blob: c0323d05ab69c73ac6f8eb12bd7d514270e7ee43 [file] [log] [blame]
/*
* xfrm4_input.c
*
* Changes:
* YOSHIFUJI Hideaki @USAGI
* Split up af-specific portion
* Derek Atkins <derek@ihtfp.com>
* Add Encapsulation support
*
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <net/ip.h>
#include <net/xfrm.h>
int xfrm4_extract_input(struct xfrm_state *x, struct sk_buff *skb)
{
return xfrm4_extract_header(skb);
}
#ifdef CONFIG_NETFILTER
static inline int xfrm4_rcv_encap_finish(struct sk_buff *skb)
{
if (skb->dst == NULL) {
const struct iphdr *iph = ip_hdr(skb);
if (ip_route_input(skb, iph->daddr, iph->saddr, iph->tos,
skb->dev))
goto drop;
}
return dst_input(skb);
drop:
kfree_skb(skb);
return NET_RX_DROP;
}
#endif
int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi,
int encap_type)
{
int err;
__be32 seq;
struct xfrm_state *xfrm_vec[XFRM_MAX_DEPTH];
struct xfrm_state *x;
int xfrm_nr = 0;
int decaps = 0;
unsigned int nhoff = offsetof(struct iphdr, protocol);
seq = 0;
if (!spi && (err = xfrm_parse_spi(skb, nexthdr, &spi, &seq)) != 0)
goto drop;
do {
const struct iphdr *iph = ip_hdr(skb);
if (xfrm_nr == XFRM_MAX_DEPTH)
goto drop;
x = xfrm_state_lookup((xfrm_address_t *)&iph->daddr, spi,
nexthdr, AF_INET);
if (x == NULL)
goto drop;
spin_lock(&x->lock);
if (unlikely(x->km.state != XFRM_STATE_VALID))
goto drop_unlock;
if ((x->encap ? x->encap->encap_type : 0) != encap_type)
goto drop_unlock;
if (x->props.replay_window && xfrm_replay_check(x, seq))
goto drop_unlock;
if (xfrm_state_check_expire(x))
goto drop_unlock;
nexthdr = x->type->input(x, skb);
if (nexthdr <= 0)
goto drop_unlock;
skb_network_header(skb)[nhoff] = nexthdr;
/* only the first xfrm gets the encap type */
encap_type = 0;
if (x->props.replay_window)
xfrm_replay_advance(x, seq);
x->curlft.bytes += skb->len;
x->curlft.packets++;
spin_unlock(&x->lock);
xfrm_vec[xfrm_nr++] = x;
if (x->inner_mode->input(x, skb))
goto drop;
if (x->outer_mode->flags & XFRM_MODE_FLAG_TUNNEL) {
decaps = 1;
break;
}
err = xfrm_parse_spi(skb, nexthdr, &spi, &seq);
if (err < 0)
goto drop;
} while (!err);
/* Allocate new secpath or COW existing one. */
if (!skb->sp || atomic_read(&skb->sp->refcnt) != 1) {
struct sec_path *sp;
sp = secpath_dup(skb->sp);
if (!sp)
goto drop;
if (skb->sp)
secpath_put(skb->sp);
skb->sp = sp;
}
if (xfrm_nr + skb->sp->len > XFRM_MAX_DEPTH)
goto drop;
memcpy(skb->sp->xvec + skb->sp->len, xfrm_vec,
xfrm_nr * sizeof(xfrm_vec[0]));
skb->sp->len += xfrm_nr;
nf_reset(skb);
if (decaps) {
dst_release(skb->dst);
skb->dst = NULL;
netif_rx(skb);
return 0;
} else {
#ifdef CONFIG_NETFILTER
__skb_push(skb, skb->data - skb_network_header(skb));
ip_hdr(skb)->tot_len = htons(skb->len);
ip_send_check(ip_hdr(skb));
NF_HOOK(PF_INET, NF_IP_PRE_ROUTING, skb, skb->dev, NULL,
xfrm4_rcv_encap_finish);
return 0;
#else
return -ip_hdr(skb)->protocol;
#endif
}
drop_unlock:
spin_unlock(&x->lock);
xfrm_state_put(x);
drop:
while (--xfrm_nr >= 0)
xfrm_state_put(xfrm_vec[xfrm_nr]);
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL(xfrm4_rcv_encap);
/* If it's a keepalive packet, then just eat it.
* If it's an encapsulated packet, then pass it to the
* IPsec xfrm input.
* Returns 0 if skb passed to xfrm or was dropped.
* Returns >0 if skb should be passed to UDP.
* Returns <0 if skb should be resubmitted (-ret is protocol)
*/
int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb)
{
struct udp_sock *up = udp_sk(sk);
struct udphdr *uh;
struct iphdr *iph;
int iphlen, len;
int ret;
__u8 *udpdata;
__be32 *udpdata32;
__u16 encap_type = up->encap_type;
/* if this is not encapsulated socket, then just return now */
if (!encap_type)
return 1;
/* If this is a paged skb, make sure we pull up
* whatever data we need to look at. */
len = skb->len - sizeof(struct udphdr);
if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
return 1;
/* Now we can get the pointers */
uh = udp_hdr(skb);
udpdata = (__u8 *)uh + sizeof(struct udphdr);
udpdata32 = (__be32 *)udpdata;
switch (encap_type) {
default:
case UDP_ENCAP_ESPINUDP:
/* Check if this is a keepalive packet. If so, eat it. */
if (len == 1 && udpdata[0] == 0xff) {
goto drop;
} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
/* ESP Packet without Non-ESP header */
len = sizeof(struct udphdr);
} else
/* Must be an IKE packet.. pass it through */
return 1;
break;
case UDP_ENCAP_ESPINUDP_NON_IKE:
/* Check if this is a keepalive packet. If so, eat it. */
if (len == 1 && udpdata[0] == 0xff) {
goto drop;
} else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
udpdata32[0] == 0 && udpdata32[1] == 0) {
/* ESP Packet with Non-IKE marker */
len = sizeof(struct udphdr) + 2 * sizeof(u32);
} else
/* Must be an IKE packet.. pass it through */
return 1;
break;
}
/* At this point we are sure that this is an ESPinUDP packet,
* so we need to remove 'len' bytes from the packet (the UDP
* header and optional ESP marker bytes) and then modify the
* protocol to ESP, and then call into the transform receiver.
*/
if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
goto drop;
/* Now we can update and verify the packet length... */
iph = ip_hdr(skb);
iphlen = iph->ihl << 2;
iph->tot_len = htons(ntohs(iph->tot_len) - len);
if (skb->len < iphlen + len) {
/* packet is too small!?! */
goto drop;
}
/* pull the data buffer up to the ESP header and set the
* transport header to point to ESP. Keep UDP on the stack
* for later.
*/
__skb_pull(skb, len);
skb_reset_transport_header(skb);
/* process ESP */
ret = xfrm4_rcv_encap(skb, IPPROTO_ESP, 0, encap_type);
return ret;
drop:
kfree_skb(skb);
return 0;
}
int xfrm4_rcv(struct sk_buff *skb)
{
return xfrm4_rcv_spi(skb, ip_hdr(skb)->protocol, 0);
}
EXPORT_SYMBOL(xfrm4_rcv);