; |
| txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); |
| break; |
| case WLAN_RC_PHY_OFDM: |
| if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME_QUARTER |
| + OFDM_PREAMBLE_TIME_QUARTER |
| + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); |
| } else if (ah->curchan && |
| IS_CHAN_HALF_RATE(ah->curchan)) { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME_HALF + |
| OFDM_PREAMBLE_TIME_HALF |
| + (numSymbols * OFDM_SYMBOL_TIME_HALF); |
| } else { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME |
| + (numSymbols * OFDM_SYMBOL_TIME); |
| } |
| break; |
| default: |
| ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, |
| "Unknown phy %u (rate ix %u)\n", phy, rateix); |
| txTime = 0; |
| break; |
| } |
| |
| return txTime; |
| } |
| EXPORT_SYMBOL(ath9k_hw_computetxtime); |
| |
| void ath9k_hw_get_channel_centers(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| struct chan_centers *centers) |
| { |
| int8_t extoff; |
| |
| if (!IS_CHAN_HT40(chan)) { |
| centers->ctl_center = centers->ext_center = |
| centers->synth_center = chan->channel; |
| return; |
| } |
| |
| if ((chan->chanmode == CHANNEL_A_HT40PLUS) || |
| (chan->chanmode == CHANNEL_G_HT40PLUS)) { |
| centers->synth_center = |
| chan->channel + HT40_CHANNEL_CENTER_SHIFT; |
| extoff = 1; |
| } else { |
| centers->synth_center = |
| chan->channel - HT40_CHANNEL_CENTER_SHIFT; |
| extoff = -1; |
| } |
| |
| centers->ctl_center = |
| centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); |
| /* 25 MHz spacing is supported by hw but not on upper layers */ |
| centers->ext_center = |
| centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); |
| } |
| |
| /******************/ |
| /* Chip Revisions */ |
| /******************/ |
| |
| static void ath9k_hw_read_revisions(struct ath_hw *ah) |
| { |
| u32 val; |
| |
| val = REG_READ(ah, AR_SREV) & AR_SREV_ID; |
| |
| if (val == 0xFF) { |
| val = REG_READ(ah, AR_SREV); |
| ah->hw_version.macVersion = |
| (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; |
| ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); |
| ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; |
| } else { |
| if (!AR_SREV_9100(ah)) |
| ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); |
| |
| ah->hw_version.macRev = val & AR_SREV_REVISION; |
| |
| if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) |
| ah->is_pciexpress = true; |
| } |
| } |
| |
| static int ath9k_hw_get_radiorev(struct ath_hw *ah) |
| { |
| u32 val; |
| int i; |
| |
| REG_WRITE(ah, AR_PHY(0x36), 0x00007058); |
| |
| for (i = 0; i < 8; i++) |
| REG_WRITE(ah, AR_PHY(0x20), 0x00010000); |
| val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff; |
| val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4); |
| |
| return ath9k_hw_reverse_bits(val, 8); |
| } |
| |
| /************************************/ |
| /* HW Attach, Detach, Init Routines */ |
| /************************************/ |
| |
| static void ath9k_hw_disablepcie(struct ath_hw *ah) |
| { |
| if (AR_SREV_9100(ah)) |
| return; |
| |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); |
| |
| REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); |
| } |
| |
| static bool ath9k_hw_chip_test(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) }; |
| u32 regHold[2]; |
| u32 patternData[4] = { 0x55555555, |
| 0xaaaaaaaa, |
| 0x66666666, |
| 0x99999999 }; |
| int i, j; |
| |
| for (i = 0; i < 2; i++) { |
| u32 addr = regAddr[i]; |
| u32 wrData, rdData; |
| |
| regHold[i] = REG_READ(ah, addr); |
| for (j = 0; j < 0x100; j++) { |
| wrData = (j << 16) | j; |
| REG_WRITE(ah, addr, wrData); |
| rdData = REG_READ(ah, addr); |
| if (rdData != wrData) { |
| ath_print(common, ATH_DBG_FATAL, |
| "address test failed " |
| "addr: 0x%08x - wr:0x%08x != " |
| "rd:0x%08x\n", |
| addr, wrData, rdData); |
| return false; |
| } |
| } |
| for (j = 0; j < 4; j++) { |
| wrData = patternData[j]; |
| REG_WRITE(ah, addr, wrData); |
| rdData = REG_READ(ah, addr); |
| if (wrData != rdData) { |
| ath_print(common, ATH_DBG_FATAL, |
| "address test failed " |
| "addr: 0x%08x - wr:0x%08x != " |
| "rd:0x%08x\n", |
| addr, wrData, rdData); |
| return false; |
| } |
| } |
| REG_WRITE(ah, regAddr[i], regHold[i]); |
| } |
| udelay(100); |
| |
| return true; |
| } |
| |
| static void ath9k_hw_init_config(struct ath_hw *ah) |
| { |
| int i; |
| |
| ah->config.dma_beacon_response_time = 2; |
| ah->config.sw_beacon_response_time = 10; |
| ah->config.additional_swba_backoff = 0; |
| ah->config.ack_6mb = 0x0; |
| ah->config.cwm_ignore_extcca = 0; |
| ah->config.pcie_powersave_enable = 0; |
| ah->config.pcie_clock_req = 0; |
| ah->config.pcie_waen = 0; |
| ah->config.analog_shiftreg = 1; |
| ah->config.ht_enable = 1; |
| ah->config.ofdm_trig_low = 200; |
| ah->config.ofdm_trig_high = 500; |
| ah->config.cck_trig_high = 200; |
| ah->config.cck_trig_low = 100; |
| ah->config.enable_ani = 1; |
| |
| for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { |
| ah->config.spurchans[i][0] = AR_NO_SPUR; |
| ah->config.spurchans[i][1] = AR_NO_SPUR; |
| } |
| |
| ah->config.rx_intr_mitigation = true; |
| |
| /* |
| * We need this for PCI devices only (Cardbus, PCI, miniPCI) |
| * _and_ if on non-uniprocessor systems (Multiprocessor/HT). |
| * This means we use it for all AR5416 devices, and the few |
| * minor PCI AR9280 devices out there. |
| * |
| * Serialization is required because these devices do not handle |
| * well the case of two concurrent reads/writes due to the latency |
| * involved. During one read/write another read/write can be issued |
| * on another CPU while the previous read/write may still be working |
| * on our hardware, if we hit this case the hardware poops in a loop. |
| * We prevent this by serializing reads and writes. |
| * |
| * This issue is not present on PCI-Express devices or pre-AR5416 |
| * devices (legacy, 802.11abg). |
| */ |
| if (num_possible_cpus() > 1) |
| ah->config.serialize_regmode = SER_REG_MODE_AUTO; |
| } |
| EXPORT_SYMBOL(ath9k_hw_init); |
| |
| static void ath9k_hw_init_defaults(struct ath_hw *ah) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| |
| regulatory->country_code = CTRY_DEFAULT; |
| regulatory->power_limit = MAX_RATE_POWER; |
| regulatory->tp_scale = ATH9K_TP_SCALE_MAX; |
| |
| ah->hw_version.magic = AR5416_MAGIC; |
| ah->hw_version.subvendorid = 0; |
| |
| ah->ah_flags = 0; |
| if (ah->hw_version.devid == AR5416_AR9100_DEVID) |
| ah->hw_version.macVersion = AR_SREV_VERSION_9100; |
| if (!AR_SREV_9100(ah)) |
| ah->ah_flags = AH_USE_EEPROM; |
| |
| ah->atim_window = 0; |
| ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE; |
| ah->beacon_interval = 100; |
| ah->enable_32kHz_clock = DONT_USE_32KHZ; |
| ah->slottime = (u32) -1; |
| ah->acktimeout = (u32) -1; |
| ah->ctstimeout = (u32) -1; |
| ah->globaltxtimeout = (u32) -1; |
| ah->power_mode = ATH9K_PM_UNDEFINED; |
| } |
| |
| static int ath9k_hw_rf_claim(struct ath_hw *ah) |
| { |
| u32 val; |
| |
| REG_WRITE(ah, AR_PHY(0), 0x00000007); |
| |
| val = ath9k_hw_get_radiorev(ah); |
| switch (val & AR_RADIO_SREV_MAJOR) { |
| case 0: |
| val = AR_RAD5133_SREV_MAJOR; |
| break; |
| case AR_RAD5133_SREV_MAJOR: |
| case AR_RAD5122_SREV_MAJOR: |
| case AR_RAD2133_SREV_MAJOR: |
| case AR_RAD2122_SREV_MAJOR: |
| break; |
| default: |
| ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, |
| "Radio Chip Rev 0x%02X not supported\n", |
| val & AR_RADIO_SREV_MAJOR); |
| return -EOPNOTSUPP; |
| } |
| |
| ah->hw_version.analog5GhzRev = val; |
| |
| return 0; |
| } |
| |
| static int ath9k_hw_init_macaddr(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 sum; |
| int i; |
| u16 eeval; |
| |
| sum = 0; |
| for (i = 0; i < 3; i++) { |
| eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i)); |
| sum += eeval; |
| common->macaddr[2 * i] = eeval >> 8; |
| common->macaddr[2 * i + 1] = eeval & 0xff; |
| } |
| if (sum == 0 || sum == 0xffff * 3) |
| return -EADDRNOTAVAIL; |
| |
| return 0; |
| } |
| |
| static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah) |
| { |
| u32 rxgain_type; |
| |
| if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) { |
| rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE); |
| |
| if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF) |
| INIT_INI_ARRAY(&ah->iniModesRxGain, |
| ar9280Modes_backoff_13db_rxgain_9280_2, |
| ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6); |
| else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF) |
| INIT_INI_ARRAY(&ah->iniModesRxGain, |
| ar9280Modes_backoff_23db_rxgain_9280_2, |
| ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6); |
| else |
| INIT_INI_ARRAY(&ah->iniModesRxGain, |
| ar9280Modes_original_rxgain_9280_2, |
| ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6); |
| } else { |
| INIT_INI_ARRAY(&ah->iniModesRxGain, |
| ar9280Modes_original_rxgain_9280_2, |
| ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6); |
| } |
| } |
| |
| static void ath9k_hw_init_txgain_ini(struct ath_hw *ah) |
| { |
| u32 txgain_type; |
| |
| if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) { |
| txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE); |
| |
| if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) |
| INIT_INI_ARRAY(&ah->iniModesTxGain, |
| ar9280Modes_high_power_tx_gain_9280_2, |
| ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6); |
| else |
| INIT_INI_ARRAY(&ah->iniModesTxGain, |
| ar9280Modes_original_tx_gain_9280_2, |
| ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6); |
| } else { |
| INIT_INI_ARRAY(&ah->iniModesTxGain, |
| ar9280Modes_original_tx_gain_9280_2, |
| ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6); |
| } |
| } |
| |
| static int ath9k_hw_post_init(struct ath_hw *ah) |
| { |
| int ecode; |
| |
| if (!ath9k_hw_chip_test(ah)) |
| return -ENODEV; |
| |
| ecode = ath9k_hw_rf_claim(ah); |
| if (ecode != 0) |
| return ecode; |
| |
| ecode = ath9k_hw_eeprom_init(ah); |
| if (ecode != 0) |
| return ecode; |
| |
| ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG, |
| "Eeprom VER: %d, REV: %d\n", |
| ah->eep_ops->get_eeprom_ver(ah), |
| ah->eep_ops->get_eeprom_rev(ah)); |
| |
| if (!AR_SREV_9280_10_OR_LATER(ah)) { |
| ecode = ath9k_hw_rf_alloc_ext_banks(ah); |
| if (ecode) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, |
| "Failed allocating banks for " |
| "external radio\n"); |
| return ecode; |
| } |
| } |
| |
| if (!AR_SREV_9100(ah)) { |
| ath9k_hw_ani_setup(ah); |
| ath9k_hw_ani_init(ah); |
| } |
| |
| return 0; |
| } |
| |
| static bool ath9k_hw_devid_supported(u16 devid) |
| { |
| switch (devid) { |
| case AR5416_DEVID_PCI: |
| case AR5416_DEVID_PCIE: |
| case AR5416_AR9100_DEVID: |
| case AR9160_DEVID_PCI: |
| case AR9280_DEVID_PCI: |
| case AR9280_DEVID_PCIE: |
| case AR9285_DEVID_PCIE: |
| case AR5416_DEVID_AR9287_PCI: |
| case AR5416_DEVID_AR9287_PCIE: |
| case AR9271_USB: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| static bool ath9k_hw_macversion_supported(u32 macversion) |
| { |
| switch (macversion) { |
| case AR_SREV_VERSION_5416_PCI: |
| case AR_SREV_VERSION_5416_PCIE: |
| case AR_SREV_VERSION_9160: |
| case AR_SREV_VERSION_9100: |
| case AR_SREV_VERSION_9280: |
| case AR_SREV_VERSION_9285: |
| case AR_SREV_VERSION_9287: |
| case AR_SREV_VERSION_9271: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| static void ath9k_hw_init_cal_settings(struct ath_hw *ah) |
| { |
| if (AR_SREV_9160_10_OR_LATER(ah)) { |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| ah->iq_caldata.calData = &iq_cal_single_sample; |
| ah->adcgain_caldata.calData = |
| &adc_gain_cal_single_sample; |
| ah->adcdc_caldata.calData = |
| &adc_dc_cal_single_sample; |
| ah->adcdc_calinitdata.calData = |
| &adc_init_dc_cal; |
| } else { |
| ah->iq_caldata.calData = &iq_cal_multi_sample; |
| ah->adcgain_caldata.calData = |
| &adc_gain_cal_multi_sample; |
| ah->adcdc_caldata.calData = |
| &adc_dc_cal_multi_sample; |
| ah->adcdc_calinitdata.calData = |
| &adc_init_dc_cal; |
| } |
| ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; |
| } |
| } |
| |
| static void ath9k_hw_init_mode_regs(struct ath_hw *ah) |
| { |
| if (AR_SREV_9271(ah)) { |
| INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271, |
| ARRAY_SIZE(ar9271Modes_9271), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271, |
| ARRAY_SIZE(ar9271Common_9271), 2); |
| INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only, |
| ar9271Modes_9271_1_0_only, |
| ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6); |
| return; |
| } |
| |
| if (AR_SREV_9287_11_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1, |
| ARRAY_SIZE(ar9287Modes_9287_1_1), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1, |
| ARRAY_SIZE(ar9287Common_9287_1_1), 2); |
| if (ah->config.pcie_clock_req) |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9287PciePhy_clkreq_off_L1_9287_1_1, |
| ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2); |
| else |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9287PciePhy_clkreq_always_on_L1_9287_1_1, |
| ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1), |
| 2); |
| } else if (AR_SREV_9287_10_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0, |
| ARRAY_SIZE(ar9287Modes_9287_1_0), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0, |
| ARRAY_SIZE(ar9287Common_9287_1_0), 2); |
| |
| if (ah->config.pcie_clock_req) |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9287PciePhy_clkreq_off_L1_9287_1_0, |
| ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2); |
| else |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9287PciePhy_clkreq_always_on_L1_9287_1_0, |
| ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0), |
| 2); |
| } else if (AR_SREV_9285_12_OR_LATER(ah)) { |
| |
| |
| INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2, |
| ARRAY_SIZE(ar9285Modes_9285_1_2), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2, |
| ARRAY_SIZE(ar9285Common_9285_1_2), 2); |
| |
| if (ah->config.pcie_clock_req) { |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9285PciePhy_clkreq_off_L1_9285_1_2, |
| ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2); |
| } else { |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9285PciePhy_clkreq_always_on_L1_9285_1_2, |
| ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2), |
| 2); |
| } |
| } else if (AR_SREV_9285_10_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285, |
| ARRAY_SIZE(ar9285Modes_9285), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285, |
| ARRAY_SIZE(ar9285Common_9285), 2); |
| |
| if (ah->config.pcie_clock_req) { |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9285PciePhy_clkreq_off_L1_9285, |
| ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2); |
| } else { |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9285PciePhy_clkreq_always_on_L1_9285, |
| ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2); |
| } |
| } else if (AR_SREV_9280_20_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2, |
| ARRAY_SIZE(ar9280Modes_9280_2), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2, |
| ARRAY_SIZE(ar9280Common_9280_2), 2); |
| |
| if (ah->config.pcie_clock_req) { |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9280PciePhy_clkreq_off_L1_9280, |
| ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2); |
| } else { |
| INIT_INI_ARRAY(&ah->iniPcieSerdes, |
| ar9280PciePhy_clkreq_always_on_L1_9280, |
| ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2); |
| } |
| INIT_INI_ARRAY(&ah->iniModesAdditional, |
| ar9280Modes_fast_clock_9280_2, |
| ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3); |
| } else if (AR_SREV_9280_10_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280, |
| ARRAY_SIZE(ar9280Modes_9280), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280, |
| ARRAY_SIZE(ar9280Common_9280), 2); |
| } else if (AR_SREV_9160_10_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160, |
| ARRAY_SIZE(ar5416Modes_9160), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160, |
| ARRAY_SIZE(ar5416Common_9160), 2); |
| INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160, |
| ARRAY_SIZE(ar5416Bank0_9160), 2); |
| INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160, |
| ARRAY_SIZE(ar5416BB_RfGain_9160), 3); |
| INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160, |
| ARRAY_SIZE(ar5416Bank1_9160), 2); |
| INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160, |
| ARRAY_SIZE(ar5416Bank2_9160), 2); |
| INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160, |
| ARRAY_SIZE(ar5416Bank3_9160), 3); |
| INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160, |
| ARRAY_SIZE(ar5416Bank6_9160), 3); |
| INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160, |
| ARRAY_SIZE(ar5416Bank6TPC_9160), 3); |
| INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160, |
| ARRAY_SIZE(ar5416Bank7_9160), 2); |
| if (AR_SREV_9160_11(ah)) { |
| INIT_INI_ARRAY(&ah->iniAddac, |
| ar5416Addac_91601_1, |
| ARRAY_SIZE(ar5416Addac_91601_1), 2); |
| } else { |
| INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160, |
| ARRAY_SIZE(ar5416Addac_9160), 2); |
| } |
| } else if (AR_SREV_9100_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100, |
| ARRAY_SIZE(ar5416Modes_9100), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100, |
| ARRAY_SIZE(ar5416Common_9100), 2); |
| INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100, |
| ARRAY_SIZE(ar5416Bank0_9100), 2); |
| INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100, |
| ARRAY_SIZE(ar5416BB_RfGain_9100), 3); |
| INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100, |
| ARRAY_SIZE(ar5416Bank1_9100), 2); |
| INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100, |
| ARRAY_SIZE(ar5416Bank2_9100), 2); |
| INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100, |
| ARRAY_SIZE(ar5416Bank3_9100), 3); |
| INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100, |
| ARRAY_SIZE(ar5416Bank6_9100), 3); |
| INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100, |
| ARRAY_SIZE(ar5416Bank6TPC_9100), 3); |
| INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100, |
| ARRAY_SIZE(ar5416Bank7_9100), 2); |
| INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100, |
| ARRAY_SIZE(ar5416Addac_9100), 2); |
| } else { |
| INIT_INI_ARRAY(&ah->iniModes, ar5416Modes, |
| ARRAY_SIZE(ar5416Modes), 6); |
| INIT_INI_ARRAY(&ah->iniCommon, ar5416Common, |
| ARRAY_SIZE(ar5416Common), 2); |
| INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0, |
| ARRAY_SIZE(ar5416Bank0), 2); |
| INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain, |
| ARRAY_SIZE(ar5416BB_RfGain), 3); |
| INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1, |
| ARRAY_SIZE(ar5416Bank1), 2); |
| INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2, |
| ARRAY_SIZE(ar5416Bank2), 2); |
| INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3, |
| ARRAY_SIZE(ar5416Bank3), 3); |
| INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6, |
| ARRAY_SIZE(ar5416Bank6), 3); |
| INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC, |
| ARRAY_SIZE(ar5416Bank6TPC), 3); |
| INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7, |
| ARRAY_SIZE(ar5416Bank7), 2); |
| INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac, |
| ARRAY_SIZE(ar5416Addac), 2); |
| } |
| } |
| |
| static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) |
| { |
| if (AR_SREV_9287_11_OR_LATER(ah)) |
| INIT_INI_ARRAY(&ah->iniModesRxGain, |
| ar9287Modes_rx_gain_9287_1_1, |
| ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6); |
| else if (AR_SREV_9287_10(ah)) |
| INIT_INI_ARRAY(&ah->iniModesRxGain, |
| ar9287Modes_rx_gain_9287_1_0, |
| ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6); |
| else if (AR_SREV_9280_20(ah)) |
| ath9k_hw_init_rxgain_ini(ah); |
| |
| if (AR_SREV_9287_11_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniModesTxGain, |
| ar9287Modes_tx_gain_9287_1_1, |
| ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6); |
| } else if (AR_SREV_9287_10(ah)) { |
| INIT_INI_ARRAY(&ah->iniModesTxGain, |
| ar9287Modes_tx_gain_9287_1_0, |
| ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6); |
| } else if (AR_SREV_9280_20(ah)) { |
| ath9k_hw_init_txgain_ini(ah); |
| } else if (AR_SREV_9285_12_OR_LATER(ah)) { |
| u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE); |
| |
| /* txgain table */ |
| if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) { |
| INIT_INI_ARRAY(&ah->iniModesTxGain, |
| ar9285Modes_high_power_tx_gain_9285_1_2, |
| ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6); |
| } else { |
| INIT_INI_ARRAY(&ah->iniModesTxGain, |
| ar9285Modes_original_tx_gain_9285_1_2, |
| ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6); |
| } |
| |
| } |
| } |
| |
| static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah) |
| { |
| u32 i, j; |
| |
| if ((ah->hw_version.devid == AR9280_DEVID_PCI) && |
| test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) { |
| |
| /* EEPROM Fixup */ |
| for (i = 0; i < ah->iniModes.ia_rows; i++) { |
| u32 reg = INI_RA(&ah->iniModes, i, 0); |
| |
| for (j = 1; j < ah->iniModes.ia_columns; j++) { |
| u32 val = INI_RA(&ah->iniModes, i, j); |
| |
| INI_RA(&ah->iniModes, i, j) = |
| ath9k_hw_ini_fixup(ah, |
| &ah->eeprom.def, |
| reg, val); |
| } |
| } |
| } |
| } |
| |
| int ath9k_hw_init(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int r = 0; |
| |
| if (!ath9k_hw_devid_supported(ah->hw_version.devid)) { |
| ath_print(common, ATH_DBG_FATAL, |
| "Unsupported device ID: 0x%0x\n", |
| ah->hw_version.devid); |
| return -EOPNOTSUPP; |
| } |
| |
| ath9k_hw_init_defaults(ah); |
| ath9k_hw_init_config(ah); |
| |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { |
| ath_print(common, ATH_DBG_FATAL, |
| "Couldn't reset chip\n"); |
| return -EIO; |
| } |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { |
| ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n"); |
| return -EIO; |
| } |
| |
| if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { |
| if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || |
| (AR_SREV_9280(ah) && !ah->is_pciexpress)) { |
| ah->config.serialize_regmode = |
| SER_REG_MODE_ON; |
| } else { |
| ah->config.serialize_regmode = |
| SER_REG_MODE_OFF; |
| } |
| } |
| |
| ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n", |
| ah->config.serialize_regmode); |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; |
| else |
| ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; |
| |
| if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) { |
| ath_print(common, ATH_DBG_FATAL, |
| "Mac Chip Rev 0x%02x.%x is not supported by " |
| "this driver\n", ah->hw_version.macVersion, |
| ah->hw_version.macRev); |
| return -EOPNOTSUPP; |
| } |
| |
| if (AR_SREV_9100(ah)) { |
| ah->iq_caldata.calData = &iq_cal_multi_sample; |
| ah->supp_cals = IQ_MISMATCH_CAL; |
| ah->is_pciexpress = false; |
| } |
| |
| if (AR_SREV_9271(ah)) |
| ah->is_pciexpress = false; |
| |
| ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); |
| |
| ath9k_hw_init_cal_settings(ah); |
| |
| ah->ani_function = ATH9K_ANI_ALL; |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; |
| ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel; |
| ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate; |
| } else { |
| ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel; |
| ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate; |
| } |
| |
| ath9k_hw_init_mode_regs(ah); |
| |
| if (ah->is_pciexpress) |
| ath9k_hw_configpcipowersave(ah, 0, 0); |
| else |
| ath9k_hw_disablepcie(ah); |
| |
| /* Support for Japan ch.14 (2484) spread */ |
| if (AR_SREV_9287_11_OR_LATER(ah)) { |
| INIT_INI_ARRAY(&ah->iniCckfirNormal, |
| ar9287Common_normal_cck_fir_coeff_92871_1, |
| ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2); |
| INIT_INI_ARRAY(&ah->iniCckfirJapan2484, |
| ar9287Common_japan_2484_cck_fir_coeff_92871_1, |
| ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2); |
| } |
| |
| r = ath9k_hw_post_init(ah); |
| if (r) |
| return r; |
| |
| ath9k_hw_init_mode_gain_regs(ah); |
| r = ath9k_hw_fill_cap_info(ah); |
| if (r) |
| return r; |
| |
| ath9k_hw_init_11a_eeprom_fix(ah); |
| |
| r = ath9k_hw_init_macaddr(ah); |
| if (r) { |
| ath_print(common, ATH_DBG_FATAL, |
| "Failed to initialize MAC address\n"); |
| return r; |
| } |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); |
| else |
| ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); |
| |
| ath9k_init_nfcal_hist_buffer(ah); |
| |
| common->state = ATH_HW_INITIALIZED; |
| |
| return 0; |
| } |
| |
| static void ath9k_hw_init_bb(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 synthDelay; |
| |
| synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; |
| if (IS_CHAN_B(chan)) |
| synthDelay = (4 * synthDelay) / 22; |
| else |
| synthDelay /= 10; |
| |
| REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); |
| |
| udelay(synthDelay + BASE_ACTIVATE_DELAY); |
| } |
| |
| static void ath9k_hw_init_qos(struct ath_hw *ah) |
| { |
| REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); |
| REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); |
| |
| REG_WRITE(ah, AR_QOS_NO_ACK, |
| SM(2, AR_QOS_NO_ACK_TWO_BIT) | |
| SM(5, AR_QOS_NO_ACK_BIT_OFF) | |
| SM(0, AR_QOS_NO_ACK_BYTE_OFF)); |
| |
| REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); |
| REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); |
| } |
| |
| static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud) |
| { |
| u32 lcr; |
| u32 baud_divider = freq * 1000 * 1000 / 16 / baud; |
| |
| lcr = REG_READ(ah , 0x5100c); |
| lcr |= 0x80; |
| |
| REG_WRITE(ah, 0x5100c, lcr); |
| REG_WRITE(ah, 0x51004, (baud_divider >> 8)); |
| REG_WRITE(ah, 0x51000, (baud_divider & 0xff)); |
| |
| lcr &= ~0x80; |
| REG_WRITE(ah, 0x5100c, lcr); |
| } |
| |
| static void ath9k_hw_init_pll(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 pll; |
| |
| if (AR_SREV_9100(ah)) { |
| if (chan && IS_CHAN_5GHZ(chan)) |
| pll = 0x1450; |
| else |
| pll = 0x1458; |
| } else { |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); |
| |
| if (chan && IS_CHAN_HALF_RATE(chan)) |
| pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); |
| else if (chan && IS_CHAN_QUARTER_RATE(chan)) |
| pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); |
| |
| if (chan && IS_CHAN_5GHZ(chan)) { |
| pll |= SM(0x28, AR_RTC_9160_PLL_DIV); |
| |
| |
| if (AR_SREV_9280_20(ah)) { |
| if (((chan->channel % 20) == 0) |
| || ((chan->channel % 10) == 0)) |
| pll = 0x2850; |
| else |
| pll = 0x142c; |
| } |
| } else { |
| pll |= SM(0x2c, AR_RTC_9160_PLL_DIV); |
| } |
| |
| } else if (AR_SREV_9160_10_OR_LATER(ah)) { |
| |
| pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); |
| |
| if (chan && IS_CHAN_HALF_RATE(chan)) |
| pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); |
| else if (chan && IS_CHAN_QUARTER_RATE(chan)) |
| pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); |
| |
| if (chan && IS_CHAN_5GHZ(chan)) |
| pll |= SM(0x50, AR_RTC_9160_PLL_DIV); |
| else |
| pll |= SM(0x58, AR_RTC_9160_PLL_DIV); |
| } else { |
| pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; |
| |
| if (chan && IS_CHAN_HALF_RATE(chan)) |
| pll |= SM(0x1, AR_RTC_PLL_CLKSEL); |
| else if (chan && IS_CHAN_QUARTER_RATE(chan)) |
| pll |= SM(0x2, AR_RTC_PLL_CLKSEL); |
| |
| if (chan && IS_CHAN_5GHZ(chan)) |
| pll |= SM(0xa, AR_RTC_PLL_DIV); |
| else |
| pll |= SM(0xb, AR_RTC_PLL_DIV); |
| } |
| } |
| REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); |
| |
| /* Switch the core clock for ar9271 to 117Mhz */ |
| if (AR_SREV_9271(ah)) { |
| if ((pll == 0x142c) || (pll == 0x2850) ) { |
| udelay(500); |
| /* set CLKOBS to output AHB clock */ |
| REG_WRITE(ah, 0x7020, 0xe); |
| /* |
| * 0x304: 117Mhz, ahb_ratio: 1x1 |
| * 0x306: 40Mhz, ahb_ratio: 1x1 |
| */ |
| REG_WRITE(ah, 0x50040, 0x304); |
| /* |
| * makes adjustments for the baud dividor to keep the |
| * targetted baud rate based on the used core clock. |
| */ |
| ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK, |
| AR9271_TARGET_BAUD_RATE); |
| } |
| } |
| |
| udelay(RTC_PLL_SETTLE_DELAY); |
| |
| REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); |
| } |
| |
| static void ath9k_hw_init_chain_masks(struct ath_hw *ah) |
| { |
| int rx_chainmask, tx_chainmask; |
| |
| rx_chainmask = ah->rxchainmask; |
| tx_chainmask = ah->txchainmask; |
| |
| switch (rx_chainmask) { |
| case 0x5: |
| REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, |
| AR_PHY_SWAP_ALT_CHAIN); |
| case 0x3: |
| if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) { |
| REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); |
| REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); |
| break; |
| } |
| case 0x1: |
| case 0x2: |
| case 0x7: |
| REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); |
| REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); |
| break; |
| default: |
| break; |
| } |
| |
| REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); |
| if (tx_chainmask == 0x5) { |
| REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, |
| AR_PHY_SWAP_ALT_CHAIN); |
| } |
| if (AR_SREV_9100(ah)) |
| REG_WRITE(ah, AR_PHY_ANALOG_SWAP, |
| REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); |
| } |
| |
| static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, |
| enum nl80211_iftype opmode) |
| { |
| ah->mask_reg = AR_IMR_TXERR | |
| AR_IMR_TXURN | |
| AR_IMR_RXERR | |
| AR_IMR_RXORN | |
| AR_IMR_BCNMISC; |
| |
| if (ah->config.rx_intr_mitigation) |
| ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; |
| else |
| ah->mask_reg |= AR_IMR_RXOK; |
| |
| ah->mask_reg |= AR_IMR_TXOK; |
| |
| if (opmode == NL80211_IFTYPE_AP) |
| ah->mask_reg |= AR_IMR_MIB; |
| |
| REG_WRITE(ah, AR_IMR, ah->mask_reg); |
| REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT); |
| |
| if (!AR_SREV_9100(ah)) { |
| REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); |
| REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); |
| } |
| } |
| |
| static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) |
| { |
| if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "bad ack timeout %u\n", us); |
| ah->acktimeout = (u32) -1; |
| return false; |
| } else { |
| REG_RMW_FIELD(ah, AR_TIME_OUT, |
| AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us)); |
| ah->acktimeout = us; |
| return true; |
| } |
| } |
| |
| static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) |
| { |
| if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "bad cts timeout %u\n", us); |
| ah->ctstimeout = (u32) -1; |
| return false; |
| } else { |
| REG_RMW_FIELD(ah, AR_TIME_OUT, |
| AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us)); |
| ah->ctstimeout = us; |
| return true; |
| } |
| } |
| |
| static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) |
| { |
| if (tu > 0xFFFF) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT, |
| "bad global tx timeout %u\n", tu); |
| ah->globaltxtimeout = (u32) -1; |
| return false; |
| } else { |
| REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); |
| ah->globaltxtimeout = tu; |
| return true; |
| } |
| } |
| |
| static void ath9k_hw_init_user_settings(struct ath_hw *ah) |
| { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n", |
| ah->misc_mode); |
| |
| if (ah->misc_mode != 0) |
| REG_WRITE(ah, AR_PCU_MISC, |
| REG_READ(ah, AR_PCU_MISC) | ah->misc_mode); |
| if (ah->slottime != (u32) -1) |
| ath9k_hw_setslottime(ah, ah->slottime); |
| if (ah->acktimeout != (u32) -1) |
| ath9k_hw_set_ack_timeout(ah, ah->acktimeout); |
| if (ah->ctstimeout != (u32) -1) |
| ath9k_hw_set_cts_timeout(ah, ah->ctstimeout); |
| if (ah->globaltxtimeout != (u32) -1) |
| ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); |
| } |
| |
| void ath9k_hw_deinit(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (common->state <= ATH_HW_INITIALIZED) |
| goto free_hw; |
| |
| if (!AR_SREV_9100(ah)) |
| ath9k_hw_ani_disable(ah); |
| |
| ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); |
| |
| free_hw: |
| if (!AR_SREV_9280_10_OR_LATER(ah)) |
| ath9k_hw_rf_free_ext_banks(ah); |
| kfree(ah); |
| ah = NULL; |
| } |
| EXPORT_SYMBOL(ath9k_hw_deinit); |
| |
| /*******/ |
| /* INI */ |
| /*******/ |
| |
| static void ath9k_hw_override_ini(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 val; |
| |
| if (AR_SREV_9271(ah)) { |
| /* |
| * Enable spectral scan to solution for issues with stuck |
| * beacons on AR9271 1.0. The beacon stuck issue is not seeon on |
| * AR9271 1.1 |
| */ |
| if (AR_SREV_9271_10(ah)) { |
| val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | |
| AR_PHY_SPECTRAL_SCAN_ENABLE; |
| REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val); |
| } |
| else if (AR_SREV_9271_11(ah)) |
| /* |
| * change AR_PHY_RF_CTL3 setting to fix MAC issue |
| * present on AR9271 1.1 |
| */ |
| REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001); |
| return; |
| } |
| |
| /* |
| * Set the RX_ABORT and RX_DIS and clear if off only after |
| * RXE is set for MAC. This prevents frames with corrupted |
| * descriptor status. |
| */ |
| REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); |
| |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| val = REG_READ(ah, AR_PCU_MISC_MODE2) & |
| (~AR_PCU_MISC_MODE2_HWWAR1); |
| |
| if (AR_SREV_9287_10_OR_LATER(ah)) |
| val = val & (~AR_PCU_MISC_MODE2_HWWAR2); |
| |
| REG_WRITE(ah, AR_PCU_MISC_MODE2, val); |
| } |
| |
| if (!AR_SREV_5416_20_OR_LATER(ah) || |
| AR_SREV_9280_10_OR_LATER(ah)) |
| return; |
| /* |
| * Disable BB clock gating |
| * Necessary to avoid issues on AR5416 2.0 |
| */ |
| REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); |
| } |
| |
| static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah, |
| struct ar5416_eeprom_def *pEepData, |
| u32 reg, u32 value) |
| { |
| struct base_eep_header *pBase = &(pEepData->baseEepHeader); |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| switch (ah->hw_version.devid) { |
| case AR9280_DEVID_PCI: |
| if (reg == 0x7894) { |
| ath_print(common, ATH_DBG_EEPROM, |
| "ini VAL: %x EEPROM: %x\n", value, |
| (pBase->version & 0xff)); |
| |
| if ((pBase->version & 0xff) > 0x0a) { |
| ath_print(common, ATH_DBG_EEPROM, |
| "PWDCLKIND: %d\n", |
| pBase->pwdclkind); |
| value &= ~AR_AN_TOP2_PWDCLKIND; |
| value |= AR_AN_TOP2_PWDCLKIND & |
| (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S); |
| } else { |
| ath_print(common, ATH_DBG_EEPROM, |
| "PWDCLKIND Earlier Rev\n"); |
| } |
| |
| ath_print(common, ATH_DBG_EEPROM, |
| "final ini VAL: %x\n", value); |
| } |
| break; |
| } |
| |
| return value; |
| } |
| |
| static u32 ath9k_hw_ini_fixup(struct ath_hw *ah, |
| struct ar5416_eeprom_def *pEepData, |
| u32 reg, u32 value) |
| { |
| if (ah->eep_map == EEP_MAP_4KBITS) |
| return value; |
| else |
| return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value); |
| } |
| |
| static void ath9k_olc_init(struct ath_hw *ah) |
| { |
| u32 i; |
| |
| if (OLC_FOR_AR9287_10_LATER) { |
| REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9, |
| AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); |
| ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0, |
| AR9287_AN_TXPC0_TXPCMODE, |
| AR9287_AN_TXPC0_TXPCMODE_S, |
| AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); |
| udelay(100); |
| } else { |
| for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) |
| ah->originalGain[i] = |
| MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4), |
| AR_PHY_TX_GAIN); |
| ah->PDADCdelta = 0; |
| } |
| } |
| |
| static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, |
| struct ath9k_channel *chan) |
| { |
| u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); |
| |
| if (IS_CHAN_B(chan)) |
| ctl |= CTL_11B; |
| else if (IS_CHAN_G(chan)) |
| ctl |= CTL_11G; |
| else |
| ctl |= CTL_11A; |
| |
| return ctl; |
| } |
| |
| static int ath9k_hw_process_ini(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| int i, regWrites = 0; |
| struct ieee80211_channel *channel = chan->chan; |
| u32 modesIndex, freqIndex; |
| |
| switch (chan->chanmode) { |
| case CHANNEL_A: |
| case CHANNEL_A_HT20: |
| modesIndex = 1; |
| freqIndex = 1; |
| break; |
| case CHANNEL_A_HT40PLUS: |
| case CHANNEL_A_HT40MINUS: |
| modesIndex = 2; |
| freqIndex = 1; |
| break; |
| case CHANNEL_G: |
| case CHANNEL_G_HT20: |
| case CHANNEL_B: |
| modesIndex = 4; |
| freqIndex = 2; |
| break; |
| case CHANNEL_G_HT40PLUS: |
| case CHANNEL_G_HT40MINUS: |
| modesIndex = 3; |
| freqIndex = 2; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| REG_WRITE(ah, AR_PHY(0), 0x00000007); |
| REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); |
| ah->eep_ops->set_addac(ah, chan); |
| |
| if (AR_SREV_5416_22_OR_LATER(ah)) { |
| REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites); |
| } else { |
| struct ar5416IniArray temp; |
| u32 addacSize = |
| sizeof(u32) * ah->iniAddac.ia_rows * |
| ah->iniAddac.ia_columns; |
| |
| memcpy(ah->addac5416_21, |
| ah->iniAddac.ia_array, addacSize); |
| |
| (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0; |
| |
| temp.ia_array = ah->addac5416_21; |
| temp.ia_columns = ah->iniAddac.ia_columns; |
| temp.ia_rows = ah->iniAddac.ia_rows; |
| REG_WRITE_ARRAY(&temp, 1, regWrites); |
| } |
| |
| REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); |
| |
| for (i = 0; i < ah->iniModes.ia_rows; i++) { |
| u32 reg = INI_RA(&ah->iniModes, i, 0); |
| u32 val = INI_RA(&ah->iniModes, i, modesIndex); |
| |
| REG_WRITE(ah, reg, val); |
| |
| if (reg >= 0x7800 && reg < 0x78a0 |
| && ah->config.analog_shiftreg) { |
| udelay(100); |
| } |
| |
| DO_DELAY(regWrites); |
| } |
| |
| if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah)) |
| REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites); |
| |
| if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) || |
| AR_SREV_9287_10_OR_LATER(ah)) |
| REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); |
| |
| for (i = 0; i < ah->iniCommon.ia_rows; i++) { |
| u32 reg = INI_RA(&ah->iniCommon, i, 0); |
| u32 val = INI_RA(&ah->iniCommon, i, 1); |
| |
| REG_WRITE(ah, reg, val); |
| |
| if (reg >= 0x7800 && reg < 0x78a0 |
| && ah->config.analog_shiftreg) { |
| udelay(100); |
| } |
| |
| DO_DELAY(regWrites); |
| } |
| |
| ath9k_hw_write_regs(ah, freqIndex, regWrites); |
| |
| if (AR_SREV_9271_10(ah)) |
| REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only, |
| modesIndex, regWrites); |
| |
| if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) { |
| REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex, |
| regWrites); |
| } |
| |
| ath9k_hw_override_ini(ah, chan); |
| ath9k_hw_set_regs(ah, chan); |
| ath9k_hw_init_chain_masks(ah); |
| |
| if (OLC_FOR_AR9280_20_LATER) |
| ath9k_olc_init(ah); |
| |
| ah->eep_ops->set_txpower(ah, chan, |
| ath9k_regd_get_ctl(regulatory, chan), |
| channel->max_antenna_gain * 2, |
| channel->max_power * 2, |
| min((u32) MAX_RATE_POWER, |
| (u32) regulatory->power_limit)); |
| |
| if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, |
| "ar5416SetRfRegs failed\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /****************************************/ |
| /* Reset and Channel Switching Routines */ |
| /****************************************/ |
| |
| static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan) |
| { |
| u32 rfMode = 0; |
| |
| if (chan == NULL) |
| return; |
| |
| rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan)) |
| ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; |
| |
| if (!AR_SREV_9280_10_OR_LATER(ah)) |
| rfMode |= (IS_CHAN_5GHZ(chan)) ? |
| AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; |
| |
| if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) |
| rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); |
| |
| REG_WRITE(ah, AR_PHY_MODE, rfMode); |
| } |
| |
| static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah) |
| { |
| REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); |
| } |
| |
| static inline void ath9k_hw_set_dma(struct ath_hw *ah) |
| { |
| u32 regval; |
| |
| /* |
| * set AHB_MODE not to do cacheline prefetches |
| */ |
| regval = REG_READ(ah, AR_AHB_MODE); |
| REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); |
| |
| /* |
| * let mac dma reads be in 128 byte chunks |
| */ |
| regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; |
| REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); |
| |
| /* |
| * Restore TX Trigger Level to its pre-reset value. |
| * The initial value depends on whether aggregation is enabled, and is |
| * adjusted whenever underruns are detected. |
| */ |
| REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); |
| |
| /* |
| * let mac dma writes be in 128 byte chunks |
| */ |
| regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; |
| REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); |
| |
| /* |
| * Setup receive FIFO threshold to hold off TX activities |
| */ |
| REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); |
| |
| /* |
| * reduce the number of usable entries in PCU TXBUF to avoid |
| * wrap around issues. |
| */ |
| if (AR_SREV_9285(ah)) { |
| /* For AR9285 the number of Fifos are reduced to half. |
| * So set the usable tx buf size also to half to |
| * avoid data/delimiter underruns |
| */ |
| REG_WRITE(ah, AR_PCU_TXBUF_CTRL, |
| AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); |
| } else if (!AR_SREV_9271(ah)) { |
| REG_WRITE(ah, AR_PCU_TXBUF_CTRL, |
| AR_PCU_TXBUF_CTRL_USABLE_SIZE); |
| } |
| } |
| |
| static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) |
| { |
| u32 val; |
| |
| val = REG_READ(ah, AR_STA_ID1); |
| val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); |
| switch (opmode) { |
| case NL80211_IFTYPE_AP: |
| REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP |
| | AR_STA_ID1_KSRCH_MODE); |
| REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| case NL80211_IFTYPE_MESH_POINT: |
| REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC |
| | AR_STA_ID1_KSRCH_MODE); |
| REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); |
| break; |
| case NL80211_IFTYPE_STATION: |
| case NL80211_IFTYPE_MONITOR: |
| REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); |
| break; |
| } |
| } |
| |
| static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, |
| u32 coef_scaled, |
| u32 *coef_mantissa, |
| u32 *coef_exponent) |
| { |
| u32 coef_exp, coef_man; |
| |
| for (coef_exp = 31; coef_exp > 0; coef_exp--) |
| if ((coef_scaled >> coef_exp) & 0x1) |
| break; |
| |
| coef_exp = 14 - (coef_exp - COEF_SCALE_S); |
| |
| coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); |
| |
| *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); |
| *coef_exponent = coef_exp - 16; |
| } |
| |
| static void ath9k_hw_set_delta_slope(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 coef_scaled, ds_coef_exp, ds_coef_man; |
| u32 clockMhzScaled = 0x64000000; |
| struct chan_centers centers; |
| |
| if (IS_CHAN_HALF_RATE(chan)) |
| clockMhzScaled = clockMhzScaled >> 1; |
| else if (IS_CHAN_QUARTER_RATE(chan)) |
| clockMhzScaled = clockMhzScaled >> 2; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| coef_scaled = clockMhzScaled / centers.synth_center; |
| |
| ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, |
| &ds_coef_exp); |
| |
| REG_RMW_FIELD(ah, AR_PHY_TIMING3, |
| AR_PHY_TIMING3_DSC_MAN, ds_coef_man); |
| REG_RMW_FIELD(ah, AR_PHY_TIMING3, |
| AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); |
| |
| coef_scaled = (9 * coef_scaled) / 10; |
| |
| ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, |
| &ds_coef_exp); |
| |
| REG_RMW_FIELD(ah, AR_PHY_HALFGI, |
| AR_PHY_HALFGI_DSC_MAN, ds_coef_man); |
| REG_RMW_FIELD(ah, AR_PHY_HALFGI, |
| AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); |
| } |
| |
| static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) |
| { |
| u32 rst_flags; |
| u32 tmpReg; |
| |
| if (AR_SREV_9100(ah)) { |
| u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK); |
| val &= ~AR_RTC_DERIVED_CLK_PERIOD; |
| val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); |
| REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); |
| (void)REG_READ(ah, AR_RTC_DERIVED_CLK); |
| } |
| |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | |
| AR_RTC_FORCE_WAKE_ON_INT); |
| |
| if (AR_SREV_9100(ah)) { |
| rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | |
| AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; |
| } else { |
| tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); |
| if (tmpReg & |
| (AR_INTR_SYNC_LOCAL_TIMEOUT | |
| AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { |
| REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); |
| REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); |
| } else { |
| REG_WRITE(ah, AR_RC, AR_RC_AHB); |
| } |
| |
| rst_flags = AR_RTC_RC_MAC_WARM; |
| if (type == ATH9K_RESET_COLD) |
| rst_flags |= AR_RTC_RC_MAC_COLD; |
| } |
| |
| REG_WRITE(ah, AR_RTC_RC, rst_flags); |
| udelay(50); |
| |
| REG_WRITE(ah, AR_RTC_RC, 0); |
| if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "RTC stuck in MAC reset\n"); |
| return false; |
| } |
| |
| if (!AR_SREV_9100(ah)) |
| REG_WRITE(ah, AR_RC, 0); |
| |
| if (AR_SREV_9100(ah)) |
| udelay(50); |
| |
| return true; |
| } |
| |
| static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) |
| { |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | |
| AR_RTC_FORCE_WAKE_ON_INT); |
| |
| if (!AR_SREV_9100(ah)) |
| REG_WRITE(ah, AR_RC, AR_RC_AHB); |
| |
| REG_WRITE(ah, AR_RTC_RESET, 0); |
| udelay(2); |
| |
| if (!AR_SREV_9100(ah)) |
| REG_WRITE(ah, AR_RC, 0); |
| |
| REG_WRITE(ah, AR_RTC_RESET, 1); |
| |
| if (!ath9k_hw_wait(ah, |
| AR_RTC_STATUS, |
| AR_RTC_STATUS_M, |
| AR_RTC_STATUS_ON, |
| AH_WAIT_TIMEOUT)) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "RTC not waking up\n"); |
| return false; |
| } |
| |
| ath9k_hw_read_revisions(ah); |
| |
| return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); |
| } |
| |
| static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) |
| { |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); |
| |
| switch (type) { |
| case ATH9K_RESET_POWER_ON: |
| return ath9k_hw_set_reset_power_on(ah); |
| case ATH9K_RESET_WARM: |
| case ATH9K_RESET_COLD: |
| return ath9k_hw_set_reset(ah, type); |
| default: |
| return false; |
| } |
| } |
| |
| static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan) |
| { |
| u32 phymode; |
| u32 enableDacFifo = 0; |
| |
| if (AR_SREV_9285_10_OR_LATER(ah)) |
| enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) & |
| AR_PHY_FC_ENABLE_DAC_FIFO); |
| |
| phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 |
| | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; |
| |
| if (IS_CHAN_HT40(chan)) { |
| phymode |= AR_PHY_FC_DYN2040_EN; |
| |
| if ((chan->chanmode == CHANNEL_A_HT40PLUS) || |
| (chan->chanmode == CHANNEL_G_HT40PLUS)) |
| phymode |= AR_PHY_FC_DYN2040_PRI_CH; |
| |
| } |
| REG_WRITE(ah, AR_PHY_TURBO, phymode); |
| |
| ath9k_hw_set11nmac2040(ah); |
| |
| REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); |
| REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); |
| } |
| |
| static bool ath9k_hw_chip_reset(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) { |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) |
| return false; |
| } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) |
| return false; |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return false; |
| |
| ah->chip_fullsleep = false; |
| ath9k_hw_init_pll(ah, chan); |
| ath9k_hw_set_rfmode(ah, chan); |
| |
| return true; |
| } |
| |
| static bool ath9k_hw_channel_change(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ieee80211_channel *channel = chan->chan; |
| u32 synthDelay, qnum; |
| int r; |
| |
| for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { |
| if (ath9k_hw_numtxpending(ah, qnum)) { |
| ath_print(common, ATH_DBG_QUEUE, |
| "Transmit frames pending on " |
| "queue %d\n", qnum); |
| return false; |
| } |
| } |
| |
| REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); |
| if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, |
| AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) { |
| ath_print(common, ATH_DBG_FATAL, |
| "Could not kill baseband RX\n"); |
| return false; |
| } |
| |
| ath9k_hw_set_regs(ah, chan); |
| |
| r = ah->ath9k_hw_rf_set_freq(ah, chan); |
| if (r) { |
| ath_print(common, ATH_DBG_FATAL, |
| "Failed to set channel\n"); |
| return false; |
| } |
| |
| ah->eep_ops->set_txpower(ah, chan, |
| ath9k_regd_get_ctl(regulatory, chan), |
| channel->max_antenna_gain * 2, |
| channel->max_power * 2, |
| min((u32) MAX_RATE_POWER, |
| (u32) regulatory->power_limit)); |
| |
| synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; |
| if (IS_CHAN_B(chan)) |
| synthDelay = (4 * synthDelay) / 22; |
| else |
| synthDelay /= 10; |
| |
| udelay(synthDelay + BASE_ACTIVATE_DELAY); |
| |
| REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); |
| |
| if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) |
| ath9k_hw_set_delta_slope(ah, chan); |
| |
| ah->ath9k_hw_spur_mitigate_freq(ah, chan); |
| |
| if (!chan->oneTimeCalsDone) |
| chan->oneTimeCalsDone = true; |
| |
| return true; |
| } |
| |
| static void ath9k_enable_rfkill(struct ath_hw *ah) |
| { |
| REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, |
| AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); |
| |
| REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2, |
| AR_GPIO_INPUT_MUX2_RFSILENT); |
| |
| ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); |
| REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB); |
| } |
| |
| int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, |
| bool bChannelChange) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 saveLedState; |
| struct ath9k_channel *curchan = ah->curchan; |
| u32 saveDefAntenna; |
| u32 macStaId1; |
| u64 tsf = 0; |
| int i, rx_chainmask, r; |
| |
| ah->txchainmask = common->tx_chainmask; |
| ah->rxchainmask = common->rx_chainmask; |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return -EIO; |
| |
| if (curchan && !ah->chip_fullsleep) |
| ath9k_hw_getnf(ah, curchan); |
| |
| if (bChannelChange && |
| (ah->chip_fullsleep != true) && |
| (ah->curchan != NULL) && |
| (chan->channel != ah->curchan->channel) && |
| ((chan->channelFlags & CHANNEL_ALL) == |
| (ah->curchan->channelFlags & CHANNEL_ALL)) && |
| !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) || |
| IS_CHAN_A_5MHZ_SPACED(ah->curchan))) { |
| |
| if (ath9k_hw_channel_change(ah, chan)) { |
| ath9k_hw_loadnf(ah, ah->curchan); |
| ath9k_hw_start_nfcal(ah); |
| return 0; |
| } |
| } |
| |
| saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); |
| if (saveDefAntenna == 0) |
| saveDefAntenna = 1; |
| |
| macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; |
| |
| /* For chips on which RTC reset is done, save TSF before it gets cleared */ |
| if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) |
| tsf = ath9k_hw_gettsf64(ah); |
| |
| saveLedState = REG_READ(ah, AR_CFG_LED) & |
| (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | |
| AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); |
| |
| ath9k_hw_mark_phy_inactive(ah); |
| |
| if (AR_SREV_9271(ah) && ah->htc_reset_init) { |
| REG_WRITE(ah, |
| AR9271_RESET_POWER_DOWN_CONTROL, |
| AR9271_RADIO_RF_RST); |
| udelay(50); |
| } |
| |
| if (!ath9k_hw_chip_reset(ah, chan)) { |
| ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n"); |
| return -EINVAL; |
| } |
| |
| if (AR_SREV_9271(ah) && ah->htc_reset_init) { |
| ah->htc_reset_init = false; |
| REG_WRITE(ah, |
| AR9271_RESET_POWER_DOWN_CONTROL, |
| AR9271_GATE_MAC_CTL); |
| udelay(50); |
| } |
| |
| /* Restore TSF */ |
| if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) |
| ath9k_hw_settsf64(ah, tsf); |
| |
| if (AR_SREV_9280_10_OR_LATER(ah)) |
| REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); |
| |
| if (AR_SREV_9287_12_OR_LATER(ah)) { |
| /* Enable ASYNC FIFO */ |
| REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, |
| AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); |
| REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); |
| REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, |
| AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); |
| REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, |
| AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); |
| } |
| r = ath9k_hw_process_ini(ah, chan); |
| if (r) |
| return r; |
| |
| /* Setup MFP options for CCMP */ |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt |
| * frames when constructing CCMP AAD. */ |
| REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, |
| 0xc7ff); |
| ah->sw_mgmt_crypto = false; |
| } else if (AR_SREV_9160_10_OR_LATER(ah)) { |
| /* Disable hardware crypto for management frames */ |
| REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, |
| AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); |
| REG_SET_BIT(ah, AR_PCU_MISC_MODE2, |
| AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); |
| ah->sw_mgmt_crypto = true; |
| } else |
| ah->sw_mgmt_crypto = true; |
| |
| if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) |
| ath9k_hw_set_delta_slope(ah, chan); |
| |
| ah->ath9k_hw_spur_mitigate_freq(ah, chan); |
| ah->eep_ops->set_board_values(ah, chan); |
| |
| REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr)); |
| REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4) |
| | macStaId1 |
| | AR_STA_ID1_RTS_USE_DEF |
| | (ah->config. |
| ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) |
| | ah->sta_id1_defaults); |
| ath9k_hw_set_operating_mode(ah, ah->opmode); |
| |
| ath_hw_setbssidmask(common); |
| |
| REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); |
| |
| ath9k_hw_write_associd(ah); |
| |
| REG_WRITE(ah, AR_ISR, ~0); |
| |
| REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); |
| |
| r = ah->ath9k_hw_rf_set_freq(ah, chan); |
| if (r) |
| return r; |
| |
| for (i = 0; i < AR_NUM_DCU; i++) |
| REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); |
| |
| ah->intr_txqs = 0; |
| for (i = 0; i < ah->caps.total_queues; i++) |
| ath9k_hw_resettxqueue(ah, i); |
| |
| ath9k_hw_init_interrupt_masks(ah, ah->opmode); |
| ath9k_hw_init_qos(ah); |
| |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) |
| ath9k_enable_rfkill(ah); |
| |
| ath9k_hw_init_user_settings(ah); |
| |
| if (AR_SREV_9287_12_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_D_GBL_IFS_SIFS, |
| AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); |
| REG_WRITE(ah, AR_D_GBL_IFS_SLOT, |
| AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); |
| REG_WRITE(ah, AR_D_GBL_IFS_EIFS, |
| AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); |
| |
| REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); |
| REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); |
| |
| REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, |
| AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); |
| REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, |
| AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); |
| } |
| if (AR_SREV_9287_12_OR_LATER(ah)) { |
| REG_SET_BIT(ah, AR_PCU_MISC_MODE2, |
| AR_PCU_MISC_MODE2_ENABLE_AGGWEP); |
| } |
| |
| REG_WRITE(ah, AR_STA_ID1, |
| REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); |
| |
| ath9k_hw_set_dma(ah); |
| |
| REG_WRITE(ah, AR_OBS, 8); |
| |
| if (ah->config.rx_intr_mitigation) { |
| REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); |
| REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); |
| } |
| |
| ath9k_hw_init_bb(ah, chan); |
| |
| if (!ath9k_hw_init_cal(ah, chan)) |
| return -EIO; |
| |
| rx_chainmask = ah->rxchainmask; |
| if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) { |
| REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); |
| REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); |
| } |
| |
| REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); |
| |
| /* |
| * For big endian systems turn on swapping for descriptors |
| */ |
| if (AR_SREV_9100(ah)) { |
| u32 mask; |
| mask = REG_READ(ah, AR_CFG); |
| if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { |
| ath_print(common, ATH_DBG_RESET, |
| "CFG Byte Swap Set 0x%x\n", mask); |
| } else { |
| mask = |
| INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; |
| REG_WRITE(ah, AR_CFG, mask); |
| ath_print(common, ATH_DBG_RESET, |
| "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); |
| } |
| } else { |
| /* Configure AR9271 target WLAN */ |
| if (AR_SREV_9271(ah)) |
| REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); |
| #ifdef __BIG_ENDIAN |
| else |
| REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); |
| #endif |
| } |
| |
| if (ah->btcoex_hw.enabled) |
| ath9k_hw_btcoex_enable(ah); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ath9k_hw_reset); |
| |
| /************************/ |
| /* Key Cache Management */ |
| /************************/ |
| |
| bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry) |
| { |
| u32 keyType; |
| |
| if (entry >= ah->caps.keycache_size) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, |
| "keychache entry %u out of range\n", entry); |
| return false; |
| } |
| |
| keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry)); |
| |
| REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); |
| REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); |
| |
| if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { |
| u16 micentry = entry + 64; |
| |
| REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); |
| |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_keyreset); |
| |
| bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac) |
| { |
| u32 macHi, macLo; |
| |
| if (entry >= ah->caps.keycache_size) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, |
| "keychache entry %u out of range\n", entry); |
| return false; |
| } |
| |
| if (mac != NULL) { |
| macHi = (mac[5] << 8) | mac[4]; |
| macLo = (mac[3] << 24) | |
| (mac[2] << 16) | |
| (mac[1] << 8) | |
| mac[0]; |
| macLo >>= 1; |
| macLo |= (macHi & 1) << 31; |
| macHi >>= 1; |
| } else { |
| macLo = macHi = 0; |
| } |
| REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); |
| REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID); |
| |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_keysetmac); |
| |
| bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry, |
| const struct ath9k_keyval *k, |
| const u8 *mac) |
| { |
| const struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 key0, key1, key2, key3, key4; |
| u32 keyType; |
| |
| if (entry >= pCap->keycache_size) { |
| ath_print(common, ATH_DBG_FATAL, |
| "keycache entry %u out of range\n", entry); |
| return false; |
| } |
| |
| switch (k->kv_type) { |
| case ATH9K_CIPHER_AES_OCB: |
| keyType = AR_KEYTABLE_TYPE_AES; |
| break; |
| case ATH9K_CIPHER_AES_CCM: |
| if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) { |
| ath_print(common, ATH_DBG_ANY, |
| "AES-CCM not supported by mac rev 0x%x\n", |
| ah->hw_version.macRev); |
| return false; |
| } |
| keyType = AR_KEYTABLE_TYPE_CCM; |
| break; |
| case ATH9K_CIPHER_TKIP: |
| keyType = AR_KEYTABLE_TYPE_TKIP; |
| if (ATH9K_IS_MIC_ENABLED(ah) |
| && entry + 64 >= pCap->keycache_size) { |
| ath_print(common, ATH_DBG_ANY, |
| "entry %u inappropriate for TKIP\n", entry); |
| return false; |
| } |
| break; |
| case ATH9K_CIPHER_WEP: |
| if (k->kv_len < WLAN_KEY_LEN_WEP40) { |
| ath_print(common, ATH_DBG_ANY, |
| "WEP key length %u too small\n", k->kv_len); |
| return false; |
| } |
| if (k->kv_len <= WLAN_KEY_LEN_WEP40) |
| keyType = AR_KEYTABLE_TYPE_40; |
| else if (k->kv_len <= WLAN_KEY_LEN_WEP104) |
| keyType = AR_KEYTABLE_TYPE_104; |
| else |
| keyType = AR_KEYTABLE_TYPE_128; |
| break; |
| case ATH9K_CIPHER_CLR: |
| keyType = AR_KEYTABLE_TYPE_CLR; |
| break; |
| default: |
| ath_print(common, ATH_DBG_FATAL, |
| "cipher %u not supported\n", k->kv_type); |
| return false; |
| } |
| |
| key0 = get_unaligned_le32(k->kv_val + 0); |
| key1 = get_unaligned_le16(k->kv_val + 4); |
| key2 = get_unaligned_le32(k->kv_val + 6); |
| key3 = get_unaligned_le16(k->kv_val + 10); |
| key4 = get_unaligned_le32(k->kv_val + 12); |
| if (k->kv_len <= WLAN_KEY_LEN_WEP104) |
| key4 &= 0xff; |
| |
| /* |
| * Note: Key cache registers access special memory area that requires |
| * two 32-bit writes to actually update the values in the internal |
| * memory. Consequently, the exact order and pairs used here must be |
| * maintained. |
| */ |
| |
| if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { |
| u16 micentry = entry + 64; |
| |
| /* |
| * Write inverted key[47:0] first to avoid Michael MIC errors |
| * on frames that could be sent or received at the same time. |
| * The correct key will be written in the end once everything |
| * else is ready. |
| */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1); |
| |
| /* Write key[95:48] */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); |
| REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); |
| |
| /* Write key[127:96] and key type */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); |
| REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); |
| |
| /* Write MAC address for the entry */ |
| (void) ath9k_hw_keysetmac(ah, entry, mac); |
| |
| if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) { |
| /* |
| * TKIP uses two key cache entries: |
| * Michael MIC TX/RX keys in the same key cache entry |
| * (idx = main index + 64): |
| * key0 [31:0] = RX key [31:0] |
| * key1 [15:0] = TX key [31:16] |
| * key1 [31:16] = reserved |
| * key2 [31:0] = RX key [63:32] |
| * key3 [15:0] = TX key [15:0] |
| * key3 [31:16] = reserved |
| * key4 [31:0] = TX key [63:32] |
| */ |
| u32 mic0, mic1, mic2, mic3, mic4; |
| |
| mic0 = get_unaligned_le32(k->kv_mic + 0); |
| mic2 = get_unaligned_le32(k->kv_mic + 4); |
| mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff; |
| mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff; |
| mic4 = get_unaligned_le32(k->kv_txmic + 4); |
| |
| /* Write RX[31:0] and TX[31:16] */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1); |
| |
| /* Write RX[63:32] and TX[15:0] */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); |
| REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3); |
| |
| /* Write TX[63:32] and keyType(reserved) */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4); |
| REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), |
| AR_KEYTABLE_TYPE_CLR); |
| |
| } else { |
| /* |
| * TKIP uses four key cache entries (two for group |
| * keys): |
| * Michael MIC TX/RX keys are in different key cache |
| * entries (idx = main index + 64 for TX and |
| * main index + 32 + 96 for RX): |
| * key0 [31:0] = TX/RX MIC key [31:0] |
| * key1 [31:0] = reserved |
| * key2 [31:0] = TX/RX MIC key [63:32] |
| * key3 [31:0] = reserved |
| * key4 [31:0] = reserved |
| * |
| * Upper layer code will call this function separately |
| * for TX and RX keys when these registers offsets are |
| * used. |
| */ |
| u32 mic0, mic2; |
| |
| mic0 = get_unaligned_le32(k->kv_mic + 0); |
| mic2 = get_unaligned_le32(k->kv_mic + 4); |
| |
| /* Write MIC key[31:0] */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); |
| |
| /* Write MIC key[63:32] */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); |
| REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); |
| |
| /* Write TX[63:32] and keyType(reserved) */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), |
| AR_KEYTABLE_TYPE_CLR); |
| } |
| |
| /* MAC address registers are reserved for the MIC entry */ |
| REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0); |
| REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0); |
| |
| /* |
| * Write the correct (un-inverted) key[47:0] last to enable |
| * TKIP now that all other registers are set with correct |
| * values. |
| */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); |
| } else { |
| /* Write key[47:0] */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); |
| REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); |
| |
| /* Write key[95:48] */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); |
| REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); |
| |
| /* Write key[127:96] and key type */ |
| REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); |
| REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); |
| |
| /* Write MAC address for the entry */ |
| (void) ath9k_hw_keysetmac(ah, entry, mac); |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_keycache_entry); |
| |
| bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry) |
| { |
| if (entry < ah->caps.keycache_size) { |
| u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry)); |
| if (val & AR_KEYTABLE_VALID) |
| return true; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL(ath9k_hw_keyisvalid); |
| |
| /******************************/ |
| /* Power Management (Chipset) */ |
| /******************************/ |
| |
| static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) |
| { |
| REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| if (setChip) { |
| REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| if (!AR_SREV_9100(ah)) |
| REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); |
| |
| if(!AR_SREV_5416(ah)) |
| REG_CLR_BIT(ah, (AR_RTC_RESET), |
| AR_RTC_RESET_EN); |
| } |
| } |
| |
| static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) |
| { |
| REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| if (setChip) { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| |
| if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_ON_INT); |
| } else { |
| REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| } |
| } |
| } |
| |
| static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) |
| { |
| u32 val; |
| int i; |
| |
| if (setChip) { |
| if ((REG_READ(ah, AR_RTC_STATUS) & |
| AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { |
| if (ath9k_hw_set_reset_reg(ah, |
| ATH9K_RESET_POWER_ON) != true) { |
| return false; |
| } |
| ath9k_hw_init_pll(ah, NULL); |
| } |
| if (AR_SREV_9100(ah)) |
| REG_SET_BIT(ah, AR_RTC_RESET, |
| AR_RTC_RESET_EN); |
| |
| REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| udelay(50); |
| |
| for (i = POWER_UP_TIME / 50; i > 0; i--) { |
| val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; |
| if (val == AR_RTC_STATUS_ON) |
| break; |
| udelay(50); |
| REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| } |
| if (i == 0) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, |
| "Failed to wakeup in %uus\n", |
| POWER_UP_TIME / 20); |
| return false; |
| } |
| } |
| |
| REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| |
| return true; |
| } |
| |
| bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int status = true, setChip = true; |
| static const char *modes[] = { |
| "AWAKE", |
| "FULL-SLEEP", |
| "NETWORK SLEEP", |
| "UNDEFINED" |
| }; |
| |
| if (ah->power_mode == mode) |
| return status; |
| |
| ath_print(common, ATH_DBG_RESET, "%s -> %s\n", |
| modes[ah->power_mode], modes[mode]); |
| |
| switch (mode) { |
| case ATH9K_PM_AWAKE: |
| status = ath9k_hw_set_power_awake(ah, setChip); |
| break; |
| case ATH9K_PM_FULL_SLEEP: |
| ath9k_set_power_sleep(ah, setChip); |
| ah->chip_fullsleep = true; |
| break; |
| case ATH9K_PM_NETWORK_SLEEP: |
| ath9k_set_power_network_sleep(ah, setChip); |
| break; |
| default: |
| ath_print(common, ATH_DBG_FATAL, |
| "Unknown power mode %u\n", mode); |
| return false; |
| } |
| ah->power_mode = mode; |
| |
| return status; |
| } |
| EXPORT_SYMBOL(ath9k_hw_setpower); |
| |
| /* |
| * Helper for ASPM support. |
| * |
| * Disable PLL when in L0s as well as receiver clock when in L1. |
| * This power saving option must be enabled through the SerDes. |
| * |
| * Programming the SerDes must go through the same 288 bit serial shift |
| * register as the other analog registers. Hence the 9 writes. |
| */ |
| void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off) |
| { |
| u8 i; |
| u32 val; |
| |
| if (ah->is_pciexpress != true) |
| return; |
| |
| /* Do not touch SerDes registers */ |
| if (ah->config.pcie_powersave_enable == 2) |
| return; |
| |
| /* Nothing to do on restore for 11N */ |
| if (!restore) { |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| /* |
| * AR9280 2.0 or later chips use SerDes values from the |
| * initvals.h initialized depending on chipset during |
| * ath9k_hw_init() |
| */ |
| for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) { |
| REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0), |
| INI_RA(&ah->iniPcieSerdes, i, 1)); |
| } |
| } else if (AR_SREV_9280(ah) && |
| (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) { |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); |
| |
| /* RX shut off when elecidle is asserted */ |
| REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560); |
| |
| /* Shut off CLKREQ active in L1 */ |
| if (ah->config.pcie_clock_req) |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc); |
| else |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd); |
| |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007); |
| |
| /* Load the new settings */ |
| REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); |
| |
| } else { |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); |
| |
| /* RX shut off when elecidle is asserted */ |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579); |
| |
| /* |
| * Ignore ah->ah_config.pcie_clock_req setting for |
| * pre-AR9280 11n |
| */ |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff); |
| |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007); |
| |
| /* Load the new settings */ |
| REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); |
| } |
| |
| udelay(1000); |
| |
| /* set bit 19 to allow forcing of pcie core into L1 state */ |
| REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); |
| |
| /* Several PCIe massages to ensure proper behaviour */ |
| if (ah->config.pcie_waen) { |
| val = ah->config.pcie_waen; |
| if (!power_off) |
| val &= (~AR_WA_D3_L1_DISABLE); |
| } else { |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah) || |
| AR_SREV_9287(ah)) { |
| val = AR9285_WA_DEFAULT; |
| if (!power_off) |
| val &= (~AR_WA_D3_L1_DISABLE); |
| } else if (AR_SREV_9280(ah)) { |
| /* |
| * On AR9280 chips bit 22 of 0x4004 needs to be |
| * set otherwise card may disappear. |
| */ |
| val = AR9280_WA_DEFAULT; |
| if (!power_off) |
| val &= (~AR_WA_D3_L1_DISABLE); |
| } else |
| val = AR_WA_DEFAULT; |
| } |
| |
| REG_WRITE(ah, AR_WA, val); |
| } |
| |
| if (power_off) { |
| /* |
| * Set PCIe workaround bits |
| * bit 14 in WA register (disable L1) should only |
| * be set when device enters D3 and be cleared |
| * when device comes back to D0. |
| */ |
| if (ah->config.pcie_waen) { |
| if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE) |
| REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE); |
| } else { |
| if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) || |
| AR_SREV_9287(ah)) && |
| (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) || |
| (AR_SREV_9280(ah) && |
| (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) { |
| REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE); |
| } |
| } |
| } |
| } |
| EXPORT_SYMBOL(ath9k_hw_configpcipowersave); |
| |
| /**********************/ |
| /* Interrupt Handling */ |
| /**********************/ |
| |
| bool ath9k_hw_intrpend(struct ath_hw *ah) |
| { |
| u32 host_isr; |
| |
| if (AR_SREV_9100(ah)) |
| return true; |
| |
| host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE); |
| if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS)) |
| return true; |
| |
| host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE); |
| if ((host_isr & AR_INTR_SYNC_DEFAULT) |
| && (host_isr != AR_INTR_SPURIOUS)) |
| return true; |
| |
| return false; |
| } |
| EXPORT_SYMBOL(ath9k_hw_intrpend); |
| |
| bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked) |
| { |
| u32 isr = 0; |
| u32 mask2 = 0; |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| u32 sync_cause = 0; |
| bool fatal_int = false; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (!AR_SREV_9100(ah)) { |
| if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) { |
| if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) |
| == AR_RTC_STATUS_ON) { |
| isr = REG_READ(ah, AR_ISR); |
| } |
| } |
| |
| sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) & |
| AR_INTR_SYNC_DEFAULT; |
| |
| *masked = 0; |
| |
| if (!isr && !sync_cause) |
| return false; |
| } else { |
| *masked = 0; |
| isr = REG_READ(ah, AR_ISR); |
| } |
| |
| if (isr) { |
| if (isr & AR_ISR_BCNMISC) { |
| u32 isr2; |
| isr2 = REG_READ(ah, AR_ISR_S2); |
| if (isr2 & AR_ISR_S2_TIM) |
| mask2 |= ATH9K_INT_TIM; |
| if (isr2 & AR_ISR_S2_DTIM) |
| mask2 |= ATH9K_INT_DTIM; |
| if (isr2 & AR_ISR_S2_DTIMSYNC) |
| mask2 |= ATH9K_INT_DTIMSYNC; |
| if (isr2 & (AR_ISR_S2_CABEND)) |
| mask2 |= ATH9K_INT_CABEND; |
| if (isr2 & AR_ISR_S2_GTT) |
| mask2 |= ATH9K_INT_GTT; |
| if (isr2 & AR_ISR_S2_CST) |
| mask2 |= ATH9K_INT_CST; |
| if (isr2 & AR_ISR_S2_TSFOOR) |
| mask2 |= ATH9K_INT_TSFOOR; |
| } |
| |
| isr = REG_READ(ah, AR_ISR_RAC); |
| if (isr == 0xffffffff) { |
| *masked = 0; |
| return false; |
| } |
| |
| *masked = isr & ATH9K_INT_COMMON; |
| |
| if (ah->config.rx_intr_mitigation) { |
| if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) |
| *masked |= ATH9K_INT_RX; |
| } |
| |
| if (isr & (AR_ISR_RXOK | AR_ISR_RXERR)) |
| *masked |= ATH9K_INT_RX; |
| if (isr & |
| (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | |
| AR_ISR_TXEOL)) { |
| u32 s0_s, s1_s; |
| |
| *masked |= ATH9K_INT_TX; |
| |
| s0_s = REG_READ(ah, AR_ISR_S0_S); |
| ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK); |
| ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC); |
| |
| s1_s = REG_READ(ah, AR_ISR_S1_S); |
| ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR); |
| ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL); |
| } |
| |
| if (isr & AR_ISR_RXORN) { |
| ath_print(common, ATH_DBG_INTERRUPT, |
| "receive FIFO overrun interrupt\n"); |
| } |
| |
| if (!AR_SREV_9100(ah)) { |
| if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { |
| u32 isr5 = REG_READ(ah, AR_ISR_S5_S); |
| if (isr5 & AR_ISR_S5_TIM_TIMER) |
| *masked |= ATH9K_INT_TIM_TIMER; |
| } |
| } |
| |
| *masked |= mask2; |
| } |
| |
| if (AR_SREV_9100(ah)) |
| return true; |
| |
| if (isr & AR_ISR_GENTMR) { |
| u32 s5_s; |
| |
| s5_s = REG_READ(ah, AR_ISR_S5_S); |
| if (isr & AR_ISR_GENTMR) { |
| ah->intr_gen_timer_trigger = |
| MS(s5_s, AR_ISR_S5_GENTIMER_TRIG); |
| |
| ah->intr_gen_timer_thresh = |
| MS(s5_s, AR_ISR_S5_GENTIMER_THRESH); |
| |
| if (ah->intr_gen_timer_trigger) |
| *masked |= ATH9K_INT_GENTIMER; |
| |
| } |
| } |
| |
| if (sync_cause) { |
| fatal_int = |
| (sync_cause & |
| (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) |
| ? true : false; |
| |
| if (fatal_int) { |
| if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) { |
| ath_print(common, ATH_DBG_ANY, |
| "received PCI FATAL interrupt\n"); |
| } |
| if (sync_cause & AR_INTR_SYNC_HOST1_PERR) { |
| ath_print(common, ATH_DBG_ANY, |
| "received PCI PERR interrupt\n"); |
| } |
| *masked |= ATH9K_INT_FATAL; |
| } |
| if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { |
| ath_print(common, ATH_DBG_INTERRUPT, |
| "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n"); |
| REG_WRITE(ah, AR_RC, AR_RC_HOSTIF); |
| REG_WRITE(ah, AR_RC, 0); |
| *masked |= ATH9K_INT_FATAL; |
| } |
| if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) { |
| ath_print(common, ATH_DBG_INTERRUPT, |
| "AR_INTR_SYNC_LOCAL_TIMEOUT\n"); |
| } |
| |
| REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause); |
| (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR); |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_getisr); |
| |
| enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints) |
| { |
| u32 omask = ah->mask_reg; |
| u32 mask, mask2; |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints); |
| |
| if (omask & ATH9K_INT_GLOBAL) { |
| ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n"); |
| REG_WRITE(ah, AR_IER, AR_IER_DISABLE); |
| (void) REG_READ(ah, AR_IER); |
| if (!AR_SREV_9100(ah)) { |
| REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0); |
| (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE); |
| |
| REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); |
| (void) REG_READ(ah, AR_INTR_SYNC_ENABLE); |
| } |
| } |
| |
| mask = ints & ATH9K_INT_COMMON; |
| mask2 = 0; |
| |
| if (ints & ATH9K_INT_TX) { |
| if (ah->txok_interrupt_mask) |
| mask |= AR_IMR_TXOK; |
| if (ah->txdesc_interrupt_mask) |
| mask |= AR_IMR_TXDESC; |
| if (ah->txerr_interrupt_mask) |
| mask |= AR_IMR_TXERR; |
| if (ah->txeol_interrupt_mask) |
| mask |= AR_IMR_TXEOL; |
| } |
| if (ints & ATH9K_INT_RX) { |
| mask |= AR_IMR_RXERR; |
| if (ah->config.rx_intr_mitigation) |
| mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; |
| else |
| mask |= AR_IMR_RXOK | AR_IMR_RXDESC; |
| if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) |
| mask |= AR_IMR_GENTMR; |
| } |
| |
| if (ints & (ATH9K_INT_BMISC)) { |
| mask |= AR_IMR_BCNMISC; |
| if (ints & ATH9K_INT_TIM) |
| mask2 |= AR_IMR_S2_TIM; |
| if (ints & ATH9K_INT_DTIM) |
| mask2 |= AR_IMR_S2_DTIM; |
| if (ints & ATH9K_INT_DTIMSYNC) |
| mask2 |= AR_IMR_S2_DTIMSYNC; |
| if (ints & ATH9K_INT_CABEND) |
| mask2 |= AR_IMR_S2_CABEND; |
| if (ints & ATH9K_INT_TSFOOR) |
| mask2 |= AR_IMR_S2_TSFOOR; |
| } |
| |
| if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) { |
| mask |= AR_IMR_BCNMISC; |
| if (ints & ATH9K_INT_GTT) |
| mask2 |= AR_IMR_S2_GTT; |
| if (ints & ATH9K_INT_CST) |
| mask2 |= AR_IMR_S2_CST; |
| } |
| |
| ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask); |
| REG_WRITE(ah, AR_IMR, mask); |
| mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM | |
| AR_IMR_S2_DTIM | |
| AR_IMR_S2_DTIMSYNC | |
| AR_IMR_S2_CABEND | |
| AR_IMR_S2_CABTO | |
| AR_IMR_S2_TSFOOR | |
| AR_IMR_S2_GTT | AR_IMR_S2_CST); |
| REG_WRITE(ah, AR_IMR_S2, mask | mask2); |
| ah->mask_reg = ints; |
| |
| if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { |
| if (ints & ATH9K_INT_TIM_TIMER) |
| REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); |
| else |
| REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); |
| } |
| |
| if (ints & ATH9K_INT_GLOBAL) { |
| ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n"); |
| REG_WRITE(ah, AR_IER, AR_IER_ENABLE); |
| if (!AR_SREV_9100(ah)) { |
| REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, |
| AR_INTR_MAC_IRQ); |
| REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ); |
| |
| |
| REG_WRITE(ah, AR_INTR_SYNC_ENABLE, |
| AR_INTR_SYNC_DEFAULT); |
| REG_WRITE(ah, AR_INTR_SYNC_MASK, |
| AR_INTR_SYNC_DEFAULT); |
| } |
| ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n", |
| REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER)); |
| } |
| |
| return omask; |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_interrupts); |
| |
| /*******************/ |
| /* Beacon Handling */ |
| /*******************/ |
| |
| void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) |
| { |
| int flags = 0; |
| |
| ah->beacon_interval = beacon_period; |
| |
| switch (ah->opmode) { |
| case NL80211_IFTYPE_STATION: |
| case NL80211_IFTYPE_MONITOR: |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); |
| REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); |
| REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); |
| flags |= AR_TBTT_TIMER_EN; |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| case NL80211_IFTYPE_MESH_POINT: |
| REG_SET_BIT(ah, AR_TXCFG, |
| AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); |
| REG_WRITE(ah, AR_NEXT_NDP_TIMER, |
| TU_TO_USEC(next_beacon + |
| (ah->atim_window ? ah-> |
| atim_window : 1))); |
| flags |= AR_NDP_TIMER_EN; |
| case NL80211_IFTYPE_AP: |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); |
| REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, |
| TU_TO_USEC(next_beacon - |
| ah->config. |
| dma_beacon_response_time)); |
| REG_WRITE(ah, AR_NEXT_SWBA, |
| TU_TO_USEC(next_beacon - |
| ah->config. |
| sw_beacon_response_time)); |
| flags |= |
| AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; |
| break; |
| default: |
| ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON, |
| "%s: unsupported opmode: %d\n", |
| __func__, ah->opmode); |
| return; |
| break; |
| } |
| |
| REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); |
| REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); |
| REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); |
| REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); |
| |
| beacon_period &= ~ATH9K_BEACON_ENA; |
| if (beacon_period & ATH9K_BEACON_RESET_TSF) { |
| ath9k_hw_reset_tsf(ah); |
| } |
| |
| REG_SET_BIT(ah, AR_TIMER_MODE, flags); |
| } |
| EXPORT_SYMBOL(ath9k_hw_beaconinit); |
| |
| void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, |
| const struct ath9k_beacon_state *bs) |
| { |
| u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); |
| |
| REG_WRITE(ah, AR_BEACON_PERIOD, |
| TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); |
| REG_WRITE(ah, AR_DMA_BEACON_PERIOD, |
| TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); |
| |
| REG_RMW_FIELD(ah, AR_RSSI_THR, |
| AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); |
| |
| beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; |
| |
| if (bs->bs_sleepduration > beaconintval) |
| beaconintval = bs->bs_sleepduration; |
| |
| dtimperiod = bs->bs_dtimperiod; |
| if (bs->bs_sleepduration > dtimperiod) |
| dtimperiod = bs->bs_sleepduration; |
| |
| if (beaconintval == dtimperiod) |
| nextTbtt = bs->bs_nextdtim; |
| else |
| nextTbtt = bs->bs_nexttbtt; |
| |
| ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim); |
| ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt); |
| ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval); |
| ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod); |
| |
| REG_WRITE(ah, AR_NEXT_DTIM, |
| TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); |
| REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); |
| |
| REG_WRITE(ah, AR_SLEEP1, |
| SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) |
| | AR_SLEEP1_ASSUME_DTIM); |
| |
| if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) |
| beacontimeout = (BEACON_TIMEOUT_VAL << 3); |
| else |
| beacontimeout = MIN_BEACON_TIMEOUT_VAL; |
| |
| REG_WRITE(ah, AR_SLEEP2, |
| SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); |
| |
| REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); |
| REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); |
| |
| REG_SET_BIT(ah, AR_TIMER_MODE, |
| AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | |
| AR_DTIM_TIMER_EN); |
| |
| /* TSF Out of Range Threshold */ |
| REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); |
| |
| /*******************/ |
| /* HW Capabilities */ |
| /*******************/ |
| |
| int ath9k_hw_fill_cap_info(struct ath_hw *ah) |
| { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw; |
| |
| u16 capField = 0, eeval; |
| |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); |
| regulatory->current_rd = eeval; |
| |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1); |
| if (AR_SREV_9285_10_OR_LATER(ah)) |
| eeval |= AR9285_RDEXT_DEFAULT; |
| regulatory->current_rd_ext = eeval; |
| |
| capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP); |
| |
| if (ah->opmode != NL80211_IFTYPE_AP && |
| ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { |
| if (regulatory->current_rd == 0x64 || |
| regulatory->current_rd == 0x65) |
| regulatory->current_rd += 5; |
| else if (regulatory->current_rd == 0x41) |
| regulatory->current_rd = 0x43; |
| ath_print(common, ATH_DBG_REGULATORY, |
| "regdomain mapped to 0x%x\n", regulatory->current_rd); |
| } |
| |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); |
| if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { |
| ath_print(common, ATH_DBG_FATAL, |
| "no band has been marked as supported in EEPROM.\n"); |
| return -EINVAL; |
| } |
| |
| bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX); |
| |
| if (eeval & AR5416_OPFLAGS_11A) { |
| set_bit(ATH9K_MODE_11A, pCap->wireless_modes); |
| if (ah->config.ht_enable) { |
| if (!(eeval & AR5416_OPFLAGS_N_5G_HT20)) |
| set_bit(ATH9K_MODE_11NA_HT20, |
| pCap->wireless_modes); |
| if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) { |
| set_bit(ATH9K_MODE_11NA_HT40PLUS, |
| pCap->wireless_modes); |
| set_bit(ATH9K_MODE_11NA_HT40MINUS, |
| pCap->wireless_modes); |
| } |
| } |
| } |
| |
| if (eeval & AR5416_OPFLAGS_11G) { |
| set_bit(ATH9K_MODE_11G, pCap->wireless_modes); |
| if (ah->config.ht_enable) { |
| if (!(eeval & AR5416_OPFLAGS_N_2G_HT20)) |
| set_bit(ATH9K_MODE_11NG_HT20, |
| pCap->wireless_modes); |
| if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) { |
| set_bit(ATH9K_MODE_11NG_HT40PLUS, |
| pCap->wireless_modes); |
| set_bit(ATH9K_MODE_11NG_HT40MINUS, |
| pCap->wireless_modes); |
| } |
| } |
| } |
| |
| pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); |
| /* |
| * For AR9271 we will temporarilly uses the rx chainmax as read from |
| * the EEPROM. |
| */ |
| if ((ah->hw_version.devid == AR5416_DEVID_PCI) && |
| !(eeval & AR5416_OPFLAGS_11A) && |
| !(AR_SREV_9271(ah))) |
| /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ |
| pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; |
| else |
| /* Use rx_chainmask from EEPROM. */ |
| pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); |
| |
| if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0))) |
| ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; |
| |
| pCap->low_2ghz_chan = 2312; |
| pCap->high_2ghz_chan = 2732; |
| |
| pCap->low_5ghz_chan = 4920; |
| pCap->high_5ghz_chan = 6100; |
| |
| pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP; |
| pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP; |
| pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM; |
| |
| pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP; |
| pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP; |
| pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM; |
| |
| if (ah->config.ht_enable) |
| pCap->hw_caps |= ATH9K_HW_CAP_HT; |
| else |
| pCap->hw_caps &= ~ATH9K_HW_CAP_HT; |
| |
| pCap->hw_caps |= ATH9K_HW_CAP_GTT; |
| pCap->hw_caps |= ATH9K_HW_CAP_VEOL; |
| pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK; |
| pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH; |
| |
| if (capField & AR_EEPROM_EEPCAP_MAXQCU) |
| pCap->total_queues = |
| MS(capField, AR_EEPROM_EEPCAP_MAXQCU); |
| else |
| pCap->total_queues = ATH9K_NUM_TX_QUEUES; |
| |
| if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) |
| pCap->keycache_size = |
| 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); |
| else |
| pCap->keycache_size = AR_KEYTABLE_SIZE; |
| |
| pCap->hw_caps |= ATH9K_HW_CAP_FASTCC; |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1; |
| else |
| pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; |
| |
| if (AR_SREV_9285_10_OR_LATER(ah)) |
| pCap->num_gpio_pins = AR9285_NUM_GPIO; |
| else if (AR_SREV_9280_10_OR_LATER(ah)) |
| pCap->num_gpio_pins = AR928X_NUM_GPIO; |
| else |
| pCap->num_gpio_pins = AR_NUM_GPIO; |
| |
| if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { |
| pCap->hw_caps |= ATH9K_HW_CAP_CST; |
| pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; |
| } else { |
| pCap->rts_aggr_limit = (8 * 1024); |
| } |
| |
| pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; |
| |
| #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) |
| ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); |
| if (ah->rfsilent & EEP_RFSILENT_ENABLED) { |
| ah->rfkill_gpio = |
| MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); |
| ah->rfkill_polarity = |
| MS(ah->rfsilent, EEP_RFSILENT_POLARITY); |
| |
| pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; |
| } |
| #endif |
| |
| pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; |
| |
| if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) |
| pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; |
| else |
| pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; |
| |
| if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) { |
| pCap->reg_cap = |
| AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | |
| AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | |
| AR_EEPROM_EEREGCAP_EN_KK_U2 | |
| AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; |
| } else { |
| pCap->reg_cap = |
| AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | |
| AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; |
| } |
| |
| /* Advertise midband for AR5416 with FCC midband set in eeprom */ |
| if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) && |
| AR_SREV_5416(ah)) |
| pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; |
| |
| pCap->num_antcfg_5ghz = |
| ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ); |
| pCap->num_antcfg_2ghz = |
| ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ); |
| |
| if (AR_SREV_9280_10_OR_LATER(ah) && |
| ath9k_hw_btcoex_supported(ah)) { |
| btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO; |
| btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO; |
| |
| if (AR_SREV_9285(ah)) { |
| btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE; |
| btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO; |
| } else { |
| btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE; |
| } |
| } else { |
| btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE; |
| } |
| |
| return 0; |
| } |
| |
| bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type, |
| u32 capability, u32 *result) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| switch (type) { |
| case ATH9K_CAP_CIPHER: |
| switch (capability) { |
| case ATH9K_CIPHER_AES_CCM: |
| case ATH9K_CIPHER_AES_OCB: |
| case ATH9K_CIPHER_TKIP: |
| case ATH9K_CIPHER_WEP: |
| case ATH9K_CIPHER_MIC: |
| case ATH9K_CIPHER_CLR: |
| return true; |
| default: |
| return false; |
| } |
| case ATH9K_CAP_TKIP_MIC: |
| switch (capability) { |
| case 0: |
| return true; |
| case 1: |
| return (ah->sta_id1_defaults & |
| AR_STA_ID1_CRPT_MIC_ENABLE) ? true : |
| false; |
| } |
| case ATH9K_CAP_TKIP_SPLIT: |
| return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ? |
| false : true; |
| case ATH9K_CAP_DIVERSITY: |
| return (REG_READ(ah, AR_PHY_CCK_DETECT) & |
| AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ? |
| true : false; |
| case ATH9K_CAP_MCAST_KEYSRCH: |
| switch (capability) { |
| case 0: |
| return true; |
| case 1: |
| if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) { |
| return false; |
| } else { |
| return (ah->sta_id1_defaults & |
| AR_STA_ID1_MCAST_KSRCH) ? true : |
| false; |
| } |
| } |
| return false; |
| case ATH9K_CAP_TXPOW: |
| switch (capability) { |
| case 0: |
| return 0; |
| case 1: |
| *result = regulatory->power_limit; |
| return 0; |
| case 2: |
| *result = regulatory->max_power_level; |
| return 0; |
| case 3: |
| *result = regulatory->tp_scale; |
| return 0; |
| } |
| return false; |
| case ATH9K_CAP_DS: |
| return (AR_SREV_9280_20_OR_LATER(ah) && |
| (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1)) |
| ? false : true; |
| default: |
| return false; |
| } |
| } |
| EXPORT_SYMBOL(ath9k_hw_getcapability); |
| |
| bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type, |
| u32 capability, u32 setting, int *status) |
| { |
| u32 v; |
| |
| switch (type) { |
| case ATH9K_CAP_TKIP_MIC: |
| if (setting) |
| ah->sta_id1_defaults |= |
| AR_STA_ID1_CRPT_MIC_ENABLE; |
| else |
| ah->sta_id1_defaults &= |
| ~AR_STA_ID1_CRPT_MIC_ENABLE; |
| return true; |
| case ATH9K_CAP_DIVERSITY: |
| v = REG_READ(ah, AR_PHY_CCK_DETECT); |
| if (setting) |
| v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; |
| else |
| v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; |
| REG_WRITE(ah, AR_PHY_CCK_DETECT, v); |
| return true; |
| case ATH9K_CAP_MCAST_KEYSRCH: |
| if (setting) |
| ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH; |
| else |
| ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH; |
| return true; |
| default: |
| return false; |
| } |
| } |
| EXPORT_SYMBOL(ath9k_hw_setcapability); |
| |
| /****************************/ |
| /* GPIO / RFKILL / Antennae */ |
| /****************************/ |
| |
| static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, |
| u32 gpio, u32 type) |
| { |
| int addr; |
| u32 gpio_shift, tmp; |
| |
| if (gpio > 11) |
| addr = AR_GPIO_OUTPUT_MUX3; |
| else if (gpio > 5) |
| addr = AR_GPIO_OUTPUT_MUX2; |
| else |
| addr = AR_GPIO_OUTPUT_MUX1; |
| |
| gpio_shift = (gpio % 6) * 5; |
| |
| if (AR_SREV_9280_20_OR_LATER(ah) |
| || (addr != AR_GPIO_OUTPUT_MUX1)) { |
| REG_RMW(ah, addr, (type << gpio_shift), |
| (0x1f << gpio_shift)); |
| } else { |
| tmp = REG_READ(ah, addr); |
| tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); |
| tmp &= ~(0x1f << gpio_shift); |
| tmp |= (type << gpio_shift); |
| REG_WRITE(ah, addr, tmp); |
| } |
| } |
| |
| void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) |
| { |
| u32 gpio_shift; |
| |
| BUG_ON(gpio >= ah->caps.num_gpio_pins); |
| |
| gpio_shift = gpio << 1; |
| |
| REG_RMW(ah, |
| AR_GPIO_OE_OUT, |
| (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), |
| (AR_GPIO_OE_OUT_DRV << gpio_shift)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); |
| |
| u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) |
| { |
| #define MS_REG_READ(x, y) \ |
| (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) |
| |
| if (gpio >= ah->caps.num_gpio_pins) |
| return 0xffffffff; |
| |
| if (AR_SREV_9287_10_OR_LATER(ah)) |
| return MS_REG_READ(AR9287, gpio) != 0; |
| else if (AR_SREV_9285_10_OR_LATER(ah)) |
| return MS_REG_READ(AR9285, gpio) != 0; |
| else if (AR_SREV_9280_10_OR_LATER(ah)) |
| return MS_REG_READ(AR928X, gpio) != 0; |
| else |
| return MS_REG_READ(AR, gpio) != 0; |
| } |
| EXPORT_SYMBOL(ath9k_hw_gpio_get); |
| |
| void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, |
| u32 ah_signal_type) |
| { |
| u32 gpio_shift; |
| |
| ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); |
| |
| gpio_shift = 2 * gpio; |
| |
| REG_RMW(ah, |
| AR_GPIO_OE_OUT, |
| (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), |
| (AR_GPIO_OE_OUT_DRV << gpio_shift)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_cfg_output); |
| |
| void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) |
| { |
| REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), |
| AR_GPIO_BIT(gpio)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_gpio); |
| |
| u32 ath9k_hw_getdefantenna(struct ath_hw *ah) |
| { |
| return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; |
| } |
| EXPORT_SYMBOL(ath9k_hw_getdefantenna); |
| |
| void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) |
| { |
| REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setantenna); |
| |
| /*********************/ |
| /* General Operation */ |
| /*********************/ |
| |
| u32 ath9k_hw_getrxfilter(struct ath_hw *ah) |
| { |
| u32 bits = REG_READ(ah, AR_RX_FILTER); |
| u32 phybits = REG_READ(ah, AR_PHY_ERR); |
| |
| if (phybits & AR_PHY_ERR_RADAR) |
| bits |= ATH9K_RX_FILTER_PHYRADAR; |
| if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) |
| bits |= ATH9K_RX_FILTER_PHYERR; |
| |
| return bits; |
| } |
| EXPORT_SYMBOL(ath9k_hw_getrxfilter); |
| |
| void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) |
| { |
| u32 phybits; |
| |
| REG_WRITE(ah, AR_RX_FILTER, bits); |
| |
| phybits = 0; |
| if (bits & ATH9K_RX_FILTER_PHYRADAR) |
| phybits |= AR_PHY_ERR_RADAR; |
| if (bits & ATH9K_RX_FILTER_PHYERR) |
| phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; |
| REG_WRITE(ah, AR_PHY_ERR, phybits); |
| |
| if (phybits) |
| REG_WRITE(ah, AR_RXCFG, |
| REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); |
| else |
| REG_WRITE(ah, AR_RXCFG, |
| REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setrxfilter); |
| |
| bool ath9k_hw_phy_disable(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) |
| return false; |
| |
| ath9k_hw_init_pll(ah, NULL); |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_phy_disable); |
| |
| bool ath9k_hw_disable(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return false; |
| |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) |
| return false; |
| |
| ath9k_hw_init_pll(ah, NULL); |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_disable); |
| |
| void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ath9k_channel *chan = ah->curchan; |
| struct ieee80211_channel *channel = chan->chan; |
| |
| regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER); |
| |
| ah->eep_ops->set_txpower(ah, chan, |
| ath9k_regd_get_ctl(regulatory, chan), |
| channel->max_antenna_gain * 2, |
| channel->max_power * 2, |
| min((u32) MAX_RATE_POWER, |
| (u32) regulatory->power_limit)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); |
| |
| void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac) |
| { |
| memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setmac); |
| |
| void ath9k_hw_setopmode(struct ath_hw *ah) |
| { |
| ath9k_hw_set_operating_mode(ah, ah->opmode); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setopmode); |
| |
| void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) |
| { |
| REG_WRITE(ah, AR_MCAST_FIL0, filter0); |
| REG_WRITE(ah, AR_MCAST_FIL1, filter1); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setmcastfilter); |
| |
| void ath9k_hw_write_associd(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); |
| REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | |
| ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_write_associd); |
| |
| u64 ath9k_hw_gettsf64(struct ath_hw *ah) |
| { |
| u64 tsf; |
| |
| tsf = REG_READ(ah, AR_TSF_U32); |
| tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32); |
| |
| return tsf; |
| } |
| EXPORT_SYMBOL(ath9k_hw_gettsf64); |
| |
| void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) |
| { |
| REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); |
| REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); |
| } |
| EXPORT_SYMBOL(ath9k_hw_settsf64); |
| |
| void ath9k_hw_reset_tsf(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, |
| AH_TSF_WRITE_TIMEOUT)) |
| ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); |
| |
| REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); |
| } |
| EXPORT_SYMBOL(ath9k_hw_reset_tsf); |
| |
| void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) |
| { |
| if (setting) |
| ah->misc_mode |= AR_PCU_TX_ADD_TSF; |
| else |
| ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); |
| |
| /* |
| * Extend 15-bit time stamp from rx descriptor to |
| * a full 64-bit TSF using the current h/w TSF. |
| */ |
| u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp) |
| { |
| u64 tsf; |
| |
| tsf = ath9k_hw_gettsf64(ah); |
| if ((tsf & 0x7fff) < rstamp) |
| tsf -= 0x8000; |
| return (tsf & ~0x7fff) | rstamp; |
| } |
| EXPORT_SYMBOL(ath9k_hw_extend_tsf); |
| |
| bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us) |
| { |
| if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, |
| "bad slot time %u\n", us); |
| ah->slottime = (u32) -1; |
| return false; |
| } else { |
| REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us)); |
| ah->slottime = us; |
| return true; |
| } |
| } |
| EXPORT_SYMBOL(ath9k_hw_setslottime); |
| |
| void ath9k_hw_set11nmac2040(struct ath_hw *ah) |
| { |
| struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; |
| u32 macmode; |
| |
| if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca) |
| macmode = AR_2040_JOINED_RX_CLEAR; |
| else |
| macmode = 0; |
| |
| REG_WRITE(ah, AR_2040_MODE, macmode); |
| } |
| |
| /* HW Generic timers configuration */ |
| |
| static const struct ath_gen_timer_configuration gen_tmr_configuration[] = |
| { |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, |
| {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, |
| AR_NDP2_TIMER_MODE, 0x0002}, |
| {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, |
| AR_NDP2_TIMER_MODE, 0x0004}, |
| {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, |
| AR_NDP2_TIMER_MODE, 0x0008}, |
| {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, |
| AR_NDP2_TIMER_MODE, 0x0010}, |
| {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, |
| AR_NDP2_TIMER_MODE, 0x0020}, |
| {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, |
| AR_NDP2_TIMER_MODE, 0x0040}, |
| {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, |
| AR_NDP2_TIMER_MODE, 0x0080} |
| }; |
| |
| /* HW generic timer primitives */ |
| |
| /* compute and clear index of rightmost 1 */ |
| static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) |
| { |
| u32 b; |
| |
| b = *mask; |
| b &= (0-b); |
| *mask &= ~b; |
| b *= debruijn32; |
| b >>= 27; |
| |
| return timer_table->gen_timer_index[b]; |
| } |
| |
| u32 ath9k_hw_gettsf32(struct ath_hw *ah) |
| { |
| return REG_READ(ah, AR_TSF_L32); |
| } |
| EXPORT_SYMBOL(ath9k_hw_gettsf32); |
| |
| struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, |
| void (*trigger)(void *), |
| void (*overflow)(void *), |
| void *arg, |
| u8 timer_index) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| struct ath_gen_timer *timer; |
| |
| timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); |
| |
| if (timer == NULL) { |
| ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, |
| "Failed to allocate memory" |
| "for hw timer[%d]\n", timer_index); |
| return NULL; |
| } |
| |
| /* allocate a hardware generic timer slot */ |
| timer_table->timers[timer_index] = timer; |
| timer->index = timer_index; |
| timer->trigger = trigger; |
| timer->overflow = overflow; |
| timer->arg = arg; |
| |
| return timer; |
| } |
| EXPORT_SYMBOL(ath_gen_timer_alloc); |
| |
| void ath9k_hw_gen_timer_start(struct ath_hw *ah, |
| struct ath_gen_timer *timer, |
| u32 timer_next, |
| u32 timer_period) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| u32 tsf; |
| |
| BUG_ON(!timer_period); |
| |
| set_bit(timer->index, &timer_table->timer_mask.timer_bits); |
| |
| tsf = ath9k_hw_gettsf32(ah); |
| |
| ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER, |
| "curent tsf %x period %x" |
| "timer_next %x\n", tsf, timer_period, timer_next); |
| |
| /* |
| * Pull timer_next forward if the current TSF already passed it |
| * because of software latency |
| */ |
| if (timer_next < tsf) |
| timer_next = tsf + timer_period; |
| |
| /* |
| * Program generic timer registers |
| */ |
| REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, |
| timer_next); |
| REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, |
| timer_period); |
| REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, |
| gen_tmr_configuration[timer->index].mode_mask); |
| |
| /* Enable both trigger and thresh interrupt masks */ |
| REG_SET_BIT(ah, AR_IMR_S5, |
| (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | |
| SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); |
| } |
| EXPORT_SYMBOL(ath9k_hw_gen_timer_start); |
| |
| void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| |
| if ((timer->index < AR_FIRST_NDP_TIMER) || |
| (timer->index >= ATH_MAX_GEN_TIMER)) { |
| return; |
| } |
| |
| /* Clear generic timer enable bits. */ |
| REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, |
| gen_tmr_configuration[timer->index].mode_mask); |
| |
| /* Disable both trigger and thresh interrupt masks */ |
| REG_CLR_BIT(ah, AR_IMR_S5, |
| (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | |
| SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); |
| |
| clear_bit(timer->index, &timer_table->timer_mask.timer_bits); |
| } |
| EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); |
| |
| void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| |
| /* free the hardware generic timer slot */ |
| timer_table->timers[timer->index] = NULL; |
| kfree(timer); |
| } |
| EXPORT_SYMBOL(ath_gen_timer_free); |
| |
| /* |
| * Generic Timer Interrupts handling |
| */ |
| void ath_gen_timer_isr(struct ath_hw *ah) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| struct ath_gen_timer *timer; |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 trigger_mask, thresh_mask, index; |
| |
| /* get hardware generic timer interrupt status */ |
| trigger_mask = ah->intr_gen_timer_trigger; |
| thresh_mask = ah->intr_gen_timer_thresh; |
| trigger_mask &= timer_table->timer_mask.val; |
| thresh_mask &= timer_table->timer_mask.val; |
| |
| trigger_mask &= ~thresh_mask; |
| |
| while (thresh_mask) { |
| index = rightmost_index(timer_table, &thresh_mask); |
| timer = timer_table->timers[index]; |
| BUG_ON(!timer); |
| ath_print(common, ATH_DBG_HWTIMER, |
| "TSF overflow for Gen timer %d\n", index); |
| timer->overflow(timer->arg); |
| } |
| |
| while (trigger_mask) { |
| index = rightmost_index(timer_table, &trigger_mask); |
| timer = timer_table->timers[index]; |
| BUG_ON(!timer); |
| ath_print(common, ATH_DBG_HWTIMER, |
| "Gen timer[%d] trigger\n", index); |
| timer->trigger(timer->arg); |
| } |
| } |
| EXPORT_SYMBOL(ath_gen_timer_isr); |
| |
| static struct { |
| u32 version; |
| const char * name; |
| } ath_mac_bb_names[] = { |
| /* Devices with external radios */ |
| { AR_SREV_VERSION_5416_PCI, "5416" }, |
| { AR_SREV_VERSION_5416_PCIE, "5418" }, |
| { AR_SREV_VERSION_9100, "9100" }, |
| { AR_SREV_VERSION_9160, "9160" }, |
| /* Single-chip solutions */ |
| { AR_SREV_VERSION_9280, "9280" }, |
| { AR_SREV_VERSION_9285, "9285" }, |
| { AR_SREV_VERSION_9287, "9287" }, |
| { AR_SREV_VERSION_9271, "9271" }, |
| }; |
| |
| /* For devices with external radios */ |
| static struct { |
| u16 version; |
| const char * name; |
| } ath_rf_names[] = { |
| { 0, "5133" }, |
| { AR_RAD5133_SREV_MAJOR, "5133" }, |
| { AR_RAD5122_SREV_MAJOR, "5122" }, |
| { AR_RAD2133_SREV_MAJOR, "2133" }, |
| { AR_RAD2122_SREV_MAJOR, "2122" } |
| }; |
| |
| /* |
| * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. |
| */ |
| static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) |
| { |
| int i; |
| |
| for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { |
| if (ath_mac_bb_names[i].version == mac_bb_version) { |
| return ath_mac_bb_names[i].name; |
| } |
| } |
| |
| return "????"; |
| } |
| |
| /* |
| * Return the RF name. "????" is returned if the RF is unknown. |
| * Used for devices with external radios. |
| */ |
| static const char *ath9k_hw_rf_name(u16 rf_version) |
| { |
| int i; |
| |
| for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { |
| if (ath_rf_names[i].version == rf_version) { |
| return ath_rf_names[i].name; |
| } |
| } |
| |
| return "????"; |
| } |
| |
| void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) |
| { |
| int used; |
| |
| /* chipsets >= AR9280 are single-chip */ |
| if (AR_SREV_9280_10_OR_LATER(ah)) { |
| used = snprintf(hw_name, len, |
| "Atheros AR%s Rev:%x", |
| ath9k_hw_mac_bb_name(ah->hw_version.macVersion), |
| ah->hw_version.macRev); |
| } |
| else { |
| used = snprintf(hw_name, len, |
| "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", |
| ath9k_hw_mac_bb_name(ah->hw_version.macVersion), |
| ah->hw_version.macRev, |
| ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & |
| AR_RADIO_SREV_MAJOR)), |
| ah->hw_version.phyRev); |
| } |
| |
| hw_name[used] = '\0'; |
| } |
| EXPORT_SYMBOL(ath9k_hw_name); |