| /* |
| * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation. |
| * All rights reserved. |
| * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/vmalloc.h> |
| #include <linux/delay.h> |
| #include <linux/idr.h> |
| |
| #include "qib.h" |
| #include "qib_common.h" |
| |
| /* |
| * min buffers we want to have per context, after driver |
| */ |
| #define QIB_MIN_USER_CTXT_BUFCNT 7 |
| |
| #define QLOGIC_IB_R_SOFTWARE_MASK 0xFF |
| #define QLOGIC_IB_R_SOFTWARE_SHIFT 24 |
| #define QLOGIC_IB_R_EMULATOR_MASK (1ULL<<62) |
| |
| /* |
| * Number of ctxts we are configured to use (to allow for more pio |
| * buffers per ctxt, etc.) Zero means use chip value. |
| */ |
| ushort qib_cfgctxts; |
| module_param_named(cfgctxts, qib_cfgctxts, ushort, S_IRUGO); |
| MODULE_PARM_DESC(cfgctxts, "Set max number of contexts to use"); |
| |
| /* |
| * If set, do not write to any regs if avoidable, hack to allow |
| * check for deranged default register values. |
| */ |
| ushort qib_mini_init; |
| module_param_named(mini_init, qib_mini_init, ushort, S_IRUGO); |
| MODULE_PARM_DESC(mini_init, "If set, do minimal diag init"); |
| |
| unsigned qib_n_krcv_queues; |
| module_param_named(krcvqs, qib_n_krcv_queues, uint, S_IRUGO); |
| MODULE_PARM_DESC(krcvqs, "number of kernel receive queues per IB port"); |
| |
| /* |
| * qib_wc_pat parameter: |
| * 0 is WC via MTRR |
| * 1 is WC via PAT |
| * If PAT initialization fails, code reverts back to MTRR |
| */ |
| unsigned qib_wc_pat = 1; /* default (1) is to use PAT, not MTRR */ |
| module_param_named(wc_pat, qib_wc_pat, uint, S_IRUGO); |
| MODULE_PARM_DESC(wc_pat, "enable write-combining via PAT mechanism"); |
| |
| struct workqueue_struct *qib_cq_wq; |
| |
| static void verify_interrupt(unsigned long); |
| |
| static struct idr qib_unit_table; |
| u32 qib_cpulist_count; |
| unsigned long *qib_cpulist; |
| |
| /* set number of contexts we'll actually use */ |
| void qib_set_ctxtcnt(struct qib_devdata *dd) |
| { |
| if (!qib_cfgctxts) { |
| dd->cfgctxts = dd->first_user_ctxt + num_online_cpus(); |
| if (dd->cfgctxts > dd->ctxtcnt) |
| dd->cfgctxts = dd->ctxtcnt; |
| } else if (qib_cfgctxts < dd->num_pports) |
| dd->cfgctxts = dd->ctxtcnt; |
| else if (qib_cfgctxts <= dd->ctxtcnt) |
| dd->cfgctxts = qib_cfgctxts; |
| else |
| dd->cfgctxts = dd->ctxtcnt; |
| } |
| |
| /* |
| * Common code for creating the receive context array. |
| */ |
| int qib_create_ctxts(struct qib_devdata *dd) |
| { |
| unsigned i; |
| int ret; |
| |
| /* |
| * Allocate full ctxtcnt array, rather than just cfgctxts, because |
| * cleanup iterates across all possible ctxts. |
| */ |
| dd->rcd = kzalloc(sizeof(*dd->rcd) * dd->ctxtcnt, GFP_KERNEL); |
| if (!dd->rcd) { |
| qib_dev_err(dd, "Unable to allocate ctxtdata array, " |
| "failing\n"); |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| /* create (one or more) kctxt */ |
| for (i = 0; i < dd->first_user_ctxt; ++i) { |
| struct qib_pportdata *ppd; |
| struct qib_ctxtdata *rcd; |
| |
| if (dd->skip_kctxt_mask & (1 << i)) |
| continue; |
| |
| ppd = dd->pport + (i % dd->num_pports); |
| rcd = qib_create_ctxtdata(ppd, i); |
| if (!rcd) { |
| qib_dev_err(dd, "Unable to allocate ctxtdata" |
| " for Kernel ctxt, failing\n"); |
| ret = -ENOMEM; |
| goto done; |
| } |
| rcd->pkeys[0] = QIB_DEFAULT_P_KEY; |
| rcd->seq_cnt = 1; |
| } |
| ret = 0; |
| done: |
| return ret; |
| } |
| |
| /* |
| * Common code for user and kernel context setup. |
| */ |
| struct qib_ctxtdata *qib_create_ctxtdata(struct qib_pportdata *ppd, u32 ctxt) |
| { |
| struct qib_devdata *dd = ppd->dd; |
| struct qib_ctxtdata *rcd; |
| |
| rcd = kzalloc(sizeof(*rcd), GFP_KERNEL); |
| if (rcd) { |
| INIT_LIST_HEAD(&rcd->qp_wait_list); |
| rcd->ppd = ppd; |
| rcd->dd = dd; |
| rcd->cnt = 1; |
| rcd->ctxt = ctxt; |
| dd->rcd[ctxt] = rcd; |
| |
| dd->f_init_ctxt(rcd); |
| |
| /* |
| * To avoid wasting a lot of memory, we allocate 32KB chunks |
| * of physically contiguous memory, advance through it until |
| * used up and then allocate more. Of course, we need |
| * memory to store those extra pointers, now. 32KB seems to |
| * be the most that is "safe" under memory pressure |
| * (creating large files and then copying them over |
| * NFS while doing lots of MPI jobs). The OOM killer can |
| * get invoked, even though we say we can sleep and this can |
| * cause significant system problems.... |
| */ |
| rcd->rcvegrbuf_size = 0x8000; |
| rcd->rcvegrbufs_perchunk = |
| rcd->rcvegrbuf_size / dd->rcvegrbufsize; |
| rcd->rcvegrbuf_chunks = (rcd->rcvegrcnt + |
| rcd->rcvegrbufs_perchunk - 1) / |
| rcd->rcvegrbufs_perchunk; |
| BUG_ON(!is_power_of_2(rcd->rcvegrbufs_perchunk)); |
| rcd->rcvegrbufs_perchunk_shift = |
| ilog2(rcd->rcvegrbufs_perchunk); |
| } |
| return rcd; |
| } |
| |
| /* |
| * Common code for initializing the physical port structure. |
| */ |
| void qib_init_pportdata(struct qib_pportdata *ppd, struct qib_devdata *dd, |
| u8 hw_pidx, u8 port) |
| { |
| ppd->dd = dd; |
| ppd->hw_pidx = hw_pidx; |
| ppd->port = port; /* IB port number, not index */ |
| |
| spin_lock_init(&ppd->sdma_lock); |
| spin_lock_init(&ppd->lflags_lock); |
| init_waitqueue_head(&ppd->state_wait); |
| |
| init_timer(&ppd->symerr_clear_timer); |
| ppd->symerr_clear_timer.function = qib_clear_symerror_on_linkup; |
| ppd->symerr_clear_timer.data = (unsigned long)ppd; |
| } |
| |
| static int init_pioavailregs(struct qib_devdata *dd) |
| { |
| int ret, pidx; |
| u64 *status_page; |
| |
| dd->pioavailregs_dma = dma_alloc_coherent( |
| &dd->pcidev->dev, PAGE_SIZE, &dd->pioavailregs_phys, |
| GFP_KERNEL); |
| if (!dd->pioavailregs_dma) { |
| qib_dev_err(dd, "failed to allocate PIOavail reg area " |
| "in memory\n"); |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| /* |
| * We really want L2 cache aligned, but for current CPUs of |
| * interest, they are the same. |
| */ |
| status_page = (u64 *) |
| ((char *) dd->pioavailregs_dma + |
| ((2 * L1_CACHE_BYTES + |
| dd->pioavregs * sizeof(u64)) & ~L1_CACHE_BYTES)); |
| /* device status comes first, for backwards compatibility */ |
| dd->devstatusp = status_page; |
| *status_page++ = 0; |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| dd->pport[pidx].statusp = status_page; |
| *status_page++ = 0; |
| } |
| |
| /* |
| * Setup buffer to hold freeze and other messages, accessible to |
| * apps, following statusp. This is per-unit, not per port. |
| */ |
| dd->freezemsg = (char *) status_page; |
| *dd->freezemsg = 0; |
| /* length of msg buffer is "whatever is left" */ |
| ret = (char *) status_page - (char *) dd->pioavailregs_dma; |
| dd->freezelen = PAGE_SIZE - ret; |
| |
| ret = 0; |
| |
| done: |
| return ret; |
| } |
| |
| /** |
| * init_shadow_tids - allocate the shadow TID array |
| * @dd: the qlogic_ib device |
| * |
| * allocate the shadow TID array, so we can qib_munlock previous |
| * entries. It may make more sense to move the pageshadow to the |
| * ctxt data structure, so we only allocate memory for ctxts actually |
| * in use, since we at 8k per ctxt, now. |
| * We don't want failures here to prevent use of the driver/chip, |
| * so no return value. |
| */ |
| static void init_shadow_tids(struct qib_devdata *dd) |
| { |
| struct page **pages; |
| dma_addr_t *addrs; |
| |
| pages = vzalloc(dd->cfgctxts * dd->rcvtidcnt * sizeof(struct page *)); |
| if (!pages) { |
| qib_dev_err(dd, "failed to allocate shadow page * " |
| "array, no expected sends!\n"); |
| goto bail; |
| } |
| |
| addrs = vzalloc(dd->cfgctxts * dd->rcvtidcnt * sizeof(dma_addr_t)); |
| if (!addrs) { |
| qib_dev_err(dd, "failed to allocate shadow dma handle " |
| "array, no expected sends!\n"); |
| goto bail_free; |
| } |
| |
| dd->pageshadow = pages; |
| dd->physshadow = addrs; |
| return; |
| |
| bail_free: |
| vfree(pages); |
| bail: |
| dd->pageshadow = NULL; |
| } |
| |
| /* |
| * Do initialization for device that is only needed on |
| * first detect, not on resets. |
| */ |
| static int loadtime_init(struct qib_devdata *dd) |
| { |
| int ret = 0; |
| |
| if (((dd->revision >> QLOGIC_IB_R_SOFTWARE_SHIFT) & |
| QLOGIC_IB_R_SOFTWARE_MASK) != QIB_CHIP_SWVERSION) { |
| qib_dev_err(dd, "Driver only handles version %d, " |
| "chip swversion is %d (%llx), failng\n", |
| QIB_CHIP_SWVERSION, |
| (int)(dd->revision >> |
| QLOGIC_IB_R_SOFTWARE_SHIFT) & |
| QLOGIC_IB_R_SOFTWARE_MASK, |
| (unsigned long long) dd->revision); |
| ret = -ENOSYS; |
| goto done; |
| } |
| |
| if (dd->revision & QLOGIC_IB_R_EMULATOR_MASK) |
| qib_devinfo(dd->pcidev, "%s", dd->boardversion); |
| |
| spin_lock_init(&dd->pioavail_lock); |
| spin_lock_init(&dd->sendctrl_lock); |
| spin_lock_init(&dd->uctxt_lock); |
| spin_lock_init(&dd->qib_diag_trans_lock); |
| spin_lock_init(&dd->eep_st_lock); |
| mutex_init(&dd->eep_lock); |
| |
| if (qib_mini_init) |
| goto done; |
| |
| ret = init_pioavailregs(dd); |
| init_shadow_tids(dd); |
| |
| qib_get_eeprom_info(dd); |
| |
| /* setup time (don't start yet) to verify we got interrupt */ |
| init_timer(&dd->intrchk_timer); |
| dd->intrchk_timer.function = verify_interrupt; |
| dd->intrchk_timer.data = (unsigned long) dd; |
| |
| done: |
| return ret; |
| } |
| |
| /** |
| * init_after_reset - re-initialize after a reset |
| * @dd: the qlogic_ib device |
| * |
| * sanity check at least some of the values after reset, and |
| * ensure no receive or transmit (explicitly, in case reset |
| * failed |
| */ |
| static int init_after_reset(struct qib_devdata *dd) |
| { |
| int i; |
| |
| /* |
| * Ensure chip does no sends or receives, tail updates, or |
| * pioavail updates while we re-initialize. This is mostly |
| * for the driver data structures, not chip registers. |
| */ |
| for (i = 0; i < dd->num_pports; ++i) { |
| /* |
| * ctxt == -1 means "all contexts". Only really safe for |
| * _dis_abling things, as here. |
| */ |
| dd->f_rcvctrl(dd->pport + i, QIB_RCVCTRL_CTXT_DIS | |
| QIB_RCVCTRL_INTRAVAIL_DIS | |
| QIB_RCVCTRL_TAILUPD_DIS, -1); |
| /* Redundant across ports for some, but no big deal. */ |
| dd->f_sendctrl(dd->pport + i, QIB_SENDCTRL_SEND_DIS | |
| QIB_SENDCTRL_AVAIL_DIS); |
| } |
| |
| return 0; |
| } |
| |
| static void enable_chip(struct qib_devdata *dd) |
| { |
| u64 rcvmask; |
| int i; |
| |
| /* |
| * Enable PIO send, and update of PIOavail regs to memory. |
| */ |
| for (i = 0; i < dd->num_pports; ++i) |
| dd->f_sendctrl(dd->pport + i, QIB_SENDCTRL_SEND_ENB | |
| QIB_SENDCTRL_AVAIL_ENB); |
| /* |
| * Enable kernel ctxts' receive and receive interrupt. |
| * Other ctxts done as user opens and inits them. |
| */ |
| rcvmask = QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_INTRAVAIL_ENB; |
| rcvmask |= (dd->flags & QIB_NODMA_RTAIL) ? |
| QIB_RCVCTRL_TAILUPD_DIS : QIB_RCVCTRL_TAILUPD_ENB; |
| for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) { |
| struct qib_ctxtdata *rcd = dd->rcd[i]; |
| |
| if (rcd) |
| dd->f_rcvctrl(rcd->ppd, rcvmask, i); |
| } |
| dd->freectxts = dd->cfgctxts - dd->first_user_ctxt; |
| } |
| |
| static void verify_interrupt(unsigned long opaque) |
| { |
| struct qib_devdata *dd = (struct qib_devdata *) opaque; |
| |
| if (!dd) |
| return; /* being torn down */ |
| |
| /* |
| * If we don't have a lid or any interrupts, let the user know and |
| * don't bother checking again. |
| */ |
| if (dd->int_counter == 0) { |
| if (!dd->f_intr_fallback(dd)) |
| dev_err(&dd->pcidev->dev, "No interrupts detected, " |
| "not usable.\n"); |
| else /* re-arm the timer to see if fallback works */ |
| mod_timer(&dd->intrchk_timer, jiffies + HZ/2); |
| } |
| } |
| |
| static void init_piobuf_state(struct qib_devdata *dd) |
| { |
| int i, pidx; |
| u32 uctxts; |
| |
| /* |
| * Ensure all buffers are free, and fifos empty. Buffers |
| * are common, so only do once for port 0. |
| * |
| * After enable and qib_chg_pioavailkernel so we can safely |
| * enable pioavail updates and PIOENABLE. After this, packets |
| * are ready and able to go out. |
| */ |
| dd->f_sendctrl(dd->pport, QIB_SENDCTRL_DISARM_ALL); |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) |
| dd->f_sendctrl(dd->pport + pidx, QIB_SENDCTRL_FLUSH); |
| |
| /* |
| * If not all sendbufs are used, add the one to each of the lower |
| * numbered contexts. pbufsctxt and lastctxt_piobuf are |
| * calculated in chip-specific code because it may cause some |
| * chip-specific adjustments to be made. |
| */ |
| uctxts = dd->cfgctxts - dd->first_user_ctxt; |
| dd->ctxts_extrabuf = dd->pbufsctxt ? |
| dd->lastctxt_piobuf - (dd->pbufsctxt * uctxts) : 0; |
| |
| /* |
| * Set up the shadow copies of the piobufavail registers, |
| * which we compare against the chip registers for now, and |
| * the in memory DMA'ed copies of the registers. |
| * By now pioavail updates to memory should have occurred, so |
| * copy them into our working/shadow registers; this is in |
| * case something went wrong with abort, but mostly to get the |
| * initial values of the generation bit correct. |
| */ |
| for (i = 0; i < dd->pioavregs; i++) { |
| __le64 tmp; |
| |
| tmp = dd->pioavailregs_dma[i]; |
| /* |
| * Don't need to worry about pioavailkernel here |
| * because we will call qib_chg_pioavailkernel() later |
| * in initialization, to busy out buffers as needed. |
| */ |
| dd->pioavailshadow[i] = le64_to_cpu(tmp); |
| } |
| while (i < ARRAY_SIZE(dd->pioavailshadow)) |
| dd->pioavailshadow[i++] = 0; /* for debugging sanity */ |
| |
| /* after pioavailshadow is setup */ |
| qib_chg_pioavailkernel(dd, 0, dd->piobcnt2k + dd->piobcnt4k, |
| TXCHK_CHG_TYPE_KERN, NULL); |
| dd->f_initvl15_bufs(dd); |
| } |
| |
| /** |
| * qib_init - do the actual initialization sequence on the chip |
| * @dd: the qlogic_ib device |
| * @reinit: reinitializing, so don't allocate new memory |
| * |
| * Do the actual initialization sequence on the chip. This is done |
| * both from the init routine called from the PCI infrastructure, and |
| * when we reset the chip, or detect that it was reset internally, |
| * or it's administratively re-enabled. |
| * |
| * Memory allocation here and in called routines is only done in |
| * the first case (reinit == 0). We have to be careful, because even |
| * without memory allocation, we need to re-write all the chip registers |
| * TIDs, etc. after the reset or enable has completed. |
| */ |
| int qib_init(struct qib_devdata *dd, int reinit) |
| { |
| int ret = 0, pidx, lastfail = 0; |
| u32 portok = 0; |
| unsigned i; |
| struct qib_ctxtdata *rcd; |
| struct qib_pportdata *ppd; |
| unsigned long flags; |
| |
| /* Set linkstate to unknown, so we can watch for a transition. */ |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| spin_lock_irqsave(&ppd->lflags_lock, flags); |
| ppd->lflags &= ~(QIBL_LINKACTIVE | QIBL_LINKARMED | |
| QIBL_LINKDOWN | QIBL_LINKINIT | |
| QIBL_LINKV); |
| spin_unlock_irqrestore(&ppd->lflags_lock, flags); |
| } |
| |
| if (reinit) |
| ret = init_after_reset(dd); |
| else |
| ret = loadtime_init(dd); |
| if (ret) |
| goto done; |
| |
| /* Bypass most chip-init, to get to device creation */ |
| if (qib_mini_init) |
| return 0; |
| |
| ret = dd->f_late_initreg(dd); |
| if (ret) |
| goto done; |
| |
| /* dd->rcd can be NULL if early init failed */ |
| for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) { |
| /* |
| * Set up the (kernel) rcvhdr queue and egr TIDs. If doing |
| * re-init, the simplest way to handle this is to free |
| * existing, and re-allocate. |
| * Need to re-create rest of ctxt 0 ctxtdata as well. |
| */ |
| rcd = dd->rcd[i]; |
| if (!rcd) |
| continue; |
| |
| lastfail = qib_create_rcvhdrq(dd, rcd); |
| if (!lastfail) |
| lastfail = qib_setup_eagerbufs(rcd); |
| if (lastfail) { |
| qib_dev_err(dd, "failed to allocate kernel ctxt's " |
| "rcvhdrq and/or egr bufs\n"); |
| continue; |
| } |
| } |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| int mtu; |
| if (lastfail) |
| ret = lastfail; |
| ppd = dd->pport + pidx; |
| mtu = ib_mtu_enum_to_int(qib_ibmtu); |
| if (mtu == -1) { |
| mtu = QIB_DEFAULT_MTU; |
| qib_ibmtu = 0; /* don't leave invalid value */ |
| } |
| /* set max we can ever have for this driver load */ |
| ppd->init_ibmaxlen = min(mtu > 2048 ? |
| dd->piosize4k : dd->piosize2k, |
| dd->rcvegrbufsize + |
| (dd->rcvhdrentsize << 2)); |
| /* |
| * Have to initialize ibmaxlen, but this will normally |
| * change immediately in qib_set_mtu(). |
| */ |
| ppd->ibmaxlen = ppd->init_ibmaxlen; |
| qib_set_mtu(ppd, mtu); |
| |
| spin_lock_irqsave(&ppd->lflags_lock, flags); |
| ppd->lflags |= QIBL_IB_LINK_DISABLED; |
| spin_unlock_irqrestore(&ppd->lflags_lock, flags); |
| |
| lastfail = dd->f_bringup_serdes(ppd); |
| if (lastfail) { |
| qib_devinfo(dd->pcidev, |
| "Failed to bringup IB port %u\n", ppd->port); |
| lastfail = -ENETDOWN; |
| continue; |
| } |
| |
| portok++; |
| } |
| |
| if (!portok) { |
| /* none of the ports initialized */ |
| if (!ret && lastfail) |
| ret = lastfail; |
| else if (!ret) |
| ret = -ENETDOWN; |
| /* but continue on, so we can debug cause */ |
| } |
| |
| enable_chip(dd); |
| |
| init_piobuf_state(dd); |
| |
| done: |
| if (!ret) { |
| /* chip is OK for user apps; mark it as initialized */ |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| /* |
| * Set status even if port serdes is not initialized |
| * so that diags will work. |
| */ |
| *ppd->statusp |= QIB_STATUS_CHIP_PRESENT | |
| QIB_STATUS_INITTED; |
| if (!ppd->link_speed_enabled) |
| continue; |
| if (dd->flags & QIB_HAS_SEND_DMA) |
| ret = qib_setup_sdma(ppd); |
| init_timer(&ppd->hol_timer); |
| ppd->hol_timer.function = qib_hol_event; |
| ppd->hol_timer.data = (unsigned long)ppd; |
| ppd->hol_state = QIB_HOL_UP; |
| } |
| |
| /* now we can enable all interrupts from the chip */ |
| dd->f_set_intr_state(dd, 1); |
| |
| /* |
| * Setup to verify we get an interrupt, and fallback |
| * to an alternate if necessary and possible. |
| */ |
| mod_timer(&dd->intrchk_timer, jiffies + HZ/2); |
| /* start stats retrieval timer */ |
| mod_timer(&dd->stats_timer, jiffies + HZ * ACTIVITY_TIMER); |
| } |
| |
| /* if ret is non-zero, we probably should do some cleanup here... */ |
| return ret; |
| } |
| |
| /* |
| * These next two routines are placeholders in case we don't have per-arch |
| * code for controlling write combining. If explicit control of write |
| * combining is not available, performance will probably be awful. |
| */ |
| |
| int __attribute__((weak)) qib_enable_wc(struct qib_devdata *dd) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| void __attribute__((weak)) qib_disable_wc(struct qib_devdata *dd) |
| { |
| } |
| |
| static inline struct qib_devdata *__qib_lookup(int unit) |
| { |
| return idr_find(&qib_unit_table, unit); |
| } |
| |
| struct qib_devdata *qib_lookup(int unit) |
| { |
| struct qib_devdata *dd; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qib_devs_lock, flags); |
| dd = __qib_lookup(unit); |
| spin_unlock_irqrestore(&qib_devs_lock, flags); |
| |
| return dd; |
| } |
| |
| /* |
| * Stop the timers during unit shutdown, or after an error late |
| * in initialization. |
| */ |
| static void qib_stop_timers(struct qib_devdata *dd) |
| { |
| struct qib_pportdata *ppd; |
| int pidx; |
| |
| if (dd->stats_timer.data) { |
| del_timer_sync(&dd->stats_timer); |
| dd->stats_timer.data = 0; |
| } |
| if (dd->intrchk_timer.data) { |
| del_timer_sync(&dd->intrchk_timer); |
| dd->intrchk_timer.data = 0; |
| } |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| if (ppd->hol_timer.data) |
| del_timer_sync(&ppd->hol_timer); |
| if (ppd->led_override_timer.data) { |
| del_timer_sync(&ppd->led_override_timer); |
| atomic_set(&ppd->led_override_timer_active, 0); |
| } |
| if (ppd->symerr_clear_timer.data) |
| del_timer_sync(&ppd->symerr_clear_timer); |
| } |
| } |
| |
| /** |
| * qib_shutdown_device - shut down a device |
| * @dd: the qlogic_ib device |
| * |
| * This is called to make the device quiet when we are about to |
| * unload the driver, and also when the device is administratively |
| * disabled. It does not free any data structures. |
| * Everything it does has to be setup again by qib_init(dd, 1) |
| */ |
| static void qib_shutdown_device(struct qib_devdata *dd) |
| { |
| struct qib_pportdata *ppd; |
| unsigned pidx; |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| |
| spin_lock_irq(&ppd->lflags_lock); |
| ppd->lflags &= ~(QIBL_LINKDOWN | QIBL_LINKINIT | |
| QIBL_LINKARMED | QIBL_LINKACTIVE | |
| QIBL_LINKV); |
| spin_unlock_irq(&ppd->lflags_lock); |
| *ppd->statusp &= ~(QIB_STATUS_IB_CONF | QIB_STATUS_IB_READY); |
| } |
| dd->flags &= ~QIB_INITTED; |
| |
| /* mask interrupts, but not errors */ |
| dd->f_set_intr_state(dd, 0); |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| dd->f_rcvctrl(ppd, QIB_RCVCTRL_TAILUPD_DIS | |
| QIB_RCVCTRL_CTXT_DIS | |
| QIB_RCVCTRL_INTRAVAIL_DIS | |
| QIB_RCVCTRL_PKEY_ENB, -1); |
| /* |
| * Gracefully stop all sends allowing any in progress to |
| * trickle out first. |
| */ |
| dd->f_sendctrl(ppd, QIB_SENDCTRL_CLEAR); |
| } |
| |
| /* |
| * Enough for anything that's going to trickle out to have actually |
| * done so. |
| */ |
| udelay(20); |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| dd->f_setextled(ppd, 0); /* make sure LEDs are off */ |
| |
| if (dd->flags & QIB_HAS_SEND_DMA) |
| qib_teardown_sdma(ppd); |
| |
| dd->f_sendctrl(ppd, QIB_SENDCTRL_AVAIL_DIS | |
| QIB_SENDCTRL_SEND_DIS); |
| /* |
| * Clear SerdesEnable. |
| * We can't count on interrupts since we are stopping. |
| */ |
| dd->f_quiet_serdes(ppd); |
| } |
| |
| qib_update_eeprom_log(dd); |
| } |
| |
| /** |
| * qib_free_ctxtdata - free a context's allocated data |
| * @dd: the qlogic_ib device |
| * @rcd: the ctxtdata structure |
| * |
| * free up any allocated data for a context |
| * This should not touch anything that would affect a simultaneous |
| * re-allocation of context data, because it is called after qib_mutex |
| * is released (and can be called from reinit as well). |
| * It should never change any chip state, or global driver state. |
| */ |
| void qib_free_ctxtdata(struct qib_devdata *dd, struct qib_ctxtdata *rcd) |
| { |
| if (!rcd) |
| return; |
| |
| if (rcd->rcvhdrq) { |
| dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size, |
| rcd->rcvhdrq, rcd->rcvhdrq_phys); |
| rcd->rcvhdrq = NULL; |
| if (rcd->rcvhdrtail_kvaddr) { |
| dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, |
| rcd->rcvhdrtail_kvaddr, |
| rcd->rcvhdrqtailaddr_phys); |
| rcd->rcvhdrtail_kvaddr = NULL; |
| } |
| } |
| if (rcd->rcvegrbuf) { |
| unsigned e; |
| |
| for (e = 0; e < rcd->rcvegrbuf_chunks; e++) { |
| void *base = rcd->rcvegrbuf[e]; |
| size_t size = rcd->rcvegrbuf_size; |
| |
| dma_free_coherent(&dd->pcidev->dev, size, |
| base, rcd->rcvegrbuf_phys[e]); |
| } |
| kfree(rcd->rcvegrbuf); |
| rcd->rcvegrbuf = NULL; |
| kfree(rcd->rcvegrbuf_phys); |
| rcd->rcvegrbuf_phys = NULL; |
| rcd->rcvegrbuf_chunks = 0; |
| } |
| |
| kfree(rcd->tid_pg_list); |
| vfree(rcd->user_event_mask); |
| vfree(rcd->subctxt_uregbase); |
| vfree(rcd->subctxt_rcvegrbuf); |
| vfree(rcd->subctxt_rcvhdr_base); |
| kfree(rcd); |
| } |
| |
| /* |
| * Perform a PIO buffer bandwidth write test, to verify proper system |
| * configuration. Even when all the setup calls work, occasionally |
| * BIOS or other issues can prevent write combining from working, or |
| * can cause other bandwidth problems to the chip. |
| * |
| * This test simply writes the same buffer over and over again, and |
| * measures close to the peak bandwidth to the chip (not testing |
| * data bandwidth to the wire). On chips that use an address-based |
| * trigger to send packets to the wire, this is easy. On chips that |
| * use a count to trigger, we want to make sure that the packet doesn't |
| * go out on the wire, or trigger flow control checks. |
| */ |
| static void qib_verify_pioperf(struct qib_devdata *dd) |
| { |
| u32 pbnum, cnt, lcnt; |
| u32 __iomem *piobuf; |
| u32 *addr; |
| u64 msecs, emsecs; |
| |
| piobuf = dd->f_getsendbuf(dd->pport, 0ULL, &pbnum); |
| if (!piobuf) { |
| qib_devinfo(dd->pcidev, |
| "No PIObufs for checking perf, skipping\n"); |
| return; |
| } |
| |
| /* |
| * Enough to give us a reasonable test, less than piobuf size, and |
| * likely multiple of store buffer length. |
| */ |
| cnt = 1024; |
| |
| addr = vmalloc(cnt); |
| if (!addr) { |
| qib_devinfo(dd->pcidev, |
| "Couldn't get memory for checking PIO perf," |
| " skipping\n"); |
| goto done; |
| } |
| |
| preempt_disable(); /* we want reasonably accurate elapsed time */ |
| msecs = 1 + jiffies_to_msecs(jiffies); |
| for (lcnt = 0; lcnt < 10000U; lcnt++) { |
| /* wait until we cross msec boundary */ |
| if (jiffies_to_msecs(jiffies) >= msecs) |
| break; |
| udelay(1); |
| } |
| |
| dd->f_set_armlaunch(dd, 0); |
| |
| /* |
| * length 0, no dwords actually sent |
| */ |
| writeq(0, piobuf); |
| qib_flush_wc(); |
| |
| /* |
| * This is only roughly accurate, since even with preempt we |
| * still take interrupts that could take a while. Running for |
| * >= 5 msec seems to get us "close enough" to accurate values. |
| */ |
| msecs = jiffies_to_msecs(jiffies); |
| for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) { |
| qib_pio_copy(piobuf + 64, addr, cnt >> 2); |
| emsecs = jiffies_to_msecs(jiffies) - msecs; |
| } |
| |
| /* 1 GiB/sec, slightly over IB SDR line rate */ |
| if (lcnt < (emsecs * 1024U)) |
| qib_dev_err(dd, |
| "Performance problem: bandwidth to PIO buffers is " |
| "only %u MiB/sec\n", |
| lcnt / (u32) emsecs); |
| |
| preempt_enable(); |
| |
| vfree(addr); |
| |
| done: |
| /* disarm piobuf, so it's available again */ |
| dd->f_sendctrl(dd->pport, QIB_SENDCTRL_DISARM_BUF(pbnum)); |
| qib_sendbuf_done(dd, pbnum); |
| dd->f_set_armlaunch(dd, 1); |
| } |
| |
| |
| void qib_free_devdata(struct qib_devdata *dd) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qib_devs_lock, flags); |
| idr_remove(&qib_unit_table, dd->unit); |
| list_del(&dd->list); |
| spin_unlock_irqrestore(&qib_devs_lock, flags); |
| |
| ib_dealloc_device(&dd->verbs_dev.ibdev); |
| } |
| |
| /* |
| * Allocate our primary per-unit data structure. Must be done via verbs |
| * allocator, because the verbs cleanup process both does cleanup and |
| * free of the data structure. |
| * "extra" is for chip-specific data. |
| * |
| * Use the idr mechanism to get a unit number for this unit. |
| */ |
| struct qib_devdata *qib_alloc_devdata(struct pci_dev *pdev, size_t extra) |
| { |
| unsigned long flags; |
| struct qib_devdata *dd; |
| int ret; |
| |
| if (!idr_pre_get(&qib_unit_table, GFP_KERNEL)) { |
| dd = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| dd = (struct qib_devdata *) ib_alloc_device(sizeof(*dd) + extra); |
| if (!dd) { |
| dd = ERR_PTR(-ENOMEM); |
| goto bail; |
| } |
| |
| spin_lock_irqsave(&qib_devs_lock, flags); |
| ret = idr_get_new(&qib_unit_table, dd, &dd->unit); |
| if (ret >= 0) |
| list_add(&dd->list, &qib_dev_list); |
| spin_unlock_irqrestore(&qib_devs_lock, flags); |
| |
| if (ret < 0) { |
| qib_early_err(&pdev->dev, |
| "Could not allocate unit ID: error %d\n", -ret); |
| ib_dealloc_device(&dd->verbs_dev.ibdev); |
| dd = ERR_PTR(ret); |
| goto bail; |
| } |
| |
| if (!qib_cpulist_count) { |
| u32 count = num_online_cpus(); |
| qib_cpulist = kzalloc(BITS_TO_LONGS(count) * |
| sizeof(long), GFP_KERNEL); |
| if (qib_cpulist) |
| qib_cpulist_count = count; |
| else |
| qib_early_err(&pdev->dev, "Could not alloc cpulist " |
| "info, cpu affinity might be wrong\n"); |
| } |
| |
| bail: |
| return dd; |
| } |
| |
| /* |
| * Called from freeze mode handlers, and from PCI error |
| * reporting code. Should be paranoid about state of |
| * system and data structures. |
| */ |
| void qib_disable_after_error(struct qib_devdata *dd) |
| { |
| if (dd->flags & QIB_INITTED) { |
| u32 pidx; |
| |
| dd->flags &= ~QIB_INITTED; |
| if (dd->pport) |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| struct qib_pportdata *ppd; |
| |
| ppd = dd->pport + pidx; |
| if (dd->flags & QIB_PRESENT) { |
| qib_set_linkstate(ppd, |
| QIB_IB_LINKDOWN_DISABLE); |
| dd->f_setextled(ppd, 0); |
| } |
| *ppd->statusp &= ~QIB_STATUS_IB_READY; |
| } |
| } |
| |
| /* |
| * Mark as having had an error for driver, and also |
| * for /sys and status word mapped to user programs. |
| * This marks unit as not usable, until reset. |
| */ |
| if (dd->devstatusp) |
| *dd->devstatusp |= QIB_STATUS_HWERROR; |
| } |
| |
| static void __devexit qib_remove_one(struct pci_dev *); |
| static int __devinit qib_init_one(struct pci_dev *, |
| const struct pci_device_id *); |
| |
| #define DRIVER_LOAD_MSG "QLogic " QIB_DRV_NAME " loaded: " |
| #define PFX QIB_DRV_NAME ": " |
| |
| static const struct pci_device_id qib_pci_tbl[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_QLOGIC_IB_6120) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_IB_7220) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_IB_7322) }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, qib_pci_tbl); |
| |
| struct pci_driver qib_driver = { |
| .name = QIB_DRV_NAME, |
| .probe = qib_init_one, |
| .remove = __devexit_p(qib_remove_one), |
| .id_table = qib_pci_tbl, |
| .err_handler = &qib_pci_err_handler, |
| }; |
| |
| /* |
| * Do all the generic driver unit- and chip-independent memory |
| * allocation and initialization. |
| */ |
| static int __init qlogic_ib_init(void) |
| { |
| int ret; |
| |
| ret = qib_dev_init(); |
| if (ret) |
| goto bail; |
| |
| qib_cq_wq = create_singlethread_workqueue("qib_cq"); |
| if (!qib_cq_wq) { |
| ret = -ENOMEM; |
| goto bail_dev; |
| } |
| |
| /* |
| * These must be called before the driver is registered with |
| * the PCI subsystem. |
| */ |
| idr_init(&qib_unit_table); |
| if (!idr_pre_get(&qib_unit_table, GFP_KERNEL)) { |
| printk(KERN_ERR QIB_DRV_NAME ": idr_pre_get() failed\n"); |
| ret = -ENOMEM; |
| goto bail_cq_wq; |
| } |
| |
| ret = pci_register_driver(&qib_driver); |
| if (ret < 0) { |
| printk(KERN_ERR QIB_DRV_NAME |
| ": Unable to register driver: error %d\n", -ret); |
| goto bail_unit; |
| } |
| |
| /* not fatal if it doesn't work */ |
| if (qib_init_qibfs()) |
| printk(KERN_ERR QIB_DRV_NAME ": Unable to register ipathfs\n"); |
| goto bail; /* all OK */ |
| |
| bail_unit: |
| idr_destroy(&qib_unit_table); |
| bail_cq_wq: |
| destroy_workqueue(qib_cq_wq); |
| bail_dev: |
| qib_dev_cleanup(); |
| bail: |
| return ret; |
| } |
| |
| module_init(qlogic_ib_init); |
| |
| /* |
| * Do the non-unit driver cleanup, memory free, etc. at unload. |
| */ |
| static void __exit qlogic_ib_cleanup(void) |
| { |
| int ret; |
| |
| ret = qib_exit_qibfs(); |
| if (ret) |
| printk(KERN_ERR QIB_DRV_NAME ": " |
| "Unable to cleanup counter filesystem: " |
| "error %d\n", -ret); |
| |
| pci_unregister_driver(&qib_driver); |
| |
| destroy_workqueue(qib_cq_wq); |
| |
| qib_cpulist_count = 0; |
| kfree(qib_cpulist); |
| |
| idr_destroy(&qib_unit_table); |
| qib_dev_cleanup(); |
| } |
| |
| module_exit(qlogic_ib_cleanup); |
| |
| /* this can only be called after a successful initialization */ |
| static void cleanup_device_data(struct qib_devdata *dd) |
| { |
| int ctxt; |
| int pidx; |
| struct qib_ctxtdata **tmp; |
| unsigned long flags; |
| |
| /* users can't do anything more with chip */ |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) |
| if (dd->pport[pidx].statusp) |
| *dd->pport[pidx].statusp &= ~QIB_STATUS_CHIP_PRESENT; |
| |
| if (!qib_wc_pat) |
| qib_disable_wc(dd); |
| |
| if (dd->pioavailregs_dma) { |
| dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, |
| (void *) dd->pioavailregs_dma, |
| dd->pioavailregs_phys); |
| dd->pioavailregs_dma = NULL; |
| } |
| |
| if (dd->pageshadow) { |
| struct page **tmpp = dd->pageshadow; |
| dma_addr_t *tmpd = dd->physshadow; |
| int i, cnt = 0; |
| |
| for (ctxt = 0; ctxt < dd->cfgctxts; ctxt++) { |
| int ctxt_tidbase = ctxt * dd->rcvtidcnt; |
| int maxtid = ctxt_tidbase + dd->rcvtidcnt; |
| |
| for (i = ctxt_tidbase; i < maxtid; i++) { |
| if (!tmpp[i]) |
| continue; |
| pci_unmap_page(dd->pcidev, tmpd[i], |
| PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| qib_release_user_pages(&tmpp[i], 1); |
| tmpp[i] = NULL; |
| cnt++; |
| } |
| } |
| |
| tmpp = dd->pageshadow; |
| dd->pageshadow = NULL; |
| vfree(tmpp); |
| } |
| |
| /* |
| * Free any resources still in use (usually just kernel contexts) |
| * at unload; we do for ctxtcnt, because that's what we allocate. |
| * We acquire lock to be really paranoid that rcd isn't being |
| * accessed from some interrupt-related code (that should not happen, |
| * but best to be sure). |
| */ |
| spin_lock_irqsave(&dd->uctxt_lock, flags); |
| tmp = dd->rcd; |
| dd->rcd = NULL; |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| for (ctxt = 0; tmp && ctxt < dd->ctxtcnt; ctxt++) { |
| struct qib_ctxtdata *rcd = tmp[ctxt]; |
| |
| tmp[ctxt] = NULL; /* debugging paranoia */ |
| qib_free_ctxtdata(dd, rcd); |
| } |
| kfree(tmp); |
| kfree(dd->boardname); |
| } |
| |
| /* |
| * Clean up on unit shutdown, or error during unit load after |
| * successful initialization. |
| */ |
| static void qib_postinit_cleanup(struct qib_devdata *dd) |
| { |
| /* |
| * Clean up chip-specific stuff. |
| * We check for NULL here, because it's outside |
| * the kregbase check, and we need to call it |
| * after the free_irq. Thus it's possible that |
| * the function pointers were never initialized. |
| */ |
| if (dd->f_cleanup) |
| dd->f_cleanup(dd); |
| |
| qib_pcie_ddcleanup(dd); |
| |
| cleanup_device_data(dd); |
| |
| qib_free_devdata(dd); |
| } |
| |
| static int __devinit qib_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int ret, j, pidx, initfail; |
| struct qib_devdata *dd = NULL; |
| |
| ret = qib_pcie_init(pdev, ent); |
| if (ret) |
| goto bail; |
| |
| /* |
| * Do device-specific initialiation, function table setup, dd |
| * allocation, etc. |
| */ |
| switch (ent->device) { |
| case PCI_DEVICE_ID_QLOGIC_IB_6120: |
| #ifdef CONFIG_PCI_MSI |
| dd = qib_init_iba6120_funcs(pdev, ent); |
| #else |
| qib_early_err(&pdev->dev, "QLogic PCIE device 0x%x cannot " |
| "work if CONFIG_PCI_MSI is not enabled\n", |
| ent->device); |
| dd = ERR_PTR(-ENODEV); |
| #endif |
| break; |
| |
| case PCI_DEVICE_ID_QLOGIC_IB_7220: |
| dd = qib_init_iba7220_funcs(pdev, ent); |
| break; |
| |
| case PCI_DEVICE_ID_QLOGIC_IB_7322: |
| dd = qib_init_iba7322_funcs(pdev, ent); |
| break; |
| |
| default: |
| qib_early_err(&pdev->dev, "Failing on unknown QLogic " |
| "deviceid 0x%x\n", ent->device); |
| ret = -ENODEV; |
| } |
| |
| if (IS_ERR(dd)) |
| ret = PTR_ERR(dd); |
| if (ret) |
| goto bail; /* error already printed */ |
| |
| /* do the generic initialization */ |
| initfail = qib_init(dd, 0); |
| |
| ret = qib_register_ib_device(dd); |
| |
| /* |
| * Now ready for use. this should be cleared whenever we |
| * detect a reset, or initiate one. If earlier failure, |
| * we still create devices, so diags, etc. can be used |
| * to determine cause of problem. |
| */ |
| if (!qib_mini_init && !initfail && !ret) |
| dd->flags |= QIB_INITTED; |
| |
| j = qib_device_create(dd); |
| if (j) |
| qib_dev_err(dd, "Failed to create /dev devices: %d\n", -j); |
| j = qibfs_add(dd); |
| if (j) |
| qib_dev_err(dd, "Failed filesystem setup for counters: %d\n", |
| -j); |
| |
| if (qib_mini_init || initfail || ret) { |
| qib_stop_timers(dd); |
| flush_workqueue(ib_wq); |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) |
| dd->f_quiet_serdes(dd->pport + pidx); |
| if (qib_mini_init) |
| goto bail; |
| if (!j) { |
| (void) qibfs_remove(dd); |
| qib_device_remove(dd); |
| } |
| if (!ret) |
| qib_unregister_ib_device(dd); |
| qib_postinit_cleanup(dd); |
| if (initfail) |
| ret = initfail; |
| goto bail; |
| } |
| |
| if (!qib_wc_pat) { |
| ret = qib_enable_wc(dd); |
| if (ret) { |
| qib_dev_err(dd, "Write combining not enabled " |
| "(err %d): performance may be poor\n", |
| -ret); |
| ret = 0; |
| } |
| } |
| |
| qib_verify_pioperf(dd); |
| bail: |
| return ret; |
| } |
| |
| static void __devexit qib_remove_one(struct pci_dev *pdev) |
| { |
| struct qib_devdata *dd = pci_get_drvdata(pdev); |
| int ret; |
| |
| /* unregister from IB core */ |
| qib_unregister_ib_device(dd); |
| |
| /* |
| * Disable the IB link, disable interrupts on the device, |
| * clear dma engines, etc. |
| */ |
| if (!qib_mini_init) |
| qib_shutdown_device(dd); |
| |
| qib_stop_timers(dd); |
| |
| /* wait until all of our (qsfp) queue_work() calls complete */ |
| flush_workqueue(ib_wq); |
| |
| ret = qibfs_remove(dd); |
| if (ret) |
| qib_dev_err(dd, "Failed counters filesystem cleanup: %d\n", |
| -ret); |
| |
| qib_device_remove(dd); |
| |
| qib_postinit_cleanup(dd); |
| } |
| |
| /** |
| * qib_create_rcvhdrq - create a receive header queue |
| * @dd: the qlogic_ib device |
| * @rcd: the context data |
| * |
| * This must be contiguous memory (from an i/o perspective), and must be |
| * DMA'able (which means for some systems, it will go through an IOMMU, |
| * or be forced into a low address range). |
| */ |
| int qib_create_rcvhdrq(struct qib_devdata *dd, struct qib_ctxtdata *rcd) |
| { |
| unsigned amt; |
| |
| if (!rcd->rcvhdrq) { |
| dma_addr_t phys_hdrqtail; |
| gfp_t gfp_flags; |
| |
| amt = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * |
| sizeof(u32), PAGE_SIZE); |
| gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ? |
| GFP_USER : GFP_KERNEL; |
| rcd->rcvhdrq = dma_alloc_coherent( |
| &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys, |
| gfp_flags | __GFP_COMP); |
| |
| if (!rcd->rcvhdrq) { |
| qib_dev_err(dd, "attempt to allocate %d bytes " |
| "for ctxt %u rcvhdrq failed\n", |
| amt, rcd->ctxt); |
| goto bail; |
| } |
| |
| if (rcd->ctxt >= dd->first_user_ctxt) { |
| rcd->user_event_mask = vmalloc_user(PAGE_SIZE); |
| if (!rcd->user_event_mask) |
| goto bail_free_hdrq; |
| } |
| |
| if (!(dd->flags & QIB_NODMA_RTAIL)) { |
| rcd->rcvhdrtail_kvaddr = dma_alloc_coherent( |
| &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail, |
| gfp_flags); |
| if (!rcd->rcvhdrtail_kvaddr) |
| goto bail_free; |
| rcd->rcvhdrqtailaddr_phys = phys_hdrqtail; |
| } |
| |
| rcd->rcvhdrq_size = amt; |
| } |
| |
| /* clear for security and sanity on each use */ |
| memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size); |
| if (rcd->rcvhdrtail_kvaddr) |
| memset(rcd->rcvhdrtail_kvaddr, 0, PAGE_SIZE); |
| return 0; |
| |
| bail_free: |
| qib_dev_err(dd, "attempt to allocate 1 page for ctxt %u " |
| "rcvhdrqtailaddr failed\n", rcd->ctxt); |
| vfree(rcd->user_event_mask); |
| rcd->user_event_mask = NULL; |
| bail_free_hdrq: |
| dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, |
| rcd->rcvhdrq_phys); |
| rcd->rcvhdrq = NULL; |
| bail: |
| return -ENOMEM; |
| } |
| |
| /** |
| * allocate eager buffers, both kernel and user contexts. |
| * @rcd: the context we are setting up. |
| * |
| * Allocate the eager TID buffers and program them into hip. |
| * They are no longer completely contiguous, we do multiple allocation |
| * calls. Otherwise we get the OOM code involved, by asking for too |
| * much per call, with disastrous results on some kernels. |
| */ |
| int qib_setup_eagerbufs(struct qib_ctxtdata *rcd) |
| { |
| struct qib_devdata *dd = rcd->dd; |
| unsigned e, egrcnt, egrperchunk, chunk, egrsize, egroff; |
| size_t size; |
| gfp_t gfp_flags; |
| |
| /* |
| * GFP_USER, but without GFP_FS, so buffer cache can be |
| * coalesced (we hope); otherwise, even at order 4, |
| * heavy filesystem activity makes these fail, and we can |
| * use compound pages. |
| */ |
| gfp_flags = __GFP_WAIT | __GFP_IO | __GFP_COMP; |
| |
| egrcnt = rcd->rcvegrcnt; |
| egroff = rcd->rcvegr_tid_base; |
| egrsize = dd->rcvegrbufsize; |
| |
| chunk = rcd->rcvegrbuf_chunks; |
| egrperchunk = rcd->rcvegrbufs_perchunk; |
| size = rcd->rcvegrbuf_size; |
| if (!rcd->rcvegrbuf) { |
| rcd->rcvegrbuf = |
| kzalloc(chunk * sizeof(rcd->rcvegrbuf[0]), |
| GFP_KERNEL); |
| if (!rcd->rcvegrbuf) |
| goto bail; |
| } |
| if (!rcd->rcvegrbuf_phys) { |
| rcd->rcvegrbuf_phys = |
| kmalloc(chunk * sizeof(rcd->rcvegrbuf_phys[0]), |
| GFP_KERNEL); |
| if (!rcd->rcvegrbuf_phys) |
| goto bail_rcvegrbuf; |
| } |
| for (e = 0; e < rcd->rcvegrbuf_chunks; e++) { |
| if (rcd->rcvegrbuf[e]) |
| continue; |
| rcd->rcvegrbuf[e] = |
| dma_alloc_coherent(&dd->pcidev->dev, size, |
| &rcd->rcvegrbuf_phys[e], |
| gfp_flags); |
| if (!rcd->rcvegrbuf[e]) |
| goto bail_rcvegrbuf_phys; |
| } |
| |
| rcd->rcvegr_phys = rcd->rcvegrbuf_phys[0]; |
| |
| for (e = chunk = 0; chunk < rcd->rcvegrbuf_chunks; chunk++) { |
| dma_addr_t pa = rcd->rcvegrbuf_phys[chunk]; |
| unsigned i; |
| |
| /* clear for security and sanity on each use */ |
| memset(rcd->rcvegrbuf[chunk], 0, size); |
| |
| for (i = 0; e < egrcnt && i < egrperchunk; e++, i++) { |
| dd->f_put_tid(dd, e + egroff + |
| (u64 __iomem *) |
| ((char __iomem *) |
| dd->kregbase + |
| dd->rcvegrbase), |
| RCVHQ_RCV_TYPE_EAGER, pa); |
| pa += egrsize; |
| } |
| cond_resched(); /* don't hog the cpu */ |
| } |
| |
| return 0; |
| |
| bail_rcvegrbuf_phys: |
| for (e = 0; e < rcd->rcvegrbuf_chunks && rcd->rcvegrbuf[e]; e++) |
| dma_free_coherent(&dd->pcidev->dev, size, |
| rcd->rcvegrbuf[e], rcd->rcvegrbuf_phys[e]); |
| kfree(rcd->rcvegrbuf_phys); |
| rcd->rcvegrbuf_phys = NULL; |
| bail_rcvegrbuf: |
| kfree(rcd->rcvegrbuf); |
| rcd->rcvegrbuf = NULL; |
| bail: |
| return -ENOMEM; |
| } |
| |
| /* |
| * Note: Changes to this routine should be mirrored |
| * for the diagnostics routine qib_remap_ioaddr32(). |
| * There is also related code for VL15 buffers in qib_init_7322_variables(). |
| * The teardown code that unmaps is in qib_pcie_ddcleanup() |
| */ |
| int init_chip_wc_pat(struct qib_devdata *dd, u32 vl15buflen) |
| { |
| u64 __iomem *qib_kregbase = NULL; |
| void __iomem *qib_piobase = NULL; |
| u64 __iomem *qib_userbase = NULL; |
| u64 qib_kreglen; |
| u64 qib_pio2koffset = dd->piobufbase & 0xffffffff; |
| u64 qib_pio4koffset = dd->piobufbase >> 32; |
| u64 qib_pio2klen = dd->piobcnt2k * dd->palign; |
| u64 qib_pio4klen = dd->piobcnt4k * dd->align4k; |
| u64 qib_physaddr = dd->physaddr; |
| u64 qib_piolen; |
| u64 qib_userlen = 0; |
| |
| /* |
| * Free the old mapping because the kernel will try to reuse the |
| * old mapping and not create a new mapping with the |
| * write combining attribute. |
| */ |
| iounmap(dd->kregbase); |
| dd->kregbase = NULL; |
| |
| /* |
| * Assumes chip address space looks like: |
| * - kregs + sregs + cregs + uregs (in any order) |
| * - piobufs (2K and 4K bufs in either order) |
| * or: |
| * - kregs + sregs + cregs (in any order) |
| * - piobufs (2K and 4K bufs in either order) |
| * - uregs |
| */ |
| if (dd->piobcnt4k == 0) { |
| qib_kreglen = qib_pio2koffset; |
| qib_piolen = qib_pio2klen; |
| } else if (qib_pio2koffset < qib_pio4koffset) { |
| qib_kreglen = qib_pio2koffset; |
| qib_piolen = qib_pio4koffset + qib_pio4klen - qib_kreglen; |
| } else { |
| qib_kreglen = qib_pio4koffset; |
| qib_piolen = qib_pio2koffset + qib_pio2klen - qib_kreglen; |
| } |
| qib_piolen += vl15buflen; |
| /* Map just the configured ports (not all hw ports) */ |
| if (dd->uregbase > qib_kreglen) |
| qib_userlen = dd->ureg_align * dd->cfgctxts; |
| |
| /* Sanity checks passed, now create the new mappings */ |
| qib_kregbase = ioremap_nocache(qib_physaddr, qib_kreglen); |
| if (!qib_kregbase) |
| goto bail; |
| |
| qib_piobase = ioremap_wc(qib_physaddr + qib_kreglen, qib_piolen); |
| if (!qib_piobase) |
| goto bail_kregbase; |
| |
| if (qib_userlen) { |
| qib_userbase = ioremap_nocache(qib_physaddr + dd->uregbase, |
| qib_userlen); |
| if (!qib_userbase) |
| goto bail_piobase; |
| } |
| |
| dd->kregbase = qib_kregbase; |
| dd->kregend = (u64 __iomem *) |
| ((char __iomem *) qib_kregbase + qib_kreglen); |
| dd->piobase = qib_piobase; |
| dd->pio2kbase = (void __iomem *) |
| (((char __iomem *) dd->piobase) + |
| qib_pio2koffset - qib_kreglen); |
| if (dd->piobcnt4k) |
| dd->pio4kbase = (void __iomem *) |
| (((char __iomem *) dd->piobase) + |
| qib_pio4koffset - qib_kreglen); |
| if (qib_userlen) |
| /* ureg will now be accessed relative to dd->userbase */ |
| dd->userbase = qib_userbase; |
| return 0; |
| |
| bail_piobase: |
| iounmap(qib_piobase); |
| bail_kregbase: |
| iounmap(qib_kregbase); |
| bail: |
| return -ENOMEM; |
| } |