| /* |
| * PARISC Architecture-dependent parts of process handling |
| * based on the work for i386 |
| * |
| * Copyright (C) 1999-2003 Matthew Wilcox <willy at parisc-linux.org> |
| * Copyright (C) 2000 Martin K Petersen <mkp at mkp.net> |
| * Copyright (C) 2000 John Marvin <jsm at parisc-linux.org> |
| * Copyright (C) 2000 David Huggins-Daines <dhd with pobox.org> |
| * Copyright (C) 2000-2003 Paul Bame <bame at parisc-linux.org> |
| * Copyright (C) 2000 Philipp Rumpf <prumpf with tux.org> |
| * Copyright (C) 2000 David Kennedy <dkennedy with linuxcare.com> |
| * Copyright (C) 2000 Richard Hirst <rhirst with parisc-linux.org> |
| * Copyright (C) 2000 Grant Grundler <grundler with parisc-linux.org> |
| * Copyright (C) 2001 Alan Modra <amodra at parisc-linux.org> |
| * Copyright (C) 2001-2002 Ryan Bradetich <rbrad at parisc-linux.org> |
| * Copyright (C) 2001-2007 Helge Deller <deller at parisc-linux.org> |
| * Copyright (C) 2002 Randolph Chung <tausq with parisc-linux.org> |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <stdarg.h> |
| |
| #include <linux/elf.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/fs.h> |
| #include <linux/module.h> |
| #include <linux/personality.h> |
| #include <linux/ptrace.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/kallsyms.h> |
| #include <linux/uaccess.h> |
| #include <linux/rcupdate.h> |
| |
| #include <asm/io.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/pdc.h> |
| #include <asm/pdc_chassis.h> |
| #include <asm/pgalloc.h> |
| #include <asm/unwind.h> |
| #include <asm/sections.h> |
| |
| /* |
| * The idle thread. There's no useful work to be |
| * done, so just try to conserve power and have a |
| * low exit latency (ie sit in a loop waiting for |
| * somebody to say that they'd like to reschedule) |
| */ |
| void cpu_idle(void) |
| { |
| set_thread_flag(TIF_POLLING_NRFLAG); |
| |
| /* endless idle loop with no priority at all */ |
| while (1) { |
| rcu_idle_enter(); |
| while (!need_resched()) |
| barrier(); |
| rcu_idle_exit(); |
| schedule_preempt_disabled(); |
| check_pgt_cache(); |
| } |
| } |
| |
| |
| #define COMMAND_GLOBAL F_EXTEND(0xfffe0030) |
| #define CMD_RESET 5 /* reset any module */ |
| |
| /* |
| ** The Wright Brothers and Gecko systems have a H/W problem |
| ** (Lasi...'nuf said) may cause a broadcast reset to lockup |
| ** the system. An HVERSION dependent PDC call was developed |
| ** to perform a "safe", platform specific broadcast reset instead |
| ** of kludging up all the code. |
| ** |
| ** Older machines which do not implement PDC_BROADCAST_RESET will |
| ** return (with an error) and the regular broadcast reset can be |
| ** issued. Obviously, if the PDC does implement PDC_BROADCAST_RESET |
| ** the PDC call will not return (the system will be reset). |
| */ |
| void machine_restart(char *cmd) |
| { |
| #ifdef FASTBOOT_SELFTEST_SUPPORT |
| /* |
| ** If user has modified the Firmware Selftest Bitmap, |
| ** run the tests specified in the bitmap after the |
| ** system is rebooted w/PDC_DO_RESET. |
| ** |
| ** ftc_bitmap = 0x1AUL "Skip destructive memory tests" |
| ** |
| ** Using "directed resets" at each processor with the MEM_TOC |
| ** vector cleared will also avoid running destructive |
| ** memory self tests. (Not implemented yet) |
| */ |
| if (ftc_bitmap) { |
| pdc_do_firm_test_reset(ftc_bitmap); |
| } |
| #endif |
| /* set up a new led state on systems shipped with a LED State panel */ |
| pdc_chassis_send_status(PDC_CHASSIS_DIRECT_SHUTDOWN); |
| |
| /* "Normal" system reset */ |
| pdc_do_reset(); |
| |
| /* Nope...box should reset with just CMD_RESET now */ |
| gsc_writel(CMD_RESET, COMMAND_GLOBAL); |
| |
| /* Wait for RESET to lay us to rest. */ |
| while (1) ; |
| |
| } |
| |
| void machine_halt(void) |
| { |
| /* |
| ** The LED/ChassisCodes are updated by the led_halt() |
| ** function, called by the reboot notifier chain. |
| */ |
| } |
| |
| void (*chassis_power_off)(void); |
| |
| /* |
| * This routine is called from sys_reboot to actually turn off the |
| * machine |
| */ |
| void machine_power_off(void) |
| { |
| /* If there is a registered power off handler, call it. */ |
| if (chassis_power_off) |
| chassis_power_off(); |
| |
| /* Put the soft power button back under hardware control. |
| * If the user had already pressed the power button, the |
| * following call will immediately power off. */ |
| pdc_soft_power_button(0); |
| |
| pdc_chassis_send_status(PDC_CHASSIS_DIRECT_SHUTDOWN); |
| |
| /* It seems we have no way to power the system off via |
| * software. The user has to press the button himself. */ |
| |
| printk(KERN_EMERG "System shut down completed.\n" |
| "Please power this system off now."); |
| } |
| |
| void (*pm_power_off)(void) = machine_power_off; |
| EXPORT_SYMBOL(pm_power_off); |
| |
| /* |
| * Create a kernel thread |
| */ |
| |
| extern pid_t __kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); |
| pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) |
| { |
| |
| /* |
| * FIXME: Once we are sure we don't need any debug here, |
| * kernel_thread can become a #define. |
| */ |
| |
| return __kernel_thread(fn, arg, flags); |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| } |
| |
| void flush_thread(void) |
| { |
| /* Only needs to handle fpu stuff or perf monitors. |
| ** REVISIT: several arches implement a "lazy fpu state". |
| */ |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| } |
| |
| /* |
| * Fill in the FPU structure for a core dump. |
| */ |
| |
| int dump_fpu (struct pt_regs * regs, elf_fpregset_t *r) |
| { |
| if (regs == NULL) |
| return 0; |
| |
| memcpy(r, regs->fr, sizeof *r); |
| return 1; |
| } |
| |
| int dump_task_fpu (struct task_struct *tsk, elf_fpregset_t *r) |
| { |
| memcpy(r, tsk->thread.regs.fr, sizeof(*r)); |
| return 1; |
| } |
| |
| /* Note that "fork()" is implemented in terms of clone, with |
| parameters (SIGCHLD, regs->gr[30], regs). */ |
| int |
| sys_clone(unsigned long clone_flags, unsigned long usp, |
| struct pt_regs *regs) |
| { |
| /* Arugments from userspace are: |
| r26 = Clone flags. |
| r25 = Child stack. |
| r24 = parent_tidptr. |
| r23 = Is the TLS storage descriptor |
| r22 = child_tidptr |
| |
| However, these last 3 args are only examined |
| if the proper flags are set. */ |
| int __user *parent_tidptr = (int __user *)regs->gr[24]; |
| int __user *child_tidptr = (int __user *)regs->gr[22]; |
| |
| /* usp must be word aligned. This also prevents users from |
| * passing in the value 1 (which is the signal for a special |
| * return for a kernel thread) */ |
| usp = ALIGN(usp, 4); |
| |
| /* A zero value for usp means use the current stack */ |
| if (usp == 0) |
| usp = regs->gr[30]; |
| |
| return do_fork(clone_flags, usp, regs, 0, parent_tidptr, child_tidptr); |
| } |
| |
| int |
| sys_vfork(struct pt_regs *regs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gr[30], regs, 0, NULL, NULL); |
| } |
| |
| int |
| copy_thread(unsigned long clone_flags, unsigned long usp, |
| unsigned long unused, /* in ia64 this is "user_stack_size" */ |
| struct task_struct * p, struct pt_regs * pregs) |
| { |
| struct pt_regs * cregs = &(p->thread.regs); |
| void *stack = task_stack_page(p); |
| |
| /* We have to use void * instead of a function pointer, because |
| * function pointers aren't a pointer to the function on 64-bit. |
| * Make them const so the compiler knows they live in .text */ |
| extern void * const ret_from_kernel_thread; |
| extern void * const child_return; |
| #ifdef CONFIG_HPUX |
| extern void * const hpux_child_return; |
| #endif |
| |
| *cregs = *pregs; |
| |
| /* Set the return value for the child. Note that this is not |
| actually restored by the syscall exit path, but we put it |
| here for consistency in case of signals. */ |
| cregs->gr[28] = 0; /* child */ |
| |
| /* |
| * We need to differentiate between a user fork and a |
| * kernel fork. We can't use user_mode, because the |
| * the syscall path doesn't save iaoq. Right now |
| * We rely on the fact that kernel_thread passes |
| * in zero for usp. |
| */ |
| if (usp == 1) { |
| /* kernel thread */ |
| cregs->ksp = (unsigned long)stack + THREAD_SZ_ALGN; |
| /* Must exit via ret_from_kernel_thread in order |
| * to call schedule_tail() |
| */ |
| cregs->kpc = (unsigned long) &ret_from_kernel_thread; |
| /* |
| * Copy function and argument to be called from |
| * ret_from_kernel_thread. |
| */ |
| #ifdef CONFIG_64BIT |
| cregs->gr[27] = pregs->gr[27]; |
| #endif |
| cregs->gr[26] = pregs->gr[26]; |
| cregs->gr[25] = pregs->gr[25]; |
| } else { |
| /* user thread */ |
| /* |
| * Note that the fork wrappers are responsible |
| * for setting gr[21]. |
| */ |
| |
| /* Use same stack depth as parent */ |
| cregs->ksp = (unsigned long)stack |
| + (pregs->gr[21] & (THREAD_SIZE - 1)); |
| cregs->gr[30] = usp; |
| if (personality(p->personality) == PER_HPUX) { |
| #ifdef CONFIG_HPUX |
| cregs->kpc = (unsigned long) &hpux_child_return; |
| #else |
| BUG(); |
| #endif |
| } else { |
| cregs->kpc = (unsigned long) &child_return; |
| } |
| /* Setup thread TLS area from the 4th parameter in clone */ |
| if (clone_flags & CLONE_SETTLS) |
| cregs->cr27 = pregs->gr[23]; |
| |
| } |
| |
| return 0; |
| } |
| |
| unsigned long thread_saved_pc(struct task_struct *t) |
| { |
| return t->thread.regs.kpc; |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| |
| asmlinkage int sys_execve(struct pt_regs *regs) |
| { |
| int error; |
| struct filename *filename; |
| |
| filename = getname((const char __user *) regs->gr[26]); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = do_execve(filename->name, |
| (const char __user *const __user *) regs->gr[25], |
| (const char __user *const __user *) regs->gr[24], |
| regs); |
| putname(filename); |
| out: |
| |
| return error; |
| } |
| |
| extern int __execve(const char *filename, |
| const char *const argv[], |
| const char *const envp[], struct task_struct *task); |
| int kernel_execve(const char *filename, |
| const char *const argv[], |
| const char *const envp[]) |
| { |
| return __execve(filename, argv, envp, current); |
| } |
| |
| unsigned long |
| get_wchan(struct task_struct *p) |
| { |
| struct unwind_frame_info info; |
| unsigned long ip; |
| int count = 0; |
| |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| |
| /* |
| * These bracket the sleeping functions.. |
| */ |
| |
| unwind_frame_init_from_blocked_task(&info, p); |
| do { |
| if (unwind_once(&info) < 0) |
| return 0; |
| ip = info.ip; |
| if (!in_sched_functions(ip)) |
| return ip; |
| } while (count++ < 16); |
| return 0; |
| } |
| |
| #ifdef CONFIG_64BIT |
| void *dereference_function_descriptor(void *ptr) |
| { |
| Elf64_Fdesc *desc = ptr; |
| void *p; |
| |
| if (!probe_kernel_address(&desc->addr, p)) |
| ptr = p; |
| return ptr; |
| } |
| #endif |