| /* |
| * apb_timer.c: Driver for Langwell APB timers |
| * |
| * (C) Copyright 2009 Intel Corporation |
| * Author: Jacob Pan (jacob.jun.pan@intel.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| * |
| * Note: |
| * Langwell is the south complex of Intel Moorestown MID platform. There are |
| * eight external timers in total that can be used by the operating system. |
| * The timer information, such as frequency and addresses, is provided to the |
| * OS via SFI tables. |
| * Timer interrupts are routed via FW/HW emulated IOAPIC independently via |
| * individual redirection table entries (RTE). |
| * Unlike HPET, there is no master counter, therefore one of the timers are |
| * used as clocksource. The overall allocation looks like: |
| * - timer 0 - NR_CPUs for per cpu timer |
| * - one timer for clocksource |
| * - one timer for watchdog driver. |
| * It is also worth notice that APB timer does not support true one-shot mode, |
| * free-running mode will be used here to emulate one-shot mode. |
| * APB timer can also be used as broadcast timer along with per cpu local APIC |
| * timer, but by default APB timer has higher rating than local APIC timers. |
| */ |
| |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/sysdev.h> |
| #include <linux/slab.h> |
| #include <linux/pm.h> |
| #include <linux/pci.h> |
| #include <linux/sfi.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu.h> |
| #include <linux/irq.h> |
| |
| #include <asm/fixmap.h> |
| #include <asm/apb_timer.h> |
| #include <asm/mrst.h> |
| |
| #define APBT_MASK CLOCKSOURCE_MASK(32) |
| #define APBT_SHIFT 22 |
| #define APBT_CLOCKEVENT_RATING 110 |
| #define APBT_CLOCKSOURCE_RATING 250 |
| #define APBT_MIN_DELTA_USEC 200 |
| |
| #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) |
| #define APBT_CLOCKEVENT0_NUM (0) |
| #define APBT_CLOCKEVENT1_NUM (1) |
| #define APBT_CLOCKSOURCE_NUM (2) |
| |
| static unsigned long apbt_address; |
| static int apb_timer_block_enabled; |
| static void __iomem *apbt_virt_address; |
| static int phy_cs_timer_id; |
| |
| /* |
| * Common DW APB timer info |
| */ |
| static uint64_t apbt_freq; |
| |
| static void apbt_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt); |
| static int apbt_next_event(unsigned long delta, |
| struct clock_event_device *evt); |
| static cycle_t apbt_read_clocksource(struct clocksource *cs); |
| static void apbt_restart_clocksource(struct clocksource *cs); |
| |
| struct apbt_dev { |
| struct clock_event_device evt; |
| unsigned int num; |
| int cpu; |
| unsigned int irq; |
| unsigned int tick; |
| unsigned int count; |
| unsigned int flags; |
| char name[10]; |
| }; |
| |
| static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); |
| |
| #ifdef CONFIG_SMP |
| static unsigned int apbt_num_timers_used; |
| static struct apbt_dev *apbt_devs; |
| #endif |
| |
| static inline unsigned long apbt_readl_reg(unsigned long a) |
| { |
| return readl(apbt_virt_address + a); |
| } |
| |
| static inline void apbt_writel_reg(unsigned long d, unsigned long a) |
| { |
| writel(d, apbt_virt_address + a); |
| } |
| |
| static inline unsigned long apbt_readl(int n, unsigned long a) |
| { |
| return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); |
| } |
| |
| static inline void apbt_writel(int n, unsigned long d, unsigned long a) |
| { |
| writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); |
| } |
| |
| static inline void apbt_set_mapping(void) |
| { |
| struct sfi_timer_table_entry *mtmr; |
| |
| if (apbt_virt_address) { |
| pr_debug("APBT base already mapped\n"); |
| return; |
| } |
| mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); |
| if (mtmr == NULL) { |
| printk(KERN_ERR "Failed to get MTMR %d from SFI\n", |
| APBT_CLOCKEVENT0_NUM); |
| return; |
| } |
| apbt_address = (unsigned long)mtmr->phys_addr; |
| if (!apbt_address) { |
| printk(KERN_WARNING "No timer base from SFI, use default\n"); |
| apbt_address = APBT_DEFAULT_BASE; |
| } |
| apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); |
| if (apbt_virt_address) { |
| pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ |
| (void *)apbt_address, (void *)apbt_virt_address); |
| } else { |
| pr_debug("Failed mapping APBT phy address at %p\n",\ |
| (void *)apbt_address); |
| goto panic_noapbt; |
| } |
| apbt_freq = mtmr->freq_hz / USEC_PER_SEC; |
| sfi_free_mtmr(mtmr); |
| |
| /* Now figure out the physical timer id for clocksource device */ |
| mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); |
| if (mtmr == NULL) |
| goto panic_noapbt; |
| |
| /* Now figure out the physical timer id */ |
| phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) |
| / APBTMRS_REG_SIZE; |
| pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); |
| return; |
| |
| panic_noapbt: |
| panic("Failed to setup APB system timer\n"); |
| |
| } |
| |
| static inline void apbt_clear_mapping(void) |
| { |
| iounmap(apbt_virt_address); |
| apbt_virt_address = NULL; |
| } |
| |
| /* |
| * APBT timer interrupt enable / disable |
| */ |
| static inline int is_apbt_capable(void) |
| { |
| return apbt_virt_address ? 1 : 0; |
| } |
| |
| static struct clocksource clocksource_apbt = { |
| .name = "apbt", |
| .rating = APBT_CLOCKSOURCE_RATING, |
| .read = apbt_read_clocksource, |
| .mask = APBT_MASK, |
| .shift = APBT_SHIFT, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .resume = apbt_restart_clocksource, |
| }; |
| |
| /* boot APB clock event device */ |
| static struct clock_event_device apbt_clockevent = { |
| .name = "apbt0", |
| .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, |
| .set_mode = apbt_set_mode, |
| .set_next_event = apbt_next_event, |
| .shift = APBT_SHIFT, |
| .irq = 0, |
| .rating = APBT_CLOCKEVENT_RATING, |
| }; |
| |
| /* |
| * start count down from 0xffff_ffff. this is done by toggling the enable bit |
| * then load initial load count to ~0. |
| */ |
| static void apbt_start_counter(int n) |
| { |
| unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); |
| /* enable, mask interrupt */ |
| ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; |
| ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); |
| apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| /* read it once to get cached counter value initialized */ |
| apbt_read_clocksource(&clocksource_apbt); |
| } |
| |
| static irqreturn_t apbt_interrupt_handler(int irq, void *data) |
| { |
| struct apbt_dev *dev = (struct apbt_dev *)data; |
| struct clock_event_device *aevt = &dev->evt; |
| |
| if (!aevt->event_handler) { |
| printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", |
| dev->num); |
| return IRQ_NONE; |
| } |
| aevt->event_handler(aevt); |
| return IRQ_HANDLED; |
| } |
| |
| static void apbt_restart_clocksource(struct clocksource *cs) |
| { |
| apbt_start_counter(phy_cs_timer_id); |
| } |
| |
| static void apbt_enable_int(int n) |
| { |
| unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| /* clear pending intr */ |
| apbt_readl(n, APBTMR_N_EOI); |
| ctrl &= ~APBTMR_CONTROL_INT; |
| apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| } |
| |
| static void apbt_disable_int(int n) |
| { |
| unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| |
| ctrl |= APBTMR_CONTROL_INT; |
| apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| } |
| |
| |
| static int __init apbt_clockevent_register(void) |
| { |
| struct sfi_timer_table_entry *mtmr; |
| struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); |
| |
| mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); |
| if (mtmr == NULL) { |
| printk(KERN_ERR "Failed to get MTMR %d from SFI\n", |
| APBT_CLOCKEVENT0_NUM); |
| return -ENODEV; |
| } |
| |
| /* |
| * We need to calculate the scaled math multiplication factor for |
| * nanosecond to apbt tick conversion. |
| * mult = (nsec/cycle)*2^APBT_SHIFT |
| */ |
| apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz |
| , NSEC_PER_SEC, APBT_SHIFT); |
| |
| /* Calculate the min / max delta */ |
| apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, |
| &apbt_clockevent); |
| apbt_clockevent.min_delta_ns = clockevent_delta2ns( |
| APBT_MIN_DELTA_USEC*apbt_freq, |
| &apbt_clockevent); |
| /* |
| * Start apbt with the boot cpu mask and make it |
| * global if not used for per cpu timer. |
| */ |
| apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); |
| adev->num = smp_processor_id(); |
| memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); |
| |
| if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) { |
| apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100; |
| global_clock_event = &adev->evt; |
| printk(KERN_DEBUG "%s clockevent registered as global\n", |
| global_clock_event->name); |
| } |
| |
| if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, |
| IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, |
| apbt_clockevent.name, adev)) { |
| printk(KERN_ERR "Failed request IRQ for APBT%d\n", |
| apbt_clockevent.irq); |
| } |
| |
| clockevents_register_device(&adev->evt); |
| /* Start APBT 0 interrupts */ |
| apbt_enable_int(APBT_CLOCKEVENT0_NUM); |
| |
| sfi_free_mtmr(mtmr); |
| return 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void apbt_setup_irq(struct apbt_dev *adev) |
| { |
| /* timer0 irq has been setup early */ |
| if (adev->irq == 0) |
| return; |
| |
| if (system_state == SYSTEM_BOOTING) { |
| irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT); |
| /* APB timer irqs are set up as mp_irqs, timer is edge type */ |
| __set_irq_handler(adev->irq, handle_edge_irq, 0, "edge"); |
| if (request_irq(adev->irq, apbt_interrupt_handler, |
| IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, |
| adev->name, adev)) { |
| printk(KERN_ERR "Failed request IRQ for APBT%d\n", |
| adev->num); |
| } |
| } else |
| enable_irq(adev->irq); |
| } |
| |
| /* Should be called with per cpu */ |
| void apbt_setup_secondary_clock(void) |
| { |
| struct apbt_dev *adev; |
| struct clock_event_device *aevt; |
| int cpu; |
| |
| /* Don't register boot CPU clockevent */ |
| cpu = smp_processor_id(); |
| if (!cpu) |
| return; |
| /* |
| * We need to calculate the scaled math multiplication factor for |
| * nanosecond to apbt tick conversion. |
| * mult = (nsec/cycle)*2^APBT_SHIFT |
| */ |
| printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); |
| adev = &per_cpu(cpu_apbt_dev, cpu); |
| aevt = &adev->evt; |
| |
| memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); |
| aevt->cpumask = cpumask_of(cpu); |
| aevt->name = adev->name; |
| aevt->mode = CLOCK_EVT_MODE_UNUSED; |
| |
| printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", |
| cpu, aevt->name, *(u32 *)aevt->cpumask); |
| |
| apbt_setup_irq(adev); |
| |
| clockevents_register_device(aevt); |
| |
| apbt_enable_int(cpu); |
| |
| return; |
| } |
| |
| /* |
| * this notify handler process CPU hotplug events. in case of S0i3, nonboot |
| * cpus are disabled/enabled frequently, for performance reasons, we keep the |
| * per cpu timer irq registered so that we do need to do free_irq/request_irq. |
| * |
| * TODO: it might be more reliable to directly disable percpu clockevent device |
| * without the notifier chain. currently, cpu 0 may get interrupts from other |
| * cpu timers during the offline process due to the ordering of notification. |
| * the extra interrupt is harmless. |
| */ |
| static int apbt_cpuhp_notify(struct notifier_block *n, |
| unsigned long action, void *hcpu) |
| { |
| unsigned long cpu = (unsigned long)hcpu; |
| struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); |
| |
| switch (action & 0xf) { |
| case CPU_DEAD: |
| disable_irq(adev->irq); |
| apbt_disable_int(cpu); |
| if (system_state == SYSTEM_RUNNING) { |
| pr_debug("skipping APBT CPU %lu offline\n", cpu); |
| } else if (adev) { |
| pr_debug("APBT clockevent for cpu %lu offline\n", cpu); |
| free_irq(adev->irq, adev); |
| } |
| break; |
| default: |
| pr_debug("APBT notified %lu, no action\n", action); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static __init int apbt_late_init(void) |
| { |
| if (mrst_timer_options == MRST_TIMER_LAPIC_APBT || |
| !apb_timer_block_enabled) |
| return 0; |
| /* This notifier should be called after workqueue is ready */ |
| hotcpu_notifier(apbt_cpuhp_notify, -20); |
| return 0; |
| } |
| fs_initcall(apbt_late_init); |
| #else |
| |
| void apbt_setup_secondary_clock(void) {} |
| |
| #endif /* CONFIG_SMP */ |
| |
| static void apbt_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| unsigned long ctrl; |
| uint64_t delta; |
| int timer_num; |
| struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); |
| |
| BUG_ON(!apbt_virt_address); |
| |
| timer_num = adev->num; |
| pr_debug("%s CPU %d timer %d mode=%d\n", |
| __func__, first_cpu(*evt->cpumask), timer_num, mode); |
| |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; |
| delta >>= apbt_clockevent.shift; |
| ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| ctrl |= APBTMR_CONTROL_MODE_PERIODIC; |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| /* |
| * DW APB p. 46, have to disable timer before load counter, |
| * may cause sync problem. |
| */ |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| udelay(1); |
| pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); |
| apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); |
| ctrl |= APBTMR_CONTROL_ENABLE; |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| break; |
| /* APB timer does not have one-shot mode, use free running mode */ |
| case CLOCK_EVT_MODE_ONESHOT: |
| ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| /* |
| * set free running mode, this mode will let timer reload max |
| * timeout which will give time (3min on 25MHz clock) to rearm |
| * the next event, therefore emulate the one-shot mode. |
| */ |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; |
| |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| /* write again to set free running mode */ |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| |
| /* |
| * DW APB p. 46, load counter with all 1s before starting free |
| * running mode. |
| */ |
| apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); |
| ctrl &= ~APBTMR_CONTROL_INT; |
| ctrl |= APBTMR_CONTROL_ENABLE; |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| break; |
| |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| apbt_disable_int(timer_num); |
| ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| break; |
| |
| case CLOCK_EVT_MODE_RESUME: |
| apbt_enable_int(timer_num); |
| break; |
| } |
| } |
| |
| static int apbt_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| unsigned long ctrl; |
| int timer_num; |
| |
| struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); |
| |
| timer_num = adev->num; |
| /* Disable timer */ |
| ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| /* write new count */ |
| apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); |
| ctrl |= APBTMR_CONTROL_ENABLE; |
| apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| return 0; |
| } |
| |
| /* |
| * APB timer clock is not in sync with pclk on Langwell, which translates to |
| * unreliable read value caused by sampling error. the error does not add up |
| * overtime and only happens when sampling a 0 as a 1 by mistake. so the time |
| * would go backwards. the following code is trying to prevent time traveling |
| * backwards. little bit paranoid. |
| */ |
| static cycle_t apbt_read_clocksource(struct clocksource *cs) |
| { |
| unsigned long t0, t1, t2; |
| static unsigned long last_read; |
| |
| bad_count: |
| t1 = apbt_readl(phy_cs_timer_id, |
| APBTMR_N_CURRENT_VALUE); |
| t2 = apbt_readl(phy_cs_timer_id, |
| APBTMR_N_CURRENT_VALUE); |
| if (unlikely(t1 < t2)) { |
| pr_debug("APBT: read current count error %lx:%lx:%lx\n", |
| t1, t2, t2 - t1); |
| goto bad_count; |
| } |
| /* |
| * check against cached last read, makes sure time does not go back. |
| * it could be a normal rollover but we will do tripple check anyway |
| */ |
| if (unlikely(t2 > last_read)) { |
| /* check if we have a normal rollover */ |
| unsigned long raw_intr_status = |
| apbt_readl_reg(APBTMRS_RAW_INT_STATUS); |
| /* |
| * cs timer interrupt is masked but raw intr bit is set if |
| * rollover occurs. then we read EOI reg to clear it. |
| */ |
| if (raw_intr_status & (1 << phy_cs_timer_id)) { |
| apbt_readl(phy_cs_timer_id, APBTMR_N_EOI); |
| goto out; |
| } |
| pr_debug("APB CS going back %lx:%lx:%lx ", |
| t2, last_read, t2 - last_read); |
| bad_count_x3: |
| pr_debug("triple check enforced\n"); |
| t0 = apbt_readl(phy_cs_timer_id, |
| APBTMR_N_CURRENT_VALUE); |
| udelay(1); |
| t1 = apbt_readl(phy_cs_timer_id, |
| APBTMR_N_CURRENT_VALUE); |
| udelay(1); |
| t2 = apbt_readl(phy_cs_timer_id, |
| APBTMR_N_CURRENT_VALUE); |
| if ((t2 > t1) || (t1 > t0)) { |
| printk(KERN_ERR "Error: APB CS tripple check failed\n"); |
| goto bad_count_x3; |
| } |
| } |
| out: |
| last_read = t2; |
| return (cycle_t)~t2; |
| } |
| |
| static int apbt_clocksource_register(void) |
| { |
| u64 start, now; |
| cycle_t t1; |
| |
| /* Start the counter, use timer 2 as source, timer 0/1 for event */ |
| apbt_start_counter(phy_cs_timer_id); |
| |
| /* Verify whether apbt counter works */ |
| t1 = apbt_read_clocksource(&clocksource_apbt); |
| rdtscll(start); |
| |
| /* |
| * We don't know the TSC frequency yet, but waiting for |
| * 200000 TSC cycles is safe: |
| * 4 GHz == 50us |
| * 1 GHz == 200us |
| */ |
| do { |
| rep_nop(); |
| rdtscll(now); |
| } while ((now - start) < 200000UL); |
| |
| /* APBT is the only always on clocksource, it has to work! */ |
| if (t1 == apbt_read_clocksource(&clocksource_apbt)) |
| panic("APBT counter not counting. APBT disabled\n"); |
| |
| /* |
| * initialize and register APBT clocksource |
| * convert that to ns/clock cycle |
| * mult = (ns/c) * 2^APBT_SHIFT |
| */ |
| clocksource_apbt.mult = div_sc(MSEC_PER_SEC, |
| (unsigned long) apbt_freq, APBT_SHIFT); |
| clocksource_register(&clocksource_apbt); |
| |
| return 0; |
| } |
| |
| /* |
| * Early setup the APBT timer, only use timer 0 for booting then switch to |
| * per CPU timer if possible. |
| * returns 1 if per cpu apbt is setup |
| * returns 0 if no per cpu apbt is chosen |
| * panic if set up failed, this is the only platform timer on Moorestown. |
| */ |
| void __init apbt_time_init(void) |
| { |
| #ifdef CONFIG_SMP |
| int i; |
| struct sfi_timer_table_entry *p_mtmr; |
| unsigned int percpu_timer; |
| struct apbt_dev *adev; |
| #endif |
| |
| if (apb_timer_block_enabled) |
| return; |
| apbt_set_mapping(); |
| if (apbt_virt_address) { |
| pr_debug("Found APBT version 0x%lx\n",\ |
| apbt_readl_reg(APBTMRS_COMP_VERSION)); |
| } else |
| goto out_noapbt; |
| /* |
| * Read the frequency and check for a sane value, for ESL model |
| * we extend the possible clock range to allow time scaling. |
| */ |
| |
| if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { |
| pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); |
| goto out_noapbt; |
| } |
| if (apbt_clocksource_register()) { |
| pr_debug("APBT has failed to register clocksource\n"); |
| goto out_noapbt; |
| } |
| if (!apbt_clockevent_register()) |
| apb_timer_block_enabled = 1; |
| else { |
| pr_debug("APBT has failed to register clockevent\n"); |
| goto out_noapbt; |
| } |
| #ifdef CONFIG_SMP |
| /* kernel cmdline disable apb timer, so we will use lapic timers */ |
| if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) { |
| printk(KERN_INFO "apbt: disabled per cpu timer\n"); |
| return; |
| } |
| pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); |
| if (num_possible_cpus() <= sfi_mtimer_num) { |
| percpu_timer = 1; |
| apbt_num_timers_used = num_possible_cpus(); |
| } else { |
| percpu_timer = 0; |
| apbt_num_timers_used = 1; |
| adev = &per_cpu(cpu_apbt_dev, 0); |
| adev->flags &= ~APBT_DEV_USED; |
| } |
| pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); |
| |
| /* here we set up per CPU timer data structure */ |
| apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, |
| GFP_KERNEL); |
| if (!apbt_devs) { |
| printk(KERN_ERR "Failed to allocate APB timer devices\n"); |
| return; |
| } |
| for (i = 0; i < apbt_num_timers_used; i++) { |
| adev = &per_cpu(cpu_apbt_dev, i); |
| adev->num = i; |
| adev->cpu = i; |
| p_mtmr = sfi_get_mtmr(i); |
| if (p_mtmr) { |
| adev->tick = p_mtmr->freq_hz; |
| adev->irq = p_mtmr->irq; |
| } else |
| printk(KERN_ERR "Failed to get timer for cpu %d\n", i); |
| adev->count = 0; |
| sprintf(adev->name, "apbt%d", i); |
| } |
| #endif |
| |
| return; |
| |
| out_noapbt: |
| apbt_clear_mapping(); |
| apb_timer_block_enabled = 0; |
| panic("failed to enable APB timer\n"); |
| } |
| |
| static inline void apbt_disable(int n) |
| { |
| if (is_apbt_capable()) { |
| unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| } |
| } |
| |
| /* called before apb_timer_enable, use early map */ |
| unsigned long apbt_quick_calibrate() |
| { |
| int i, scale; |
| u64 old, new; |
| cycle_t t1, t2; |
| unsigned long khz = 0; |
| u32 loop, shift; |
| |
| apbt_set_mapping(); |
| apbt_start_counter(phy_cs_timer_id); |
| |
| /* check if the timer can count down, otherwise return */ |
| old = apbt_read_clocksource(&clocksource_apbt); |
| i = 10000; |
| while (--i) { |
| if (old != apbt_read_clocksource(&clocksource_apbt)) |
| break; |
| } |
| if (!i) |
| goto failed; |
| |
| /* count 16 ms */ |
| loop = (apbt_freq * 1000) << 4; |
| |
| /* restart the timer to ensure it won't get to 0 in the calibration */ |
| apbt_start_counter(phy_cs_timer_id); |
| |
| old = apbt_read_clocksource(&clocksource_apbt); |
| old += loop; |
| |
| t1 = __native_read_tsc(); |
| |
| do { |
| new = apbt_read_clocksource(&clocksource_apbt); |
| } while (new < old); |
| |
| t2 = __native_read_tsc(); |
| |
| shift = 5; |
| if (unlikely(loop >> shift == 0)) { |
| printk(KERN_INFO |
| "APBT TSC calibration failed, not enough resolution\n"); |
| return 0; |
| } |
| scale = (int)div_u64((t2 - t1), loop >> shift); |
| khz = (scale * apbt_freq * 1000) >> shift; |
| printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); |
| return khz; |
| failed: |
| return 0; |
| } |