blob: a0f831224f96d176336e19ab26e1094891e7aee5 [file] [log] [blame]
/*
* PowerPC64 atomic bit operations.
* Dave Engebretsen, Todd Inglett, Don Reed, Pat McCarthy, Peter Bergner,
* Anton Blanchard
*
* Originally taken from the 32b PPC code. Modified to use 64b values for
* the various counters & memory references.
*
* Bitops are odd when viewed on big-endian systems. They were designed
* on little endian so the size of the bitset doesn't matter (low order bytes
* come first) as long as the bit in question is valid.
*
* Bits are "tested" often using the C expression (val & (1<<nr)) so we do
* our best to stay compatible with that. The assumption is that val will
* be unsigned long for such tests. As such, we assume the bits are stored
* as an array of unsigned long (the usual case is a single unsigned long,
* of course). Here's an example bitset with bit numbering:
*
* |63..........0|127........64|195.......128|255.......196|
*
* This leads to a problem. If an int, short or char is passed as a bitset
* it will be a bad memory reference since we want to store in chunks
* of unsigned long (64 bits here) size.
*
* There are a few little-endian macros used mostly for filesystem bitmaps,
* these work on similar bit arrays layouts, but byte-oriented:
*
* |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
*
* The main difference is that bit 3-5 in the bit number field needs to be
* reversed compared to the big-endian bit fields. This can be achieved
* by XOR with 0b111000 (0x38).
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _PPC64_BITOPS_H
#define _PPC64_BITOPS_H
#ifdef __KERNEL__
#include <asm/memory.h>
/*
* clear_bit doesn't imply a memory barrier
*/
#define smp_mb__before_clear_bit() smp_mb()
#define smp_mb__after_clear_bit() smp_mb()
static __inline__ int test_bit(unsigned long nr, __const__ volatile unsigned long *addr)
{
return (1UL & (addr[nr >> 6] >> (nr & 63)));
}
static __inline__ void set_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long old;
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
__asm__ __volatile__(
"1: ldarx %0,0,%3 # set_bit\n\
or %0,%0,%2\n\
stdcx. %0,0,%3\n\
bne- 1b"
: "=&r" (old), "=m" (*p)
: "r" (mask), "r" (p), "m" (*p)
: "cc");
}
static __inline__ void clear_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long old;
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
__asm__ __volatile__(
"1: ldarx %0,0,%3 # clear_bit\n\
andc %0,%0,%2\n\
stdcx. %0,0,%3\n\
bne- 1b"
: "=&r" (old), "=m" (*p)
: "r" (mask), "r" (p), "m" (*p)
: "cc");
}
static __inline__ void change_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long old;
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
__asm__ __volatile__(
"1: ldarx %0,0,%3 # change_bit\n\
xor %0,%0,%2\n\
stdcx. %0,0,%3\n\
bne- 1b"
: "=&r" (old), "=m" (*p)
: "r" (mask), "r" (p), "m" (*p)
: "cc");
}
static __inline__ int test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long old, t;
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
__asm__ __volatile__(
EIEIO_ON_SMP
"1: ldarx %0,0,%3 # test_and_set_bit\n\
or %1,%0,%2 \n\
stdcx. %1,0,%3 \n\
bne- 1b"
ISYNC_ON_SMP
: "=&r" (old), "=&r" (t)
: "r" (mask), "r" (p)
: "cc", "memory");
return (old & mask) != 0;
}
static __inline__ int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long old, t;
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
__asm__ __volatile__(
EIEIO_ON_SMP
"1: ldarx %0,0,%3 # test_and_clear_bit\n\
andc %1,%0,%2\n\
stdcx. %1,0,%3\n\
bne- 1b"
ISYNC_ON_SMP
: "=&r" (old), "=&r" (t)
: "r" (mask), "r" (p)
: "cc", "memory");
return (old & mask) != 0;
}
static __inline__ int test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long old, t;
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
__asm__ __volatile__(
EIEIO_ON_SMP
"1: ldarx %0,0,%3 # test_and_change_bit\n\
xor %1,%0,%2\n\
stdcx. %1,0,%3\n\
bne- 1b"
ISYNC_ON_SMP
: "=&r" (old), "=&r" (t)
: "r" (mask), "r" (p)
: "cc", "memory");
return (old & mask) != 0;
}
static __inline__ void set_bits(unsigned long mask, unsigned long *addr)
{
unsigned long old;
__asm__ __volatile__(
"1: ldarx %0,0,%3 # set_bit\n\
or %0,%0,%2\n\
stdcx. %0,0,%3\n\
bne- 1b"
: "=&r" (old), "=m" (*addr)
: "r" (mask), "r" (addr), "m" (*addr)
: "cc");
}
/*
* non-atomic versions
*/
static __inline__ void __set_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
*p |= mask;
}
static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
*p &= ~mask;
}
static __inline__ void __change_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
*p ^= mask;
}
static __inline__ int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *p;
*p = old | mask;
return (old & mask) != 0;
}
static __inline__ int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *p;
*p = old & ~mask;
return (old & mask) != 0;
}
static __inline__ int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
{
unsigned long mask = 1UL << (nr & 0x3f);
unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
unsigned long old = *p;
*p = old ^ mask;
return (old & mask) != 0;
}
/*
* Return the zero-based bit position (from RIGHT TO LEFT, 63 -> 0) of the
* most significant (left-most) 1-bit in a double word.
*/
static __inline__ int __ilog2(unsigned long x)
{
int lz;
asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
return 63 - lz;
}
/*
* Determines the bit position of the least significant (rightmost) 0 bit
* in the specified double word. The returned bit position will be zero-based,
* starting from the right side (63 - 0).
*/
static __inline__ unsigned long ffz(unsigned long x)
{
/* no zero exists anywhere in the 8 byte area. */
if ((x = ~x) == 0)
return 64;
/*
* Calculate the bit position of the least signficant '1' bit in x
* (since x has been changed this will actually be the least signficant
* '0' bit in * the original x). Note: (x & -x) gives us a mask that
* is the least significant * (RIGHT-most) 1-bit of the value in x.
*/
return __ilog2(x & -x);
}
static __inline__ int __ffs(unsigned long x)
{
return __ilog2(x & -x);
}
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static __inline__ int ffs(int x)
{
unsigned long i = (unsigned long)x;
return __ilog2(i & -i) + 1;
}
/*
* fls: find last (most-significant) bit set.
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
*/
#define fls(x) generic_fls(x)
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight64(x) generic_hweight64(x)
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
extern unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
extern unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
#define find_first_bit(addr, size) \
find_next_bit((addr), (size), 0)
extern unsigned long find_next_zero_le_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
#define find_first_zero_le_bit(addr, size) \
find_next_zero_le_bit((addr), (size), 0)
static __inline__ int test_le_bit(unsigned long nr, __const__ unsigned long * addr)
{
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
return (ADDR[nr >> 3] >> (nr & 7)) & 1;
}
#define test_and_clear_le_bit(nr, addr) \
test_and_clear_bit((nr) ^ 0x38, (addr))
#define test_and_set_le_bit(nr, addr) \
test_and_set_bit((nr) ^ 0x38, (addr))
/*
* non-atomic versions
*/
#define __set_le_bit(nr, addr) \
__set_bit((nr) ^ 0x38, (addr))
#define __clear_le_bit(nr, addr) \
__clear_bit((nr) ^ 0x38, (addr))
#define __test_and_clear_le_bit(nr, addr) \
__test_and_clear_bit((nr) ^ 0x38, (addr))
#define __test_and_set_le_bit(nr, addr) \
__test_and_set_bit((nr) ^ 0x38, (addr))
#define ext2_set_bit(nr,addr) \
__test_and_set_le_bit((nr), (unsigned long*)addr)
#define ext2_clear_bit(nr, addr) \
__test_and_clear_le_bit((nr), (unsigned long*)addr)
#define ext2_set_bit_atomic(lock, nr, addr) \
test_and_set_le_bit((nr), (unsigned long*)addr)
#define ext2_clear_bit_atomic(lock, nr, addr) \
test_and_clear_le_bit((nr), (unsigned long*)addr)
#define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
#define ext2_find_first_zero_bit(addr, size) \
find_first_zero_le_bit((unsigned long*)addr, size)
#define ext2_find_next_zero_bit(addr, size, off) \
find_next_zero_le_bit((unsigned long*)addr, size, off)
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
#endif /* __KERNEL__ */
#endif /* _PPC64_BITOPS_H */