| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2000,2002-2005 Silicon Graphics, Inc. All rights reserved. |
| * |
| * Routines for PCI DMA mapping. See Documentation/DMA-API.txt for |
| * a description of how these routines should be used. |
| */ |
| |
| #include <linux/module.h> |
| #include <asm/dma.h> |
| #include <asm/sn/pcibr_provider.h> |
| #include <asm/sn/pcibus_provider_defs.h> |
| #include <asm/sn/pcidev.h> |
| #include <asm/sn/sn_sal.h> |
| |
| #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset) |
| #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG)) |
| |
| /** |
| * sn_dma_supported - test a DMA mask |
| * @dev: device to test |
| * @mask: DMA mask to test |
| * |
| * Return whether the given PCI device DMA address mask can be supported |
| * properly. For example, if your device can only drive the low 24-bits |
| * during PCI bus mastering, then you would pass 0x00ffffff as the mask to |
| * this function. Of course, SN only supports devices that have 32 or more |
| * address bits when using the PMU. |
| */ |
| int sn_dma_supported(struct device *dev, u64 mask) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| if (mask < 0x7fffffff) |
| return 0; |
| return 1; |
| } |
| EXPORT_SYMBOL(sn_dma_supported); |
| |
| /** |
| * sn_dma_set_mask - set the DMA mask |
| * @dev: device to set |
| * @dma_mask: new mask |
| * |
| * Set @dev's DMA mask if the hw supports it. |
| */ |
| int sn_dma_set_mask(struct device *dev, u64 dma_mask) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| if (!sn_dma_supported(dev, dma_mask)) |
| return 0; |
| |
| *dev->dma_mask = dma_mask; |
| return 1; |
| } |
| EXPORT_SYMBOL(sn_dma_set_mask); |
| |
| /** |
| * sn_dma_alloc_coherent - allocate memory for coherent DMA |
| * @dev: device to allocate for |
| * @size: size of the region |
| * @dma_handle: DMA (bus) address |
| * @flags: memory allocation flags |
| * |
| * dma_alloc_coherent() returns a pointer to a memory region suitable for |
| * coherent DMA traffic to/from a PCI device. On SN platforms, this means |
| * that @dma_handle will have the %PCIIO_DMA_CMD flag set. |
| * |
| * This interface is usually used for "command" streams (e.g. the command |
| * queue for a SCSI controller). See Documentation/DMA-API.txt for |
| * more information. |
| */ |
| void *sn_dma_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t * dma_handle, int flags) |
| { |
| void *cpuaddr; |
| unsigned long phys_addr; |
| int node; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| /* |
| * Allocate the memory. |
| */ |
| node = pcibus_to_node(pdev->bus); |
| if (likely(node >=0)) { |
| struct page *p = alloc_pages_node(node, GFP_ATOMIC, get_order(size)); |
| |
| if (likely(p)) |
| cpuaddr = page_address(p); |
| else |
| return NULL; |
| } else |
| cpuaddr = (void *)__get_free_pages(GFP_ATOMIC, get_order(size)); |
| |
| if (unlikely(!cpuaddr)) |
| return NULL; |
| |
| memset(cpuaddr, 0x0, size); |
| |
| /* physical addr. of the memory we just got */ |
| phys_addr = __pa(cpuaddr); |
| |
| /* |
| * 64 bit address translations should never fail. |
| * 32 bit translations can fail if there are insufficient mapping |
| * resources. |
| */ |
| |
| *dma_handle = provider->dma_map_consistent(pdev, phys_addr, size); |
| if (!*dma_handle) { |
| printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); |
| free_pages((unsigned long)cpuaddr, get_order(size)); |
| return NULL; |
| } |
| |
| return cpuaddr; |
| } |
| EXPORT_SYMBOL(sn_dma_alloc_coherent); |
| |
| /** |
| * sn_pci_free_coherent - free memory associated with coherent DMAable region |
| * @dev: device to free for |
| * @size: size to free |
| * @cpu_addr: kernel virtual address to free |
| * @dma_handle: DMA address associated with this region |
| * |
| * Frees the memory allocated by dma_alloc_coherent(), potentially unmapping |
| * any associated IOMMU mappings. |
| */ |
| void sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t dma_handle) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| provider->dma_unmap(pdev, dma_handle, 0); |
| free_pages((unsigned long)cpu_addr, get_order(size)); |
| } |
| EXPORT_SYMBOL(sn_dma_free_coherent); |
| |
| /** |
| * sn_dma_map_single - map a single page for DMA |
| * @dev: device to map for |
| * @cpu_addr: kernel virtual address of the region to map |
| * @size: size of the region |
| * @direction: DMA direction |
| * |
| * Map the region pointed to by @cpu_addr for DMA and return the |
| * DMA address. |
| * |
| * We map this to the one step pcibr_dmamap_trans interface rather than |
| * the two step pcibr_dmamap_alloc/pcibr_dmamap_addr because we have |
| * no way of saving the dmamap handle from the alloc to later free |
| * (which is pretty much unacceptable). |
| * |
| * TODO: simplify our interface; |
| * figure out how to save dmamap handle so can use two step. |
| */ |
| dma_addr_t sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size, |
| int direction) |
| { |
| dma_addr_t dma_addr; |
| unsigned long phys_addr; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| phys_addr = __pa(cpu_addr); |
| dma_addr = provider->dma_map(pdev, phys_addr, size); |
| if (!dma_addr) { |
| printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); |
| return 0; |
| } |
| return dma_addr; |
| } |
| EXPORT_SYMBOL(sn_dma_map_single); |
| |
| /** |
| * sn_dma_unmap_single - unamp a DMA mapped page |
| * @dev: device to sync |
| * @dma_addr: DMA address to sync |
| * @size: size of region |
| * @direction: DMA direction |
| * |
| * This routine is supposed to sync the DMA region specified |
| * by @dma_handle into the coherence domain. On SN, we're always cache |
| * coherent, so we just need to free any ATEs associated with this mapping. |
| */ |
| void sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, |
| int direction) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| provider->dma_unmap(pdev, dma_addr, direction); |
| } |
| EXPORT_SYMBOL(sn_dma_unmap_single); |
| |
| /** |
| * sn_dma_unmap_sg - unmap a DMA scatterlist |
| * @dev: device to unmap |
| * @sg: scatterlist to unmap |
| * @nhwentries: number of scatterlist entries |
| * @direction: DMA direction |
| * |
| * Unmap a set of streaming mode DMA translations. |
| */ |
| void sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nhwentries, int direction) |
| { |
| int i; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| for (i = 0; i < nhwentries; i++, sg++) { |
| provider->dma_unmap(pdev, sg->dma_address, direction); |
| sg->dma_address = (dma_addr_t) NULL; |
| sg->dma_length = 0; |
| } |
| } |
| EXPORT_SYMBOL(sn_dma_unmap_sg); |
| |
| /** |
| * sn_dma_map_sg - map a scatterlist for DMA |
| * @dev: device to map for |
| * @sg: scatterlist to map |
| * @nhwentries: number of entries |
| * @direction: direction of the DMA transaction |
| * |
| * Maps each entry of @sg for DMA. |
| */ |
| int sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nhwentries, |
| int direction) |
| { |
| unsigned long phys_addr; |
| struct scatterlist *saved_sg = sg; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| int i; |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| /* |
| * Setup a DMA address for each entry in the scatterlist. |
| */ |
| for (i = 0; i < nhwentries; i++, sg++) { |
| phys_addr = SG_ENT_PHYS_ADDRESS(sg); |
| sg->dma_address = provider->dma_map(pdev, |
| phys_addr, sg->length); |
| |
| if (!sg->dma_address) { |
| printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); |
| |
| /* |
| * Free any successfully allocated entries. |
| */ |
| if (i > 0) |
| sn_dma_unmap_sg(dev, saved_sg, i, direction); |
| return 0; |
| } |
| |
| sg->dma_length = sg->length; |
| } |
| |
| return nhwentries; |
| } |
| EXPORT_SYMBOL(sn_dma_map_sg); |
| |
| void sn_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, |
| size_t size, int direction) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| } |
| EXPORT_SYMBOL(sn_dma_sync_single_for_cpu); |
| |
| void sn_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, |
| size_t size, int direction) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| } |
| EXPORT_SYMBOL(sn_dma_sync_single_for_device); |
| |
| void sn_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int nelems, int direction) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| } |
| EXPORT_SYMBOL(sn_dma_sync_sg_for_cpu); |
| |
| void sn_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nelems, int direction) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| } |
| EXPORT_SYMBOL(sn_dma_sync_sg_for_device); |
| |
| int sn_dma_mapping_error(dma_addr_t dma_addr) |
| { |
| return 0; |
| } |
| EXPORT_SYMBOL(sn_dma_mapping_error); |
| |
| char *sn_pci_get_legacy_mem(struct pci_bus *bus) |
| { |
| if (!SN_PCIBUS_BUSSOFT(bus)) |
| return ERR_PTR(-ENODEV); |
| |
| return (char *)(SN_PCIBUS_BUSSOFT(bus)->bs_legacy_mem | __IA64_UNCACHED_OFFSET); |
| } |
| |
| int sn_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) |
| { |
| unsigned long addr; |
| int ret; |
| |
| if (!SN_PCIBUS_BUSSOFT(bus)) |
| return -ENODEV; |
| |
| addr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET; |
| addr += port; |
| |
| ret = ia64_sn_probe_mem(addr, (long)size, (void *)val); |
| |
| if (ret == 2) |
| return -EINVAL; |
| |
| if (ret == 1) |
| *val = -1; |
| |
| return size; |
| } |
| |
| int sn_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) |
| { |
| int ret = size; |
| unsigned long paddr; |
| unsigned long *addr; |
| |
| if (!SN_PCIBUS_BUSSOFT(bus)) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| /* Put the phys addr in uncached space */ |
| paddr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET; |
| paddr += port; |
| addr = (unsigned long *)paddr; |
| |
| switch (size) { |
| case 1: |
| *(volatile u8 *)(addr) = (u8)(val); |
| break; |
| case 2: |
| *(volatile u16 *)(addr) = (u16)(val); |
| break; |
| case 4: |
| *(volatile u32 *)(addr) = (u32)(val); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| out: |
| return ret; |
| } |