| /******************************************************************************* |
| * |
| * (c) 1998 by Computone Corporation |
| * |
| ******************************************************************************** |
| * |
| * |
| * PACKAGE: Linux tty Device Driver for IntelliPort family of multiport |
| * serial I/O controllers. |
| * |
| * DESCRIPTION: Low-level interface code for the device driver |
| * (This is included source code, not a separate compilation |
| * module.) |
| * |
| *******************************************************************************/ |
| //--------------------------------------------- |
| // Function declarations private to this module |
| //--------------------------------------------- |
| // Functions called only indirectly through i2eBordStr entries. |
| |
| static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int); |
| static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int); |
| static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int); |
| static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int); |
| |
| static unsigned short iiReadWord16(i2eBordStrPtr); |
| static unsigned short iiReadWord8(i2eBordStrPtr); |
| static void iiWriteWord16(i2eBordStrPtr, unsigned short); |
| static void iiWriteWord8(i2eBordStrPtr, unsigned short); |
| |
| static int iiWaitForTxEmptyII(i2eBordStrPtr, int); |
| static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int); |
| static int iiTxMailEmptyII(i2eBordStrPtr); |
| static int iiTxMailEmptyIIEX(i2eBordStrPtr); |
| static int iiTrySendMailII(i2eBordStrPtr, unsigned char); |
| static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char); |
| |
| static unsigned short iiGetMailII(i2eBordStrPtr); |
| static unsigned short iiGetMailIIEX(i2eBordStrPtr); |
| |
| static void iiEnableMailIrqII(i2eBordStrPtr); |
| static void iiEnableMailIrqIIEX(i2eBordStrPtr); |
| static void iiWriteMaskII(i2eBordStrPtr, unsigned char); |
| static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char); |
| |
| static void ii2DelayTimer(unsigned int); |
| static void ii2DelayWakeup(unsigned long id); |
| static void ii2Nop(void); |
| |
| //*************** |
| //* Static Data * |
| //*************** |
| |
| static int ii2Safe; // Safe I/O address for delay routine |
| |
| static int iiDelayed; // Set when the iiResetDelay function is |
| // called. Cleared when ANY board is reset. |
| static struct timer_list * pDelayTimer; // Used by iiDelayTimer |
| static wait_queue_head_t pDelayWait; // Used by iiDelayTimer |
| static rwlock_t Dl_spinlock; |
| |
| //******** |
| //* Code * |
| //******** |
| |
| //======================================================= |
| // Initialization Routines |
| // |
| // iiSetAddress |
| // iiReset |
| // iiResetDelay |
| // iiInitialize |
| //======================================================= |
| |
| //****************************************************************************** |
| // Function: iiEllisInit() |
| // Parameters: None |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // This routine performs any required initialization of the iiEllis subsystem. |
| // |
| //****************************************************************************** |
| static void |
| iiEllisInit(void) |
| { |
| pDelayTimer = kmalloc ( sizeof (struct timer_list), GFP_KERNEL ); |
| init_timer(pDelayTimer); |
| init_waitqueue_head(&pDelayWait); |
| LOCK_INIT(&Dl_spinlock); |
| } |
| |
| //****************************************************************************** |
| // Function: iiEllisCleanup() |
| // Parameters: None |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // This routine performs any required cleanup of the iiEllis subsystem. |
| // |
| //****************************************************************************** |
| static void |
| iiEllisCleanup(void) |
| { |
| if ( pDelayTimer != NULL ) { |
| kfree ( pDelayTimer ); |
| } |
| } |
| |
| //****************************************************************************** |
| // Function: iiSetAddress(pB, address, delay) |
| // Parameters: pB - pointer to the board structure |
| // address - the purported I/O address of the board |
| // delay - pointer to the 1-ms delay function to use |
| // in this and any future operations to this board |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // This routine (roughly) checks for address validity, sets the i2eValid OK and |
| // sets the state to II_STATE_COLD which means that we haven't even sent a reset |
| // yet. |
| // |
| //****************************************************************************** |
| static int |
| iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay ) |
| { |
| // Should any failure occur before init is finished... |
| pB->i2eValid = I2E_INCOMPLETE; |
| |
| // Cannot check upper limit except extremely: Might be microchannel |
| // Address must be on an 8-byte boundary |
| |
| if ((unsigned int)address <= 0x100 |
| || (unsigned int)address >= 0xfff8 |
| || (address & 0x7) |
| ) |
| { |
| COMPLETE(pB,I2EE_BADADDR); |
| } |
| |
| // Initialize accelerators |
| pB->i2eBase = address; |
| pB->i2eData = address + FIFO_DATA; |
| pB->i2eStatus = address + FIFO_STATUS; |
| pB->i2ePointer = address + FIFO_PTR; |
| pB->i2eXMail = address + FIFO_MAIL; |
| pB->i2eXMask = address + FIFO_MASK; |
| |
| // Initialize i/o address for ii2DelayIO |
| ii2Safe = address + FIFO_NOP; |
| |
| // Initialize the delay routine |
| pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop); |
| |
| pB->i2eValid = I2E_MAGIC; |
| pB->i2eState = II_STATE_COLD; |
| |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| //****************************************************************************** |
| // Function: iiReset(pB) |
| // Parameters: pB - pointer to the board structure |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Attempts to reset the board (see also i2hw.h). Normally, we would use this to |
| // reset a board immediately after iiSetAddress(), but it is valid to reset a |
| // board from any state, say, in order to change or re-load loadware. (Under |
| // such circumstances, no reason to re-run iiSetAddress(), which is why it is a |
| // separate routine and not included in this routine. |
| // |
| //****************************************************************************** |
| static int |
| iiReset(i2eBordStrPtr pB) |
| { |
| // Magic number should be set, else even the address is suspect |
| if (pB->i2eValid != I2E_MAGIC) |
| { |
| COMPLETE(pB, I2EE_BADMAGIC); |
| } |
| |
| OUTB(pB->i2eBase + FIFO_RESET, 0); // Any data will do |
| iiDelay(pB, 50); // Pause between resets |
| OUTB(pB->i2eBase + FIFO_RESET, 0); // Second reset |
| |
| // We must wait before even attempting to read anything from the FIFO: the |
| // board's P.O.S.T may actually attempt to read and write its end of the |
| // FIFO in order to check flags, loop back (where supported), etc. On |
| // completion of this testing it would reset the FIFO, and on completion |
| // of all // P.O.S.T., write the message. We must not mistake data which |
| // might have been sent for testing as part of the reset message. To |
| // better utilize time, say, when resetting several boards, we allow the |
| // delay to be performed externally; in this way the caller can reset |
| // several boards, delay a single time, then call the initialization |
| // routine for all. |
| |
| pB->i2eState = II_STATE_RESET; |
| |
| iiDelayed = 0; // i.e., the delay routine hasn't been called since the most |
| // recent reset. |
| |
| // Ensure anything which would have been of use to standard loadware is |
| // blanked out, since board has now forgotten everything!. |
| |
| pB->i2eUsingIrq = IRQ_UNDEFINED; // Not set up to use an interrupt yet |
| pB->i2eWaitingForEmptyFifo = 0; |
| pB->i2eOutMailWaiting = 0; |
| pB->i2eChannelPtr = NULL; |
| pB->i2eChannelCnt = 0; |
| |
| pB->i2eLeadoffWord[0] = 0; |
| pB->i2eFifoInInts = 0; |
| pB->i2eFifoOutInts = 0; |
| pB->i2eFatalTrap = NULL; |
| pB->i2eFatal = 0; |
| |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| //****************************************************************************** |
| // Function: iiResetDelay(pB) |
| // Parameters: pB - pointer to the board structure |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Using the delay defined in board structure, waits two seconds (for board to |
| // reset). |
| // |
| //****************************************************************************** |
| static int |
| iiResetDelay(i2eBordStrPtr pB) |
| { |
| if (pB->i2eValid != I2E_MAGIC) { |
| COMPLETE(pB, I2EE_BADMAGIC); |
| } |
| if (pB->i2eState != II_STATE_RESET) { |
| COMPLETE(pB, I2EE_BADSTATE); |
| } |
| iiDelay(pB,2000); /* Now we wait for two seconds. */ |
| iiDelayed = 1; /* Delay has been called: ok to initialize */ |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| //****************************************************************************** |
| // Function: iiInitialize(pB) |
| // Parameters: pB - pointer to the board structure |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Attempts to read the Power-on reset message. Initializes any remaining fields |
| // in the pB structure. |
| // |
| // This should be called as the third step of a process beginning with |
| // iiReset(), then iiResetDelay(). This routine checks to see that the structure |
| // is "valid" and in the reset state, also confirms that the delay routine has |
| // been called since the latest reset (to any board! overly strong!). |
| // |
| //****************************************************************************** |
| static int |
| iiInitialize(i2eBordStrPtr pB) |
| { |
| int itemp; |
| unsigned char c; |
| unsigned short utemp; |
| unsigned int ilimit; |
| |
| if (pB->i2eValid != I2E_MAGIC) |
| { |
| COMPLETE(pB, I2EE_BADMAGIC); |
| } |
| |
| if (pB->i2eState != II_STATE_RESET || !iiDelayed) |
| { |
| COMPLETE(pB, I2EE_BADSTATE); |
| } |
| |
| // In case there is a failure short of our completely reading the power-up |
| // message. |
| pB->i2eValid = I2E_INCOMPLETE; |
| |
| |
| // Now attempt to read the message. |
| |
| for (itemp = 0; itemp < sizeof(porStr); itemp++) |
| { |
| // We expect the entire message is ready. |
| if (HAS_NO_INPUT(pB)) |
| { |
| pB->i2ePomSize = itemp; |
| COMPLETE(pB, I2EE_PORM_SHORT); |
| } |
| |
| pB->i2ePom.c[itemp] = c = BYTE_FROM(pB); |
| |
| // We check the magic numbers as soon as they are supposed to be read |
| // (rather than after) to minimize effect of reading something we |
| // already suspect can't be "us". |
| if ( (itemp == POR_1_INDEX && c != POR_MAGIC_1) || |
| (itemp == POR_2_INDEX && c != POR_MAGIC_2)) |
| { |
| pB->i2ePomSize = itemp+1; |
| COMPLETE(pB, I2EE_BADMAGIC); |
| } |
| } |
| |
| pB->i2ePomSize = itemp; |
| |
| // Ensure that this was all the data... |
| if (HAS_INPUT(pB)) |
| COMPLETE(pB, I2EE_PORM_LONG); |
| |
| // For now, we'll fail to initialize if P.O.S.T reports bad chip mapper: |
| // Implying we will not be able to download any code either: That's ok: the |
| // condition is pretty explicit. |
| if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER) |
| { |
| COMPLETE(pB, I2EE_POSTERR); |
| } |
| |
| // Determine anything which must be done differently depending on the family |
| // of boards! |
| switch (pB->i2ePom.e.porID & POR_ID_FAMILY) |
| { |
| case POR_ID_FII: // IntelliPort-II |
| |
| pB->i2eFifoStyle = FIFO_II; |
| pB->i2eFifoSize = 512; // 512 bytes, always |
| pB->i2eDataWidth16 = NO; |
| |
| pB->i2eMaxIrq = 15; // Because board cannot tell us it is in an 8-bit |
| // slot, we do allow it to be done (documentation!) |
| |
| pB->i2eGoodMap[1] = |
| pB->i2eGoodMap[2] = |
| pB->i2eGoodMap[3] = |
| pB->i2eChannelMap[1] = |
| pB->i2eChannelMap[2] = |
| pB->i2eChannelMap[3] = 0; |
| |
| switch (pB->i2ePom.e.porID & POR_ID_SIZE) |
| { |
| case POR_ID_II_4: |
| pB->i2eGoodMap[0] = |
| pB->i2eChannelMap[0] = 0x0f; // four-port |
| |
| // Since porPorts1 is based on the Hardware ID register, the numbers |
| // should always be consistent for IntelliPort-II. Ditto below... |
| if (pB->i2ePom.e.porPorts1 != 4) |
| { |
| COMPLETE(pB, I2EE_INCONSIST); |
| } |
| break; |
| |
| case POR_ID_II_8: |
| case POR_ID_II_8R: |
| pB->i2eGoodMap[0] = |
| pB->i2eChannelMap[0] = 0xff; // Eight port |
| if (pB->i2ePom.e.porPorts1 != 8) |
| { |
| COMPLETE(pB, I2EE_INCONSIST); |
| } |
| break; |
| |
| case POR_ID_II_6: |
| pB->i2eGoodMap[0] = |
| pB->i2eChannelMap[0] = 0x3f; // Six Port |
| if (pB->i2ePom.e.porPorts1 != 6) |
| { |
| COMPLETE(pB, I2EE_INCONSIST); |
| } |
| break; |
| } |
| |
| // Fix up the "good channel list based on any errors reported. |
| if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1) |
| { |
| pB->i2eGoodMap[0] &= ~0x0f; |
| } |
| |
| if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2) |
| { |
| pB->i2eGoodMap[0] &= ~0xf0; |
| } |
| |
| break; // POR_ID_FII case |
| |
| case POR_ID_FIIEX: // IntelliPort-IIEX |
| |
| pB->i2eFifoStyle = FIFO_IIEX; |
| |
| itemp = pB->i2ePom.e.porFifoSize; |
| |
| // Implicit assumption that fifo would not grow beyond 32k, |
| // nor would ever be less than 256. |
| |
| if (itemp < 8 || itemp > 15) |
| { |
| COMPLETE(pB, I2EE_INCONSIST); |
| } |
| pB->i2eFifoSize = (1 << itemp); |
| |
| // These are based on what P.O.S.T thinks should be there, based on |
| // box ID registers |
| ilimit = pB->i2ePom.e.porNumBoxes; |
| if (ilimit > ABS_MAX_BOXES) |
| { |
| ilimit = ABS_MAX_BOXES; |
| } |
| |
| // For as many boxes as EXIST, gives the type of box. |
| // Added 8/6/93: check for the ISA-4 (asic) which looks like an |
| // expandable but for whom "8 or 16?" is not the right question. |
| |
| utemp = pB->i2ePom.e.porFlags; |
| if (utemp & POR_CEX4) |
| { |
| pB->i2eChannelMap[0] = 0x000f; |
| } else { |
| utemp &= POR_BOXES; |
| for (itemp = 0; itemp < ilimit; itemp++) |
| { |
| pB->i2eChannelMap[itemp] = |
| ((utemp & POR_BOX_16) ? 0xffff : 0x00ff); |
| utemp >>= 1; |
| } |
| } |
| |
| // These are based on what P.O.S.T actually found. |
| |
| utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1; |
| |
| for (itemp = 0; itemp < ilimit; itemp++) |
| { |
| pB->i2eGoodMap[itemp] = 0; |
| if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f; |
| if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0; |
| if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00; |
| if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000; |
| utemp >>= 4; |
| } |
| |
| // Now determine whether we should transfer in 8 or 16-bit mode. |
| switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) ) |
| { |
| case POR_BUS_SLOT16 | POR_BUS_DIP16: |
| pB->i2eDataWidth16 = YES; |
| pB->i2eMaxIrq = 15; |
| break; |
| |
| case POR_BUS_SLOT16: |
| pB->i2eDataWidth16 = NO; |
| pB->i2eMaxIrq = 15; |
| break; |
| |
| case 0: |
| case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care. |
| default: |
| pB->i2eDataWidth16 = NO; |
| pB->i2eMaxIrq = 7; |
| break; |
| } |
| break; // POR_ID_FIIEX case |
| |
| default: // Unknown type of board |
| COMPLETE(pB, I2EE_BAD_FAMILY); |
| break; |
| } // End the switch based on family |
| |
| // Temporarily, claim there is no room in the outbound fifo. |
| // We will maintain this whenever we check for an empty outbound FIFO. |
| pB->i2eFifoRemains = 0; |
| |
| // Now, based on the bus type, should we expect to be able to re-configure |
| // interrupts (say, for testing purposes). |
| switch (pB->i2ePom.e.porBus & POR_BUS_TYPE) |
| { |
| case POR_BUS_T_ISA: |
| case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok. |
| pB->i2eChangeIrq = YES; |
| break; |
| case POR_BUS_T_MCA: |
| case POR_BUS_T_EISA: |
| pB->i2eChangeIrq = NO; |
| break; |
| default: |
| COMPLETE(pB, I2EE_BADBUS); |
| } |
| |
| if (pB->i2eDataWidth16 == YES) |
| { |
| pB->i2eWriteBuf = iiWriteBuf16; |
| pB->i2eReadBuf = iiReadBuf16; |
| pB->i2eWriteWord = iiWriteWord16; |
| pB->i2eReadWord = iiReadWord16; |
| } else { |
| pB->i2eWriteBuf = iiWriteBuf8; |
| pB->i2eReadBuf = iiReadBuf8; |
| pB->i2eWriteWord = iiWriteWord8; |
| pB->i2eReadWord = iiReadWord8; |
| } |
| |
| switch(pB->i2eFifoStyle) |
| { |
| case FIFO_II: |
| pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII; |
| pB->i2eTxMailEmpty = iiTxMailEmptyII; |
| pB->i2eTrySendMail = iiTrySendMailII; |
| pB->i2eGetMail = iiGetMailII; |
| pB->i2eEnableMailIrq = iiEnableMailIrqII; |
| pB->i2eWriteMask = iiWriteMaskII; |
| |
| break; |
| |
| case FIFO_IIEX: |
| pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX; |
| pB->i2eTxMailEmpty = iiTxMailEmptyIIEX; |
| pB->i2eTrySendMail = iiTrySendMailIIEX; |
| pB->i2eGetMail = iiGetMailIIEX; |
| pB->i2eEnableMailIrq = iiEnableMailIrqIIEX; |
| pB->i2eWriteMask = iiWriteMaskIIEX; |
| |
| break; |
| |
| default: |
| COMPLETE(pB, I2EE_INCONSIST); |
| } |
| |
| // Initialize state information. |
| pB->i2eState = II_STATE_READY; // Ready to load loadware. |
| |
| // Some Final cleanup: |
| // For some boards, the bootstrap firmware may perform some sort of test |
| // resulting in a stray character pending in the incoming mailbox. If one is |
| // there, it should be read and discarded, especially since for the standard |
| // firmware, it's the mailbox that interrupts the host. |
| |
| pB->i2eStartMail = iiGetMail(pB); |
| |
| // Throw it away and clear the mailbox structure element |
| pB->i2eStartMail = NO_MAIL_HERE; |
| |
| // Everything is ok now, return with good status/ |
| |
| pB->i2eValid = I2E_MAGIC; |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| //======================================================= |
| // Delay Routines |
| // |
| // iiDelayIO |
| // iiNop |
| //======================================================= |
| |
| static void |
| ii2DelayWakeup(unsigned long id) |
| { |
| wake_up_interruptible ( &pDelayWait ); |
| } |
| |
| //****************************************************************************** |
| // Function: ii2DelayTimer(mseconds) |
| // Parameters: mseconds - number of milliseconds to delay |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // This routine delays for approximately mseconds milliseconds and is intended |
| // to be called indirectly through i2Delay field in i2eBordStr. It uses the |
| // Linux timer_list mechanism. |
| // |
| // The Linux timers use a unit called "jiffies" which are 10mS in the Intel |
| // architecture. This function rounds the delay period up to the next "jiffy". |
| // In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended |
| // for Alpha platforms at this time. |
| // |
| //****************************************************************************** |
| static void |
| ii2DelayTimer(unsigned int mseconds) |
| { |
| wait_queue_t wait; |
| |
| init_waitqueue_entry(&wait, current); |
| |
| init_timer ( pDelayTimer ); |
| |
| add_wait_queue(&pDelayWait, &wait); |
| |
| set_current_state( TASK_INTERRUPTIBLE ); |
| |
| pDelayTimer->expires = jiffies + ( mseconds + 9 ) / 10; |
| pDelayTimer->function = ii2DelayWakeup; |
| pDelayTimer->data = 0; |
| |
| add_timer ( pDelayTimer ); |
| |
| schedule(); |
| |
| set_current_state( TASK_RUNNING ); |
| remove_wait_queue(&pDelayWait, &wait); |
| |
| del_timer ( pDelayTimer ); |
| } |
| |
| #if 0 |
| //static void ii2DelayIO(unsigned int); |
| //****************************************************************************** |
| // !!! Not Used, this is DOS crap, some of you young folks may be interested in |
| // in how things were done in the stone age of caculating machines !!! |
| // Function: ii2DelayIO(mseconds) |
| // Parameters: mseconds - number of milliseconds to delay |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // This routine delays for approximately mseconds milliseconds and is intended |
| // to be called indirectly through i2Delay field in i2eBordStr. It is intended |
| // for use where a clock-based function is impossible: for example, DOS drivers. |
| // |
| // This function uses the IN instruction to place bounds on the timing and |
| // assumes that ii2Safe has been set. This is because I/O instructions are not |
| // subject to caching and will therefore take a certain minimum time. To ensure |
| // the delay is at least long enough on fast machines, it is based on some |
| // fastest-case calculations. On slower machines this may cause VERY long |
| // delays. (3 x fastest case). In the fastest case, everything is cached except |
| // the I/O instruction itself. |
| // |
| // Timing calculations: |
| // The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O |
| // operation in question is a byte operation to an odd address. For 8-bit |
| // operations, the architecture generally enforces two wait states. At 10 MHz, a |
| // single cycle time is 100nS. A read operation at two wait states takes 6 |
| // cycles for a total time of 600nS. Therefore approximately 1666 iterations |
| // would be required to generate a single millisecond delay. The worst |
| // (reasonable) case would be an 8MHz system with no cacheing. In this case, the |
| // I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code |
| // fetch of other instructions in the loop would take time (zero wait states, |
| // however) and would be hard to estimate. This is minimized by using in-line |
| // assembler for the in inner loop of IN instructions. This consists of just a |
| // few bytes. So we'll guess about four code fetches per loop. Each code fetch |
| // should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is |
| // that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS. |
| // |
| // So much for theoretical timings: results using 1666 value on some actual |
| // machines: |
| // IBM 286 6MHz 3.15 mS |
| // Zenith 386 33MHz 2.45 mS |
| // (brandX) 386 33MHz 1.90 mS (has cache) |
| // (brandY) 486 33MHz 2.35 mS |
| // NCR 486 ?? 1.65 mS (microchannel) |
| // |
| // For most machines, it is probably safe to scale this number back (remember, |
| // for robust operation use an actual timed delay if possible), so we are using |
| // a value of 1190. This yields 1.17 mS for the fastest machine in our sample, |
| // 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine. |
| // |
| // 1/29/93: |
| // The above timings are too slow. Actual cycle times might be faster. ISA cycle |
| // times could approach 500 nS, and ... |
| // The IBM model 77 being microchannel has no wait states for 8-bit reads and |
| // seems to be accessing the I/O at 440 nS per access (from start of one to |
| // start of next). This would imply we need 1000/.440 = 2272 iterations to |
| // guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in |
| // fact enough. For diagnostics, we keep the level at 1190, but developers note |
| // this needs tuning. |
| // |
| // Safe assumption: 2270 i/o reads = 1 millisecond |
| // |
| //****************************************************************************** |
| |
| |
| static int ii2DelValue = 1190; // See timing calculations below |
| // 1666 for fastest theoretical machine |
| // 1190 safe for most fast 386 machines |
| // 1000 for fastest machine tested here |
| // 540 (sic) for AT286/6Mhz |
| static void |
| ii2DelayIO(unsigned int mseconds) |
| { |
| if (!ii2Safe) |
| return; /* Do nothing if this variable uninitialized */ |
| |
| while(mseconds--) { |
| int i = ii2DelValue; |
| while ( i-- ) { |
| INB ( ii2Safe ); |
| } |
| } |
| } |
| #endif |
| |
| //****************************************************************************** |
| // Function: ii2Nop() |
| // Parameters: None |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // iiInitialize will set i2eDelay to this if the delay parameter is NULL. This |
| // saves checking for a NULL pointer at every call. |
| //****************************************************************************** |
| static void |
| ii2Nop(void) |
| { |
| return; // no mystery here |
| } |
| |
| //======================================================= |
| // Routines which are available in 8/16-bit versions, or |
| // in different fifo styles. These are ALL called |
| // indirectly through the board structure. |
| //======================================================= |
| |
| //****************************************************************************** |
| // Function: iiWriteBuf16(pB, address, count) |
| // Parameters: pB - pointer to board structure |
| // address - address of data to write |
| // count - number of data bytes to write |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Writes 'count' bytes from 'address' to the data fifo specified by the board |
| // structure pointer pB. Should count happen to be odd, an extra pad byte is |
| // sent (identity unknown...). Uses 16-bit (word) operations. Is called |
| // indirectly through pB->i2eWriteBuf. |
| // |
| //****************************************************************************** |
| static int |
| iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count) |
| { |
| // Rudimentary sanity checking here. |
| if (pB->i2eValid != I2E_MAGIC) |
| COMPLETE(pB, I2EE_INVALID); |
| |
| OUTSW ( pB->i2eData, address, count); |
| |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| //****************************************************************************** |
| // Function: iiWriteBuf8(pB, address, count) |
| // Parameters: pB - pointer to board structure |
| // address - address of data to write |
| // count - number of data bytes to write |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Writes 'count' bytes from 'address' to the data fifo specified by the board |
| // structure pointer pB. Should count happen to be odd, an extra pad byte is |
| // sent (identity unknown...). This is to be consistent with the 16-bit version. |
| // Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf. |
| // |
| //****************************************************************************** |
| static int |
| iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count) |
| { |
| /* Rudimentary sanity checking here */ |
| if (pB->i2eValid != I2E_MAGIC) |
| COMPLETE(pB, I2EE_INVALID); |
| |
| OUTSB ( pB->i2eData, address, count ); |
| |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| //****************************************************************************** |
| // Function: iiReadBuf16(pB, address, count) |
| // Parameters: pB - pointer to board structure |
| // address - address to put data read |
| // count - number of data bytes to read |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Reads 'count' bytes into 'address' from the data fifo specified by the board |
| // structure pointer pB. Should count happen to be odd, an extra pad byte is |
| // received (identity unknown...). Uses 16-bit (word) operations. Is called |
| // indirectly through pB->i2eReadBuf. |
| // |
| //****************************************************************************** |
| static int |
| iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count) |
| { |
| // Rudimentary sanity checking here. |
| if (pB->i2eValid != I2E_MAGIC) |
| COMPLETE(pB, I2EE_INVALID); |
| |
| INSW ( pB->i2eData, address, count); |
| |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| //****************************************************************************** |
| // Function: iiReadBuf8(pB, address, count) |
| // Parameters: pB - pointer to board structure |
| // address - address to put data read |
| // count - number of data bytes to read |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Reads 'count' bytes into 'address' from the data fifo specified by the board |
| // structure pointer pB. Should count happen to be odd, an extra pad byte is |
| // received (identity unknown...). This to match the 16-bit behaviour. Uses |
| // 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf. |
| // |
| //****************************************************************************** |
| static int |
| iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count) |
| { |
| // Rudimentary sanity checking here. |
| if (pB->i2eValid != I2E_MAGIC) |
| COMPLETE(pB, I2EE_INVALID); |
| |
| INSB ( pB->i2eData, address, count); |
| |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| //****************************************************************************** |
| // Function: iiReadWord16(pB) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Returns the word read from the data fifo specified by the board-structure |
| // pointer pB. Uses a 16-bit operation. Is called indirectly through |
| // pB->i2eReadWord. |
| // |
| //****************************************************************************** |
| static unsigned short |
| iiReadWord16(i2eBordStrPtr pB) |
| { |
| return (unsigned short)( INW(pB->i2eData) ); |
| } |
| |
| //****************************************************************************** |
| // Function: iiReadWord8(pB) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Returns the word read from the data fifo specified by the board-structure |
| // pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is |
| // called indirectly through pB->i2eReadWord. |
| // |
| //****************************************************************************** |
| static unsigned short |
| iiReadWord8(i2eBordStrPtr pB) |
| { |
| unsigned short urs; |
| |
| urs = INB ( pB->i2eData ); |
| |
| return ( ( INB ( pB->i2eData ) << 8 ) | urs ); |
| } |
| |
| //****************************************************************************** |
| // Function: iiWriteWord16(pB, value) |
| // Parameters: pB - pointer to board structure |
| // value - data to write |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Writes the word 'value' to the data fifo specified by the board-structure |
| // pointer pB. Uses 16-bit operation. Is called indirectly through |
| // pB->i2eWriteWord. |
| // |
| //****************************************************************************** |
| static void |
| iiWriteWord16(i2eBordStrPtr pB, unsigned short value) |
| { |
| WORD_TO(pB, (int)value); |
| } |
| |
| //****************************************************************************** |
| // Function: iiWriteWord8(pB, value) |
| // Parameters: pB - pointer to board structure |
| // value - data to write |
| // |
| // Returns: True if everything appears copacetic. |
| // False if there is any error: the pB->i2eError field has the error |
| // |
| // Description: |
| // |
| // Writes the word 'value' to the data fifo specified by the board-structure |
| // pointer pB. Uses two 8-bit operations (writes LSB first). Is called |
| // indirectly through pB->i2eWriteWord. |
| // |
| //****************************************************************************** |
| static void |
| iiWriteWord8(i2eBordStrPtr pB, unsigned short value) |
| { |
| BYTE_TO(pB, (char)value); |
| BYTE_TO(pB, (char)(value >> 8) ); |
| } |
| |
| //****************************************************************************** |
| // Function: iiWaitForTxEmptyII(pB, mSdelay) |
| // Parameters: pB - pointer to board structure |
| // mSdelay - period to wait before returning |
| // |
| // Returns: True if the FIFO is empty. |
| // False if it not empty in the required time: the pB->i2eError |
| // field has the error. |
| // |
| // Description: |
| // |
| // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if |
| // not empty by the required time, returns false and error in pB->i2eError, |
| // otherwise returns true. |
| // |
| // mSdelay == 0 is taken to mean must be empty on the first test. |
| // |
| // This version operates on IntelliPort-II - style FIFO's |
| // |
| // Note this routine is organized so that if status is ok there is no delay at |
| // all called either before or after the test. Is called indirectly through |
| // pB->i2eWaitForTxEmpty. |
| // |
| //****************************************************************************** |
| static int |
| iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay) |
| { |
| unsigned long flags; |
| int itemp; |
| |
| for (;;) |
| { |
| // This routine hinges on being able to see the "other" status register |
| // (as seen by the local processor). His incoming fifo is our outgoing |
| // FIFO. |
| // |
| // By the nature of this routine, you would be using this as part of a |
| // larger atomic context: i.e., you would use this routine to ensure the |
| // fifo empty, then act on this information. Between these two halves, |
| // you will generally not want to service interrupts or in any way |
| // disrupt the assumptions implicit in the larger context. |
| // |
| // Even worse, however, this routine "shifts" the status register to |
| // point to the local status register which is not the usual situation. |
| // Therefore for extra safety, we force the critical section to be |
| // completely atomic, and pick up after ourselves before allowing any |
| // interrupts of any kind. |
| |
| |
| WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags) |
| OUTB(pB->i2ePointer, SEL_COMMAND); |
| OUTB(pB->i2ePointer, SEL_CMD_SH); |
| |
| itemp = INB(pB->i2eStatus); |
| |
| OUTB(pB->i2ePointer, SEL_COMMAND); |
| OUTB(pB->i2ePointer, SEL_CMD_UNSH); |
| |
| if (itemp & ST_IN_EMPTY) |
| { |
| UPDATE_FIFO_ROOM(pB); |
| WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| |
| WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) |
| |
| if (mSdelay-- == 0) |
| break; |
| |
| iiDelay(pB, 1); /* 1 mS granularity on checking condition */ |
| } |
| COMPLETE(pB, I2EE_TXE_TIME); |
| } |
| |
| //****************************************************************************** |
| // Function: iiWaitForTxEmptyIIEX(pB, mSdelay) |
| // Parameters: pB - pointer to board structure |
| // mSdelay - period to wait before returning |
| // |
| // Returns: True if the FIFO is empty. |
| // False if it not empty in the required time: the pB->i2eError |
| // field has the error. |
| // |
| // Description: |
| // |
| // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if |
| // not empty by the required time, returns false and error in pB->i2eError, |
| // otherwise returns true. |
| // |
| // mSdelay == 0 is taken to mean must be empty on the first test. |
| // |
| // This version operates on IntelliPort-IIEX - style FIFO's |
| // |
| // Note this routine is organized so that if status is ok there is no delay at |
| // all called either before or after the test. Is called indirectly through |
| // pB->i2eWaitForTxEmpty. |
| // |
| //****************************************************************************** |
| static int |
| iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay) |
| { |
| unsigned long flags; |
| |
| for (;;) |
| { |
| // By the nature of this routine, you would be using this as part of a |
| // larger atomic context: i.e., you would use this routine to ensure the |
| // fifo empty, then act on this information. Between these two halves, |
| // you will generally not want to service interrupts or in any way |
| // disrupt the assumptions implicit in the larger context. |
| |
| WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags) |
| |
| if (INB(pB->i2eStatus) & STE_OUT_MT) { |
| UPDATE_FIFO_ROOM(pB); |
| WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) |
| COMPLETE(pB, I2EE_GOOD); |
| } |
| WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) |
| |
| if (mSdelay-- == 0) |
| break; |
| |
| iiDelay(pB, 1); // 1 mS granularity on checking condition |
| } |
| COMPLETE(pB, I2EE_TXE_TIME); |
| } |
| |
| //****************************************************************************** |
| // Function: iiTxMailEmptyII(pB) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: True if the transmit mailbox is empty. |
| // False if it not empty. |
| // |
| // Description: |
| // |
| // Returns true or false according to whether the transmit mailbox is empty (and |
| // therefore able to accept more mail) |
| // |
| // This version operates on IntelliPort-II - style FIFO's |
| // |
| //****************************************************************************** |
| static int |
| iiTxMailEmptyII(i2eBordStrPtr pB) |
| { |
| int port = pB->i2ePointer; |
| OUTB ( port, SEL_OUTMAIL ); |
| return ( INB(port) == 0 ); |
| } |
| |
| //****************************************************************************** |
| // Function: iiTxMailEmptyIIEX(pB) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: True if the transmit mailbox is empty. |
| // False if it not empty. |
| // |
| // Description: |
| // |
| // Returns true or false according to whether the transmit mailbox is empty (and |
| // therefore able to accept more mail) |
| // |
| // This version operates on IntelliPort-IIEX - style FIFO's |
| // |
| //****************************************************************************** |
| static int |
| iiTxMailEmptyIIEX(i2eBordStrPtr pB) |
| { |
| return !(INB(pB->i2eStatus) & STE_OUT_MAIL); |
| } |
| |
| //****************************************************************************** |
| // Function: iiTrySendMailII(pB,mail) |
| // Parameters: pB - pointer to board structure |
| // mail - value to write to mailbox |
| // |
| // Returns: True if the transmit mailbox is empty, and mail is sent. |
| // False if it not empty. |
| // |
| // Description: |
| // |
| // If outgoing mailbox is empty, sends mail and returns true. If outgoing |
| // mailbox is not empty, returns false. |
| // |
| // This version operates on IntelliPort-II - style FIFO's |
| // |
| //****************************************************************************** |
| static int |
| iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail) |
| { |
| int port = pB->i2ePointer; |
| |
| OUTB(port, SEL_OUTMAIL); |
| if (INB(port) == 0) { |
| OUTB(port, SEL_OUTMAIL); |
| OUTB(port, mail); |
| return 1; |
| } |
| return 0; |
| } |
| |
| //****************************************************************************** |
| // Function: iiTrySendMailIIEX(pB,mail) |
| // Parameters: pB - pointer to board structure |
| // mail - value to write to mailbox |
| // |
| // Returns: True if the transmit mailbox is empty, and mail is sent. |
| // False if it not empty. |
| // |
| // Description: |
| // |
| // If outgoing mailbox is empty, sends mail and returns true. If outgoing |
| // mailbox is not empty, returns false. |
| // |
| // This version operates on IntelliPort-IIEX - style FIFO's |
| // |
| //****************************************************************************** |
| static int |
| iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail) |
| { |
| if(INB(pB->i2eStatus) & STE_OUT_MAIL) { |
| return 0; |
| } |
| OUTB(pB->i2eXMail, mail); |
| return 1; |
| } |
| |
| //****************************************************************************** |
| // Function: iiGetMailII(pB,mail) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: Mailbox data or NO_MAIL_HERE. |
| // |
| // Description: |
| // |
| // If no mail available, returns NO_MAIL_HERE otherwise returns the data from |
| // the mailbox, which is guaranteed != NO_MAIL_HERE. |
| // |
| // This version operates on IntelliPort-II - style FIFO's |
| // |
| //****************************************************************************** |
| static unsigned short |
| iiGetMailII(i2eBordStrPtr pB) |
| { |
| if (HAS_MAIL(pB)) { |
| OUTB(pB->i2ePointer, SEL_INMAIL); |
| return INB(pB->i2ePointer); |
| } else { |
| return NO_MAIL_HERE; |
| } |
| } |
| |
| //****************************************************************************** |
| // Function: iiGetMailIIEX(pB,mail) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: Mailbox data or NO_MAIL_HERE. |
| // |
| // Description: |
| // |
| // If no mail available, returns NO_MAIL_HERE otherwise returns the data from |
| // the mailbox, which is guaranteed != NO_MAIL_HERE. |
| // |
| // This version operates on IntelliPort-IIEX - style FIFO's |
| // |
| //****************************************************************************** |
| static unsigned short |
| iiGetMailIIEX(i2eBordStrPtr pB) |
| { |
| if (HAS_MAIL(pB)) { |
| return INB(pB->i2eXMail); |
| } else { |
| return NO_MAIL_HERE; |
| } |
| } |
| |
| //****************************************************************************** |
| // Function: iiEnableMailIrqII(pB) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // Enables board to interrupt host (only) by writing to host's in-bound mailbox. |
| // |
| // This version operates on IntelliPort-II - style FIFO's |
| // |
| //****************************************************************************** |
| static void |
| iiEnableMailIrqII(i2eBordStrPtr pB) |
| { |
| OUTB(pB->i2ePointer, SEL_MASK); |
| OUTB(pB->i2ePointer, ST_IN_MAIL); |
| } |
| |
| //****************************************************************************** |
| // Function: iiEnableMailIrqIIEX(pB) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // Enables board to interrupt host (only) by writing to host's in-bound mailbox. |
| // |
| // This version operates on IntelliPort-IIEX - style FIFO's |
| // |
| //****************************************************************************** |
| static void |
| iiEnableMailIrqIIEX(i2eBordStrPtr pB) |
| { |
| OUTB(pB->i2eXMask, MX_IN_MAIL); |
| } |
| |
| //****************************************************************************** |
| // Function: iiWriteMaskII(pB) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // Writes arbitrary value to the mask register. |
| // |
| // This version operates on IntelliPort-II - style FIFO's |
| // |
| //****************************************************************************** |
| static void |
| iiWriteMaskII(i2eBordStrPtr pB, unsigned char value) |
| { |
| OUTB(pB->i2ePointer, SEL_MASK); |
| OUTB(pB->i2ePointer, value); |
| } |
| |
| //****************************************************************************** |
| // Function: iiWriteMaskIIEX(pB) |
| // Parameters: pB - pointer to board structure |
| // |
| // Returns: Nothing |
| // |
| // Description: |
| // |
| // Writes arbitrary value to the mask register. |
| // |
| // This version operates on IntelliPort-IIEX - style FIFO's |
| // |
| //****************************************************************************** |
| static void |
| iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value) |
| { |
| OUTB(pB->i2eXMask, value); |
| } |
| |
| //****************************************************************************** |
| // Function: iiDownloadBlock(pB, pSource, isStandard) |
| // Parameters: pB - pointer to board structure |
| // pSource - loadware block to download |
| // isStandard - True if "standard" loadware, else false. |
| // |
| // Returns: Success or Failure |
| // |
| // Description: |
| // |
| // Downloads a single block (at pSource)to the board referenced by pB. Caller |
| // sets isStandard to true/false according to whether the "standard" loadware is |
| // what's being loaded. The normal process, then, is to perform an iiInitialize |
| // to the board, then perform some number of iiDownloadBlocks using the returned |
| // state to determine when download is complete. |
| // |
| // Possible return values: (see I2ELLIS.H) |
| // II_DOWN_BADVALID |
| // II_DOWN_BADFILE |
| // II_DOWN_CONTINUING |
| // II_DOWN_GOOD |
| // II_DOWN_BAD |
| // II_DOWN_BADSTATE |
| // II_DOWN_TIMEOUT |
| // |
| // Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to |
| // determine whether this is the first block, whether to check for magic |
| // numbers, how many blocks there are to go... |
| // |
| //****************************************************************************** |
| static int |
| iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard) |
| { |
| int itemp; |
| int loadedFirst; |
| |
| if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID; |
| |
| switch(pB->i2eState) |
| { |
| case II_STATE_READY: |
| |
| // Loading the first block after reset. Must check the magic number of the |
| // loadfile, store the number of blocks we expect to load. |
| if (pSource->e.loadMagic != MAGIC_LOADFILE) |
| { |
| return II_DOWN_BADFILE; |
| } |
| |
| // Next we store the total number of blocks to load, including this one. |
| pB->i2eToLoad = 1 + pSource->e.loadBlocksMore; |
| |
| // Set the state, store the version numbers. ('Cause this may have come |
| // from a file - we might want to report these versions and revisions in |
| // case of an error! |
| pB->i2eState = II_STATE_LOADING; |
| pB->i2eLVersion = pSource->e.loadVersion; |
| pB->i2eLRevision = pSource->e.loadRevision; |
| pB->i2eLSub = pSource->e.loadSubRevision; |
| |
| // The time and date of compilation is also available but don't bother |
| // storing it for normal purposes. |
| loadedFirst = 1; |
| break; |
| |
| case II_STATE_LOADING: |
| loadedFirst = 0; |
| break; |
| |
| default: |
| return II_DOWN_BADSTATE; |
| } |
| |
| // Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad |
| // must be positive still, because otherwise we would have cleaned up last |
| // time and set the state to II_STATE_LOADED. |
| if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) { |
| return II_DOWN_TIMEOUT; |
| } |
| |
| if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) { |
| return II_DOWN_BADVALID; |
| } |
| |
| // If we just loaded the first block, wait for the fifo to empty an extra |
| // long time to allow for any special startup code in the firmware, like |
| // sending status messages to the LCD's. |
| |
| if (loadedFirst) { |
| if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) { |
| return II_DOWN_TIMEOUT; |
| } |
| } |
| |
| // Determine whether this was our last block! |
| if (--(pB->i2eToLoad)) { |
| return II_DOWN_CONTINUING; // more to come... |
| } |
| |
| // It WAS our last block: Clean up operations... |
| // ...Wait for last buffer to drain from the board... |
| if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) { |
| return II_DOWN_TIMEOUT; |
| } |
| // If there were only a single block written, this would come back |
| // immediately and be harmless, though not strictly necessary. |
| itemp = MAX_DLOAD_ACK_TIME/10; |
| while (--itemp) { |
| if (HAS_INPUT(pB)) { |
| switch(BYTE_FROM(pB)) |
| { |
| case LOADWARE_OK: |
| pB->i2eState = |
| isStandard ? II_STATE_STDLOADED :II_STATE_LOADED; |
| |
| // Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2) |
| // will, // if there is a debug port attached, require some |
| // time to send information to the debug port now. It will do |
| // this before // executing any of the code we just downloaded. |
| // It may take up to 700 milliseconds. |
| if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) { |
| iiDelay(pB, 700); |
| } |
| |
| return II_DOWN_GOOD; |
| |
| case LOADWARE_BAD: |
| default: |
| return II_DOWN_BAD; |
| } |
| } |
| |
| iiDelay(pB, 10); // 10 mS granularity on checking condition |
| } |
| |
| // Drop-through --> timed out waiting for firmware confirmation |
| |
| pB->i2eState = II_STATE_BADLOAD; |
| return II_DOWN_TIMEOUT; |
| } |
| |
| //****************************************************************************** |
| // Function: iiDownloadAll(pB, pSource, isStandard, size) |
| // Parameters: pB - pointer to board structure |
| // pSource - loadware block to download |
| // isStandard - True if "standard" loadware, else false. |
| // size - size of data to download (in bytes) |
| // |
| // Returns: Success or Failure |
| // |
| // Description: |
| // |
| // Given a pointer to a board structure, a pointer to the beginning of some |
| // loadware, whether it is considered the "standard loadware", and the size of |
| // the array in bytes loads the entire array to the board as loadware. |
| // |
| // Assumes the board has been freshly reset and the power-up reset message read. |
| // (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be |
| // too much or too little data to load, or if iiDownloadBlock complains. |
| //****************************************************************************** |
| static int |
| iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size) |
| { |
| int status; |
| |
| // We know (from context) board should be ready for the first block of |
| // download. Complain if not. |
| if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE; |
| |
| while (size > 0) { |
| size -= LOADWARE_BLOCK_SIZE; // How much data should there be left to |
| // load after the following operation ? |
| |
| // Note we just bump pSource by "one", because its size is actually that |
| // of an entire block, same as LOADWARE_BLOCK_SIZE. |
| status = iiDownloadBlock(pB, pSource++, isStandard); |
| |
| switch(status) |
| { |
| case II_DOWN_GOOD: |
| return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD); |
| |
| case II_DOWN_CONTINUING: |
| break; |
| |
| default: |
| return status; |
| } |
| } |
| |
| // We shouldn't drop out: it means "while" caught us with nothing left to |
| // download, yet the previous DownloadBlock did not return complete. Ergo, |
| // not enough data to match the size byte in the header. |
| return II_DOWN_UNDER; |
| } |