| /* |
| * Copyright (C) 1993-1996 Bas Laarhoven, |
| * (C) 1996-1997 Claus-Justus Heine. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING. If not, write to |
| the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| |
| * |
| * $Source: /homes/cvs/ftape-stacked/ftape/lowlevel/fdc-io.c,v $ |
| * $Revision: 1.7.4.2 $ |
| * $Date: 1997/11/16 14:48:17 $ |
| * |
| * This file contains the low-level floppy disk interface code |
| * for the QIC-40/80/3010/3020 floppy-tape driver "ftape" for |
| * Linux. |
| */ |
| |
| #include <linux/config.h> /* for CONFIG_FT_* */ |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/ioport.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/dma.h> |
| #include <asm/irq.h> |
| |
| #include <linux/ftape.h> |
| #include <linux/qic117.h> |
| #include "../lowlevel/ftape-tracing.h" |
| #include "../lowlevel/fdc-io.h" |
| #include "../lowlevel/fdc-isr.h" |
| #include "../lowlevel/ftape-io.h" |
| #include "../lowlevel/ftape-rw.h" |
| #include "../lowlevel/ftape-ctl.h" |
| #include "../lowlevel/ftape-calibr.h" |
| #include "../lowlevel/fc-10.h" |
| |
| /* Global vars. |
| */ |
| static int ftape_motor; |
| volatile int ftape_current_cylinder = -1; |
| volatile fdc_mode_enum fdc_mode = fdc_idle; |
| fdc_config_info fdc; |
| DECLARE_WAIT_QUEUE_HEAD(ftape_wait_intr); |
| |
| unsigned int ft_fdc_base = CONFIG_FT_FDC_BASE; |
| unsigned int ft_fdc_irq = CONFIG_FT_FDC_IRQ; |
| unsigned int ft_fdc_dma = CONFIG_FT_FDC_DMA; |
| unsigned int ft_fdc_threshold = CONFIG_FT_FDC_THR; /* bytes */ |
| unsigned int ft_fdc_rate_limit = CONFIG_FT_FDC_MAX_RATE; /* bits/sec */ |
| int ft_probe_fc10 = CONFIG_FT_PROBE_FC10; |
| int ft_mach2 = CONFIG_FT_MACH2; |
| |
| /* Local vars. |
| */ |
| static spinlock_t fdc_io_lock; |
| static unsigned int fdc_calibr_count; |
| static unsigned int fdc_calibr_time; |
| static int fdc_status; |
| volatile __u8 fdc_head; /* FDC head from sector id */ |
| volatile __u8 fdc_cyl; /* FDC track from sector id */ |
| volatile __u8 fdc_sect; /* FDC sector from sector id */ |
| static int fdc_data_rate = 500; /* data rate (Kbps) */ |
| static int fdc_rate_code; /* data rate code (0 == 500 Kbps) */ |
| static int fdc_seek_rate = 2; /* step rate (msec) */ |
| static void (*do_ftape) (void); |
| static int fdc_fifo_state; /* original fifo setting - fifo enabled */ |
| static int fdc_fifo_thr; /* original fifo setting - threshold */ |
| static int fdc_lock_state; /* original lock setting - locked */ |
| static int fdc_fifo_locked; /* has fifo && lock set ? */ |
| static __u8 fdc_precomp; /* default precomp. value (nsec) */ |
| static __u8 fdc_prec_code; /* fdc precomp. select code */ |
| |
| static char ftape_id[] = "ftape"; /* used by request irq and free irq */ |
| |
| static int fdc_set_seek_rate(int seek_rate); |
| |
| void fdc_catch_stray_interrupts(int count) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fdc_io_lock, flags); |
| if (count == 0) { |
| ft_expected_stray_interrupts = 0; |
| } else { |
| ft_expected_stray_interrupts += count; |
| } |
| spin_unlock_irqrestore(&fdc_io_lock, flags); |
| } |
| |
| /* Wait during a timeout period for a given FDC status. |
| * If usecs == 0 then just test status, else wait at least for usecs. |
| * Returns -ETIME on timeout. Function must be calibrated first ! |
| */ |
| static int fdc_wait(unsigned int usecs, __u8 mask, __u8 state) |
| { |
| int count_1 = (fdc_calibr_count * usecs + |
| fdc_calibr_count - 1) / fdc_calibr_time; |
| |
| do { |
| fdc_status = inb_p(fdc.msr); |
| if ((fdc_status & mask) == state) { |
| return 0; |
| } |
| } while (count_1-- >= 0); |
| return -ETIME; |
| } |
| |
| int fdc_ready_wait(unsigned int usecs) |
| { |
| return fdc_wait(usecs, FDC_DATA_READY | FDC_BUSY, FDC_DATA_READY); |
| } |
| |
| /* Why can't we just use udelay()? |
| */ |
| static void fdc_usec_wait(unsigned int usecs) |
| { |
| fdc_wait(usecs, 0, 1); /* will always timeout ! */ |
| } |
| |
| static int fdc_ready_out_wait(unsigned int usecs) |
| { |
| fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */ |
| return fdc_wait(usecs, FDC_DATA_OUT_READY, FDC_DATA_OUT_READY); |
| } |
| |
| void fdc_wait_calibrate(void) |
| { |
| ftape_calibrate("fdc_wait", |
| fdc_usec_wait, &fdc_calibr_count, &fdc_calibr_time); |
| } |
| |
| /* Wait for a (short) while for the FDC to become ready |
| * and transfer the next command byte. |
| * Return -ETIME on timeout on getting ready (depends on hardware!). |
| */ |
| static int fdc_write(const __u8 data) |
| { |
| fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */ |
| if (fdc_wait(150, FDC_DATA_READY_MASK, FDC_DATA_IN_READY) < 0) { |
| return -ETIME; |
| } else { |
| outb(data, fdc.fifo); |
| return 0; |
| } |
| } |
| |
| /* Wait for a (short) while for the FDC to become ready |
| * and transfer the next result byte. |
| * Return -ETIME if timeout on getting ready (depends on hardware!). |
| */ |
| static int fdc_read(__u8 * data) |
| { |
| fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */ |
| if (fdc_wait(150, FDC_DATA_READY_MASK, FDC_DATA_OUT_READY) < 0) { |
| return -ETIME; |
| } else { |
| *data = inb(fdc.fifo); |
| return 0; |
| } |
| } |
| |
| /* Output a cmd_len long command string to the FDC. |
| * The FDC should be ready to receive a new command or |
| * an error (EBUSY or ETIME) will occur. |
| */ |
| int fdc_command(const __u8 * cmd_data, int cmd_len) |
| { |
| int result = 0; |
| unsigned long flags; |
| int count = cmd_len; |
| int retry = 0; |
| #ifdef TESTING |
| static unsigned int last_time; |
| unsigned int time; |
| #endif |
| TRACE_FUN(ft_t_any); |
| |
| fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */ |
| spin_lock_irqsave(&fdc_io_lock, flags); |
| if (!in_interrupt()) |
| /* Yes, I know, too much comments inside this function |
| * ... |
| * |
| * Yet another bug in the original driver. All that |
| * havoc is caused by the fact that the isr() sends |
| * itself a command to the floppy tape driver (pause, |
| * micro step pause). Now, the problem is that |
| * commands are transmitted via the fdc_seek |
| * command. But: the fdc performs seeks in the |
| * background i.e. it doesn't signal busy while |
| * sending the step pulses to the drive. Therefore the |
| * non-interrupt level driver has no chance to tell |
| * whether the isr() just has issued a seek. Therefore |
| * we HAVE TO have a look at the ft_hide_interrupt |
| * flag: it signals the non-interrupt level part of |
| * the driver that it has to wait for the fdc until it |
| * has completet seeking. |
| * |
| * THIS WAS PRESUMABLY THE REASON FOR ALL THAT |
| * "fdc_read timeout" errors, I HOPE :-) |
| */ |
| if (ft_hide_interrupt) { |
| restore_flags(flags); |
| TRACE(ft_t_info, |
| "Waiting for the isr() completing fdc_seek()"); |
| if (fdc_interrupt_wait(2 * FT_SECOND) < 0) { |
| TRACE(ft_t_warn, |
| "Warning: timeout waiting for isr() seek to complete"); |
| } |
| if (ft_hide_interrupt || !ft_seek_completed) { |
| /* There cannot be another |
| * interrupt. The isr() only stops |
| * the tape and the next interrupt |
| * won't come until we have send our |
| * command to the drive. |
| */ |
| TRACE_ABORT(-EIO, ft_t_bug, |
| "BUG? isr() is still seeking?\n" |
| KERN_INFO "hide: %d\n" |
| KERN_INFO "seek: %d", |
| ft_hide_interrupt, |
| ft_seek_completed); |
| |
| } |
| fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */ |
| spin_lock_irqsave(&fdc_io_lock, flags); |
| } |
| fdc_status = inb(fdc.msr); |
| if ((fdc_status & FDC_DATA_READY_MASK) != FDC_DATA_IN_READY) { |
| spin_unlock_irqrestore(&fdc_io_lock, flags); |
| TRACE_ABORT(-EBUSY, ft_t_err, "fdc not ready"); |
| } |
| fdc_mode = *cmd_data; /* used by isr */ |
| #ifdef TESTING |
| if (fdc_mode == FDC_SEEK) { |
| time = ftape_timediff(last_time, ftape_timestamp()); |
| if (time < 6000) { |
| TRACE(ft_t_bug,"Warning: short timeout between seek commands: %d", |
| time); |
| } |
| } |
| #endif |
| if (!in_interrupt()) { |
| /* shouldn't be cleared if called from isr |
| */ |
| ft_interrupt_seen = 0; |
| } |
| while (count) { |
| result = fdc_write(*cmd_data); |
| if (result < 0) { |
| TRACE(ft_t_fdc_dma, |
| "fdc_mode = %02x, status = %02x at index %d", |
| (int) fdc_mode, (int) fdc_status, |
| cmd_len - count); |
| if (++retry <= 3) { |
| TRACE(ft_t_warn, "fdc_write timeout, retry"); |
| } else { |
| TRACE(ft_t_err, "fdc_write timeout, fatal"); |
| /* recover ??? */ |
| break; |
| } |
| } else { |
| --count; |
| ++cmd_data; |
| } |
| } |
| #ifdef TESTING |
| if (fdc_mode == FDC_SEEK) { |
| last_time = ftape_timestamp(); |
| } |
| #endif |
| spin_unlock_irqrestore(&fdc_io_lock, flags); |
| TRACE_EXIT result; |
| } |
| |
| /* Input a res_len long result string from the FDC. |
| * The FDC should be ready to send the result or an error |
| * (EBUSY or ETIME) will occur. |
| */ |
| int fdc_result(__u8 * res_data, int res_len) |
| { |
| int result = 0; |
| unsigned long flags; |
| int count = res_len; |
| int retry = 0; |
| TRACE_FUN(ft_t_any); |
| |
| spin_lock_irqsave(&fdc_io_lock, flags); |
| fdc_status = inb(fdc.msr); |
| if ((fdc_status & FDC_DATA_READY_MASK) != FDC_DATA_OUT_READY) { |
| TRACE(ft_t_err, "fdc not ready"); |
| result = -EBUSY; |
| } else while (count) { |
| if (!(fdc_status & FDC_BUSY)) { |
| spin_unlock_irqrestore(&fdc_io_lock, flags); |
| TRACE_ABORT(-EIO, ft_t_err, "premature end of result phase"); |
| } |
| result = fdc_read(res_data); |
| if (result < 0) { |
| TRACE(ft_t_fdc_dma, |
| "fdc_mode = %02x, status = %02x at index %d", |
| (int) fdc_mode, |
| (int) fdc_status, |
| res_len - count); |
| if (++retry <= 3) { |
| TRACE(ft_t_warn, "fdc_read timeout, retry"); |
| } else { |
| TRACE(ft_t_err, "fdc_read timeout, fatal"); |
| /* recover ??? */ |
| break; |
| ++retry; |
| } |
| } else { |
| --count; |
| ++res_data; |
| } |
| } |
| spin_unlock_irqrestore(&fdc_io_lock, flags); |
| fdc_usec_wait(FT_RQM_DELAY); /* allow FDC to negate BSY */ |
| TRACE_EXIT result; |
| } |
| |
| /* Handle command and result phases for |
| * commands without data phase. |
| */ |
| static int fdc_issue_command(const __u8 * out_data, int out_count, |
| __u8 * in_data, int in_count) |
| { |
| TRACE_FUN(ft_t_any); |
| |
| if (out_count > 0) { |
| TRACE_CATCH(fdc_command(out_data, out_count),); |
| } |
| /* will take 24 - 30 usec for fdc_sense_drive_status and |
| * fdc_sense_interrupt_status commands. |
| * 35 fails sometimes (5/9/93 SJL) |
| * On a loaded system it incidentally takes longer than |
| * this for the fdc to get ready ! ?????? WHY ?????? |
| * So until we know what's going on use a very long timeout. |
| */ |
| TRACE_CATCH(fdc_ready_out_wait(500 /* usec */),); |
| if (in_count > 0) { |
| TRACE_CATCH(fdc_result(in_data, in_count), |
| TRACE(ft_t_err, "result phase aborted")); |
| } |
| TRACE_EXIT 0; |
| } |
| |
| /* Wait for FDC interrupt with timeout (in milliseconds). |
| * Signals are blocked so the wait will not be aborted. |
| * Note: interrupts must be enabled ! (23/05/93 SJL) |
| */ |
| int fdc_interrupt_wait(unsigned int time) |
| { |
| DECLARE_WAITQUEUE(wait,current); |
| sigset_t old_sigmask; |
| static int resetting; |
| long timeout; |
| |
| TRACE_FUN(ft_t_fdc_dma); |
| |
| if (waitqueue_active(&ftape_wait_intr)) { |
| TRACE_ABORT(-EIO, ft_t_err, "error: nested call"); |
| } |
| /* timeout time will be up to USPT microseconds too long ! */ |
| timeout = (1000 * time + FT_USPT - 1) / FT_USPT; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| old_sigmask = current->blocked; |
| sigfillset(¤t->blocked); |
| recalc_sigpending(); |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| add_wait_queue(&ftape_wait_intr, &wait); |
| while (!ft_interrupt_seen && timeout) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| timeout = schedule_timeout(timeout); |
| } |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| current->blocked = old_sigmask; |
| recalc_sigpending(); |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| remove_wait_queue(&ftape_wait_intr, &wait); |
| /* the following IS necessary. True: as well |
| * wake_up_interruptible() as the schedule() set TASK_RUNNING |
| * when they wakeup a task, BUT: it may very well be that |
| * ft_interrupt_seen is already set to 1 when we enter here |
| * in which case schedule() gets never called, and |
| * TASK_RUNNING never set. This has the funny effect that we |
| * execute all the code until we leave kernel space, but then |
| * the task is stopped (a task CANNOT be preempted while in |
| * kernel mode. Sending a pair of SIGSTOP/SIGCONT to the |
| * tasks wakes it up again. Funny! :-) |
| */ |
| current->state = TASK_RUNNING; |
| if (ft_interrupt_seen) { /* woken up by interrupt */ |
| ft_interrupt_seen = 0; |
| TRACE_EXIT 0; |
| } |
| /* Original comment: |
| * In first instance, next statement seems unnecessary since |
| * it will be cleared in fdc_command. However, a small part of |
| * the software seems to rely on this being cleared here |
| * (ftape_close might fail) so stick to it until things get fixed ! |
| */ |
| /* My deeply sought of knowledge: |
| * Behold NO! It is obvious. fdc_reset() doesn't call fdc_command() |
| * but nevertheless uses fdc_interrupt_wait(). OF COURSE this needs to |
| * be reset here. |
| */ |
| ft_interrupt_seen = 0; /* clear for next call */ |
| if (!resetting) { |
| resetting = 1; /* break infinite recursion if reset fails */ |
| TRACE(ft_t_any, "cleanup reset"); |
| fdc_reset(); |
| resetting = 0; |
| } |
| TRACE_EXIT (signal_pending(current)) ? -EINTR : -ETIME; |
| } |
| |
| /* Start/stop drive motor. Enable DMA mode. |
| */ |
| void fdc_motor(int motor) |
| { |
| int unit = ft_drive_sel; |
| int data = unit | FDC_RESET_NOT | FDC_DMA_MODE; |
| TRACE_FUN(ft_t_any); |
| |
| ftape_motor = motor; |
| if (ftape_motor) { |
| data |= FDC_MOTOR_0 << unit; |
| TRACE(ft_t_noise, "turning motor %d on", unit); |
| } else { |
| TRACE(ft_t_noise, "turning motor %d off", unit); |
| } |
| if (ft_mach2) { |
| outb_p(data, fdc.dor2); |
| } else { |
| outb_p(data, fdc.dor); |
| } |
| ftape_sleep(10 * FT_MILLISECOND); |
| TRACE_EXIT; |
| } |
| |
| static void fdc_update_dsr(void) |
| { |
| TRACE_FUN(ft_t_any); |
| |
| TRACE(ft_t_flow, "rate = %d Kbps, precomp = %d ns", |
| fdc_data_rate, fdc_precomp); |
| if (fdc.type >= i82077) { |
| outb_p((fdc_rate_code & 0x03) | fdc_prec_code, fdc.dsr); |
| } else { |
| outb_p(fdc_rate_code & 0x03, fdc.ccr); |
| } |
| TRACE_EXIT; |
| } |
| |
| void fdc_set_write_precomp(int precomp) |
| { |
| TRACE_FUN(ft_t_any); |
| |
| TRACE(ft_t_noise, "New precomp: %d nsec", precomp); |
| fdc_precomp = precomp; |
| /* write precompensation can be set in multiples of 41.67 nsec. |
| * round the parameter to the nearest multiple and convert it |
| * into a fdc setting. Note that 0 means default to the fdc, |
| * 7 is used instead of that. |
| */ |
| fdc_prec_code = ((fdc_precomp + 21) / 42) << 2; |
| if (fdc_prec_code == 0 || fdc_prec_code > (6 << 2)) { |
| fdc_prec_code = 7 << 2; |
| } |
| fdc_update_dsr(); |
| TRACE_EXIT; |
| } |
| |
| /* Reprogram the 82078 registers to use Data Rate Table 1 on all drives. |
| */ |
| static void fdc_set_drive_specs(void) |
| { |
| __u8 cmd[] = { FDC_DRIVE_SPEC, 0x00, 0x00, 0x00, 0x00, 0xc0}; |
| int result; |
| TRACE_FUN(ft_t_any); |
| |
| TRACE(ft_t_flow, "Setting of drive specs called"); |
| if (fdc.type >= i82078_1) { |
| cmd[1] = (0 << 5) | (2 << 2); |
| cmd[2] = (1 << 5) | (2 << 2); |
| cmd[3] = (2 << 5) | (2 << 2); |
| cmd[4] = (3 << 5) | (2 << 2); |
| result = fdc_command(cmd, NR_ITEMS(cmd)); |
| if (result < 0) { |
| TRACE(ft_t_err, "Setting of drive specs failed"); |
| } |
| } |
| TRACE_EXIT; |
| } |
| |
| /* Select clock for fdc, must correspond with tape drive setting ! |
| * This also influences the fdc timing so we must adjust some values. |
| */ |
| int fdc_set_data_rate(int rate) |
| { |
| int bad_rate = 0; |
| TRACE_FUN(ft_t_any); |
| |
| /* Select clock for fdc, must correspond with tape drive setting ! |
| * This also influences the fdc timing so we must adjust some values. |
| */ |
| TRACE(ft_t_fdc_dma, "new rate = %d", rate); |
| switch (rate) { |
| case 250: |
| fdc_rate_code = fdc_data_rate_250; |
| break; |
| case 500: |
| fdc_rate_code = fdc_data_rate_500; |
| break; |
| case 1000: |
| if (fdc.type < i82077) { |
| bad_rate = 1; |
| } else { |
| fdc_rate_code = fdc_data_rate_1000; |
| } |
| break; |
| case 2000: |
| if (fdc.type < i82078_1) { |
| bad_rate = 1; |
| } else { |
| fdc_rate_code = fdc_data_rate_2000; |
| } |
| break; |
| default: |
| bad_rate = 1; |
| } |
| if (bad_rate) { |
| TRACE_ABORT(-EIO, |
| ft_t_fdc_dma, "%d is not a valid data rate", rate); |
| } |
| fdc_data_rate = rate; |
| fdc_update_dsr(); |
| fdc_set_seek_rate(fdc_seek_rate); /* clock changed! */ |
| ftape_udelay(1000); |
| TRACE_EXIT 0; |
| } |
| |
| /* keep the unit select if keep_select is != 0, |
| */ |
| static void fdc_dor_reset(int keep_select) |
| { |
| __u8 fdc_ctl = ft_drive_sel; |
| |
| if (keep_select != 0) { |
| fdc_ctl |= FDC_DMA_MODE; |
| if (ftape_motor) { |
| fdc_ctl |= FDC_MOTOR_0 << ft_drive_sel; |
| } |
| } |
| ftape_udelay(10); /* ??? but seems to be necessary */ |
| if (ft_mach2) { |
| outb_p(fdc_ctl & 0x0f, fdc.dor); |
| outb_p(fdc_ctl, fdc.dor2); |
| } else { |
| outb_p(fdc_ctl, fdc.dor); |
| } |
| fdc_usec_wait(10); /* delay >= 14 fdc clocks */ |
| if (keep_select == 0) { |
| fdc_ctl = 0; |
| } |
| fdc_ctl |= FDC_RESET_NOT; |
| if (ft_mach2) { |
| outb_p(fdc_ctl & 0x0f, fdc.dor); |
| outb_p(fdc_ctl, fdc.dor2); |
| } else { |
| outb_p(fdc_ctl, fdc.dor); |
| } |
| } |
| |
| /* Reset the floppy disk controller. Leave the ftape_unit selected. |
| */ |
| void fdc_reset(void) |
| { |
| int st0; |
| int i; |
| int dummy; |
| unsigned long flags; |
| TRACE_FUN(ft_t_any); |
| |
| spin_lock_irqsave(&fdc_io_lock, flags); |
| |
| fdc_dor_reset(1); /* keep unit selected */ |
| |
| fdc_mode = fdc_idle; |
| |
| /* maybe the cli()/sti() pair is not necessary, BUT: |
| * the following line MUST be here. Otherwise fdc_interrupt_wait() |
| * won't wait. Note that fdc_reset() is called from |
| * ftape_dumb_stop() when the fdc is busy transferring data. In this |
| * case fdc_isr() MOST PROBABLY sets ft_interrupt_seen, and tries |
| * to get the result bytes from the fdc etc. CLASH. |
| */ |
| ft_interrupt_seen = 0; |
| |
| /* Program data rate |
| */ |
| fdc_update_dsr(); /* restore data rate and precomp */ |
| |
| spin_unlock_irqrestore(&fdc_io_lock, flags); |
| |
| /* |
| * Wait for first polling cycle to complete |
| */ |
| if (fdc_interrupt_wait(1 * FT_SECOND) < 0) { |
| TRACE(ft_t_err, "no drive polling interrupt!"); |
| } else { /* clear all disk-changed statuses */ |
| for (i = 0; i < 4; ++i) { |
| if(fdc_sense_interrupt_status(&st0, &dummy) != 0) { |
| TRACE(ft_t_err, "sense failed for %d", i); |
| } |
| if (i == ft_drive_sel) { |
| ftape_current_cylinder = dummy; |
| } |
| } |
| TRACE(ft_t_noise, "drive polling completed"); |
| } |
| /* |
| * SPECIFY COMMAND |
| */ |
| fdc_set_seek_rate(fdc_seek_rate); |
| /* |
| * DRIVE SPECIFICATION COMMAND (if fdc type known) |
| */ |
| if (fdc.type >= i82078_1) { |
| fdc_set_drive_specs(); |
| } |
| TRACE_EXIT; |
| } |
| |
| #if !defined(CLK_48MHZ) |
| # define CLK_48MHZ 1 |
| #endif |
| |
| /* When we're done, put the fdc into reset mode so that the regular |
| * floppy disk driver will figure out that something is wrong and |
| * initialize the controller the way it wants. |
| */ |
| void fdc_disable(void) |
| { |
| __u8 cmd1[] = {FDC_CONFIGURE, 0x00, 0x00, 0x00}; |
| __u8 cmd2[] = {FDC_LOCK}; |
| __u8 cmd3[] = {FDC_UNLOCK}; |
| __u8 stat[1]; |
| TRACE_FUN(ft_t_flow); |
| |
| if (!fdc_fifo_locked) { |
| fdc_reset(); |
| TRACE_EXIT; |
| } |
| if (fdc_issue_command(cmd3, 1, stat, 1) < 0 || stat[0] != 0x00) { |
| fdc_dor_reset(0); |
| TRACE_ABORT(/**/, ft_t_bug, |
| "couldn't unlock fifo, configuration remains changed"); |
| } |
| fdc_fifo_locked = 0; |
| if (CLK_48MHZ && fdc.type >= i82078) { |
| cmd1[0] |= FDC_CLK48_BIT; |
| } |
| cmd1[2] = ((fdc_fifo_state) ? 0 : 0x20) + (fdc_fifo_thr - 1); |
| if (fdc_command(cmd1, NR_ITEMS(cmd1)) < 0) { |
| fdc_dor_reset(0); |
| TRACE_ABORT(/**/, ft_t_bug, |
| "couldn't reconfigure fifo to old state"); |
| } |
| if (fdc_lock_state && |
| fdc_issue_command(cmd2, 1, stat, 1) < 0) { |
| fdc_dor_reset(0); |
| TRACE_ABORT(/**/, ft_t_bug, "couldn't lock old state again"); |
| } |
| TRACE(ft_t_noise, "fifo restored: %sabled, thr. %d, %slocked", |
| fdc_fifo_state ? "en" : "dis", |
| fdc_fifo_thr, (fdc_lock_state) ? "" : "not "); |
| fdc_dor_reset(0); |
| TRACE_EXIT; |
| } |
| |
| /* Specify FDC seek-rate (milliseconds) |
| */ |
| static int fdc_set_seek_rate(int seek_rate) |
| { |
| /* set step rate, dma mode, and minimal head load and unload times |
| */ |
| __u8 in[3] = { FDC_SPECIFY, 1, (1 << 1)}; |
| |
| fdc_seek_rate = seek_rate; |
| in[1] |= (16 - (fdc_data_rate * fdc_seek_rate) / 500) << 4; |
| |
| return fdc_command(in, 3); |
| } |
| |
| /* Sense drive status: get unit's drive status (ST3) |
| */ |
| int fdc_sense_drive_status(int *st3) |
| { |
| __u8 out[2]; |
| __u8 in[1]; |
| TRACE_FUN(ft_t_any); |
| |
| out[0] = FDC_SENSED; |
| out[1] = ft_drive_sel; |
| TRACE_CATCH(fdc_issue_command(out, 2, in, 1),); |
| *st3 = in[0]; |
| TRACE_EXIT 0; |
| } |
| |
| /* Sense Interrupt Status command: |
| * should be issued at the end of each seek. |
| * get ST0 and current cylinder. |
| */ |
| int fdc_sense_interrupt_status(int *st0, int *current_cylinder) |
| { |
| __u8 out[1]; |
| __u8 in[2]; |
| TRACE_FUN(ft_t_any); |
| |
| out[0] = FDC_SENSEI; |
| TRACE_CATCH(fdc_issue_command(out, 1, in, 2),); |
| *st0 = in[0]; |
| *current_cylinder = in[1]; |
| TRACE_EXIT 0; |
| } |
| |
| /* step to track |
| */ |
| int fdc_seek(int track) |
| { |
| __u8 out[3]; |
| int st0, pcn; |
| #ifdef TESTING |
| unsigned int time; |
| #endif |
| TRACE_FUN(ft_t_any); |
| |
| out[0] = FDC_SEEK; |
| out[1] = ft_drive_sel; |
| out[2] = track; |
| #ifdef TESTING |
| time = ftape_timestamp(); |
| #endif |
| /* We really need this command to work ! |
| */ |
| ft_seek_completed = 0; |
| TRACE_CATCH(fdc_command(out, 3), |
| fdc_reset(); |
| TRACE(ft_t_noise, "destination was: %d, resetting FDC...", |
| track)); |
| /* Handle interrupts until ft_seek_completed or timeout. |
| */ |
| for (;;) { |
| TRACE_CATCH(fdc_interrupt_wait(2 * FT_SECOND),); |
| if (ft_seek_completed) { |
| TRACE_CATCH(fdc_sense_interrupt_status(&st0, &pcn),); |
| if ((st0 & ST0_SEEK_END) == 0) { |
| TRACE_ABORT(-EIO, ft_t_err, |
| "no seek-end after seek completion !??"); |
| } |
| break; |
| } |
| } |
| #ifdef TESTING |
| time = ftape_timediff(time, ftape_timestamp()) / abs(track - ftape_current_cylinder); |
| if ((time < 900 || time > 3100) && abs(track - ftape_current_cylinder) > 5) { |
| TRACE(ft_t_warn, "Wrong FDC STEP interval: %d usecs (%d)", |
| time, track - ftape_current_cylinder); |
| } |
| #endif |
| /* Verify whether we issued the right tape command. |
| */ |
| /* Verify that we seek to the proper track. */ |
| if (pcn != track) { |
| TRACE_ABORT(-EIO, ft_t_err, "bad seek.."); |
| } |
| ftape_current_cylinder = track; |
| TRACE_EXIT 0; |
| } |
| |
| static int perpend_mode; /* set if fdc is in perpendicular mode */ |
| |
| static int perpend_off(void) |
| { |
| __u8 perpend[] = {FDC_PERPEND, 0x00}; |
| TRACE_FUN(ft_t_any); |
| |
| if (perpend_mode) { |
| /* Turn off perpendicular mode */ |
| perpend[1] = 0x80; |
| TRACE_CATCH(fdc_command(perpend, 2), |
| TRACE(ft_t_err,"Perpendicular mode exit failed!")); |
| perpend_mode = 0; |
| } |
| TRACE_EXIT 0; |
| } |
| |
| static int handle_perpend(int segment_id) |
| { |
| __u8 perpend[] = {FDC_PERPEND, 0x00}; |
| TRACE_FUN(ft_t_any); |
| |
| /* When writing QIC-3020 tapes, turn on perpendicular mode |
| * if tape is moving in forward direction (even tracks). |
| */ |
| if (ft_qic_std == QIC_TAPE_QIC3020 && |
| ((segment_id / ft_segments_per_track) & 1) == 0) { |
| /* FIXME: some i82077 seem to support perpendicular mode as |
| * well. |
| */ |
| #if 0 |
| if (fdc.type < i82077AA) {} |
| #else |
| if (fdc.type < i82077 && ft_data_rate < 1000) { |
| #endif |
| /* fdc does not support perpendicular mode: complain |
| */ |
| TRACE_ABORT(-EIO, ft_t_err, |
| "Your FDC does not support QIC-3020."); |
| } |
| perpend[1] = 0x03 /* 0x83 + (0x4 << ft_drive_sel) */ ; |
| TRACE_CATCH(fdc_command(perpend, 2), |
| TRACE(ft_t_err,"Perpendicular mode entry failed!")); |
| TRACE(ft_t_flow, "Perpendicular mode set"); |
| perpend_mode = 1; |
| TRACE_EXIT 0; |
| } |
| TRACE_EXIT perpend_off(); |
| } |
| |
| static inline void fdc_setup_dma(char mode, |
| volatile void *addr, unsigned int count) |
| { |
| /* Program the DMA controller. |
| */ |
| disable_dma(fdc.dma); |
| clear_dma_ff(fdc.dma); |
| set_dma_mode(fdc.dma, mode); |
| set_dma_addr(fdc.dma, virt_to_bus((void*)addr)); |
| set_dma_count(fdc.dma, count); |
| enable_dma(fdc.dma); |
| } |
| |
| /* Setup fdc and dma for formatting the next segment |
| */ |
| int fdc_setup_formatting(buffer_struct * buff) |
| { |
| unsigned long flags; |
| __u8 out[6] = { |
| FDC_FORMAT, 0x00, 3, 4 * FT_SECTORS_PER_SEGMENT, 0x00, 0x6b |
| }; |
| TRACE_FUN(ft_t_any); |
| |
| TRACE_CATCH(handle_perpend(buff->segment_id),); |
| /* Program the DMA controller. |
| */ |
| TRACE(ft_t_fdc_dma, |
| "phys. addr. = %lx", virt_to_bus((void*) buff->ptr)); |
| spin_lock_irqsave(&fdc_io_lock, flags); |
| fdc_setup_dma(DMA_MODE_WRITE, buff->ptr, FT_SECTORS_PER_SEGMENT * 4); |
| /* Issue FDC command to start reading/writing. |
| */ |
| out[1] = ft_drive_sel; |
| out[4] = buff->gap3; |
| TRACE_CATCH(fdc_setup_error = fdc_command(out, sizeof(out)), |
| restore_flags(flags); fdc_mode = fdc_idle); |
| spin_unlock_irqrestore(&fdc_io_lock, flags); |
| TRACE_EXIT 0; |
| } |
| |
| |
| /* Setup Floppy Disk Controller and DMA to read or write the next cluster |
| * of good sectors from or to the current segment. |
| */ |
| int fdc_setup_read_write(buffer_struct * buff, __u8 operation) |
| { |
| unsigned long flags; |
| __u8 out[9]; |
| int dma_mode; |
| TRACE_FUN(ft_t_any); |
| |
| switch(operation) { |
| case FDC_VERIFY: |
| if (fdc.type < i82077) { |
| operation = FDC_READ; |
| } |
| case FDC_READ: |
| case FDC_READ_DELETED: |
| dma_mode = DMA_MODE_READ; |
| TRACE(ft_t_fdc_dma, "xfer %d sectors to 0x%p", |
| buff->sector_count, buff->ptr); |
| TRACE_CATCH(perpend_off(),); |
| break; |
| case FDC_WRITE_DELETED: |
| TRACE(ft_t_noise, "deleting segment %d", buff->segment_id); |
| case FDC_WRITE: |
| dma_mode = DMA_MODE_WRITE; |
| /* When writing QIC-3020 tapes, turn on perpendicular mode |
| * if tape is moving in forward direction (even tracks). |
| */ |
| TRACE_CATCH(handle_perpend(buff->segment_id),); |
| TRACE(ft_t_fdc_dma, "xfer %d sectors from 0x%p", |
| buff->sector_count, buff->ptr); |
| break; |
| default: |
| TRACE_ABORT(-EIO, |
| ft_t_bug, "bug: invalid operation parameter"); |
| } |
| TRACE(ft_t_fdc_dma, "phys. addr. = %lx",virt_to_bus((void*)buff->ptr)); |
| spin_lock_irqsave(&fdc_io_lock, flags); |
| if (operation != FDC_VERIFY) { |
| fdc_setup_dma(dma_mode, buff->ptr, |
| FT_SECTOR_SIZE * buff->sector_count); |
| } |
| /* Issue FDC command to start reading/writing. |
| */ |
| out[0] = operation; |
| out[1] = ft_drive_sel; |
| out[2] = buff->cyl; |
| out[3] = buff->head; |
| out[4] = buff->sect + buff->sector_offset; |
| out[5] = 3; /* Sector size of 1K. */ |
| out[6] = out[4] + buff->sector_count - 1; /* last sector */ |
| out[7] = 109; /* Gap length. */ |
| out[8] = 0xff; /* No limit to transfer size. */ |
| TRACE(ft_t_fdc_dma, "C: 0x%02x, H: 0x%02x, R: 0x%02x, cnt: 0x%02x", |
| out[2], out[3], out[4], out[6] - out[4] + 1); |
| spin_unlock_irqrestore(&fdc_io_lock, flags); |
| TRACE_CATCH(fdc_setup_error = fdc_command(out, 9),fdc_mode = fdc_idle); |
| TRACE_EXIT 0; |
| } |
| |
| int fdc_fifo_threshold(__u8 threshold, |
| int *fifo_state, int *lock_state, int *fifo_thr) |
| { |
| const __u8 cmd0[] = {FDC_DUMPREGS}; |
| __u8 cmd1[] = {FDC_CONFIGURE, 0, (0x0f & (threshold - 1)), 0}; |
| const __u8 cmd2[] = {FDC_LOCK}; |
| const __u8 cmd3[] = {FDC_UNLOCK}; |
| __u8 reg[10]; |
| __u8 stat; |
| int i; |
| int result; |
| TRACE_FUN(ft_t_any); |
| |
| if (CLK_48MHZ && fdc.type >= i82078) { |
| cmd1[0] |= FDC_CLK48_BIT; |
| } |
| /* Dump fdc internal registers for examination |
| */ |
| TRACE_CATCH(fdc_command(cmd0, NR_ITEMS(cmd0)), |
| TRACE(ft_t_warn, "dumpreg cmd failed, fifo unchanged")); |
| /* Now read fdc internal registers from fifo |
| */ |
| for (i = 0; i < (int)NR_ITEMS(reg); ++i) { |
| fdc_read(®[i]); |
| TRACE(ft_t_fdc_dma, "Register %d = 0x%02x", i, reg[i]); |
| } |
| if (fifo_state && lock_state && fifo_thr) { |
| *fifo_state = (reg[8] & 0x20) == 0; |
| *lock_state = reg[7] & 0x80; |
| *fifo_thr = 1 + (reg[8] & 0x0f); |
| } |
| TRACE(ft_t_noise, |
| "original fifo state: %sabled, threshold %d, %slocked", |
| ((reg[8] & 0x20) == 0) ? "en" : "dis", |
| 1 + (reg[8] & 0x0f), (reg[7] & 0x80) ? "" : "not "); |
| /* If fdc is already locked, unlock it first ! */ |
| if (reg[7] & 0x80) { |
| fdc_ready_wait(100); |
| TRACE_CATCH(fdc_issue_command(cmd3, NR_ITEMS(cmd3), &stat, 1), |
| TRACE(ft_t_bug, "FDC unlock command failed, " |
| "configuration unchanged")); |
| } |
| fdc_fifo_locked = 0; |
| /* Enable fifo and set threshold at xx bytes to allow a |
| * reasonably large latency and reduce number of dma bursts. |
| */ |
| fdc_ready_wait(100); |
| if ((result = fdc_command(cmd1, NR_ITEMS(cmd1))) < 0) { |
| TRACE(ft_t_bug, "configure cmd failed, fifo unchanged"); |
| } |
| /* Now lock configuration so reset will not change it |
| */ |
| if(fdc_issue_command(cmd2, NR_ITEMS(cmd2), &stat, 1) < 0 || |
| stat != 0x10) { |
| TRACE_ABORT(-EIO, ft_t_bug, |
| "FDC lock command failed, stat = 0x%02x", stat); |
| } |
| fdc_fifo_locked = 1; |
| TRACE_EXIT result; |
| } |
| |
| static int fdc_fifo_enable(void) |
| { |
| TRACE_FUN(ft_t_any); |
| |
| if (fdc_fifo_locked) { |
| TRACE_ABORT(0, ft_t_warn, "Fifo not enabled because locked"); |
| } |
| TRACE_CATCH(fdc_fifo_threshold(ft_fdc_threshold /* bytes */, |
| &fdc_fifo_state, |
| &fdc_lock_state, |
| &fdc_fifo_thr),); |
| TRACE_CATCH(fdc_fifo_threshold(ft_fdc_threshold /* bytes */, |
| NULL, NULL, NULL),); |
| TRACE_EXIT 0; |
| } |
| |
| /* Determine fd controller type |
| */ |
| static __u8 fdc_save_state[2]; |
| |
| static int fdc_probe(void) |
| { |
| __u8 cmd[1]; |
| __u8 stat[16]; /* must be able to hold dumpregs & save results */ |
| int i; |
| TRACE_FUN(ft_t_any); |
| |
| /* Try to find out what kind of fd controller we have to deal with |
| * Scheme borrowed from floppy driver: |
| * first try if FDC_DUMPREGS command works |
| * (this indicates that we have a 82072 or better) |
| * then try the FDC_VERSION command (82072 doesn't support this) |
| * then try the FDC_UNLOCK command (some older 82077's don't support this) |
| * then try the FDC_PARTID command (82078's support this) |
| */ |
| cmd[0] = FDC_DUMPREGS; |
| if (fdc_issue_command(cmd, 1, stat, 1) != 0) { |
| TRACE_ABORT(no_fdc, ft_t_bug, "No FDC found"); |
| } |
| if (stat[0] == 0x80) { |
| /* invalid command: must be pre 82072 */ |
| TRACE_ABORT(i8272, |
| ft_t_warn, "Type 8272A/765A compatible FDC found"); |
| } |
| fdc_result(&stat[1], 9); |
| fdc_save_state[0] = stat[7]; |
| fdc_save_state[1] = stat[8]; |
| cmd[0] = FDC_VERSION; |
| if (fdc_issue_command(cmd, 1, stat, 1) < 0 || stat[0] == 0x80) { |
| TRACE_ABORT(i8272, ft_t_warn, "Type 82072 FDC found"); |
| } |
| if (*stat != 0x90) { |
| TRACE_ABORT(i8272, ft_t_warn, "Unknown FDC found"); |
| } |
| cmd[0] = FDC_UNLOCK; |
| if(fdc_issue_command(cmd, 1, stat, 1) < 0 || stat[0] != 0x00) { |
| TRACE_ABORT(i8272, ft_t_warn, |
| "Type pre-1991 82077 FDC found, " |
| "treating it like a 82072"); |
| } |
| if (fdc_save_state[0] & 0x80) { /* was locked */ |
| cmd[0] = FDC_LOCK; /* restore lock */ |
| (void)fdc_issue_command(cmd, 1, stat, 1); |
| TRACE(ft_t_warn, "FDC is already locked"); |
| } |
| /* Test for a i82078 FDC */ |
| cmd[0] = FDC_PARTID; |
| if (fdc_issue_command(cmd, 1, stat, 1) < 0 || stat[0] == 0x80) { |
| /* invalid command: not a i82078xx type FDC */ |
| for (i = 0; i < 4; ++i) { |
| outb_p(i, fdc.tdr); |
| if ((inb_p(fdc.tdr) & 0x03) != i) { |
| TRACE_ABORT(i82077, |
| ft_t_warn, "Type 82077 FDC found"); |
| } |
| } |
| TRACE_ABORT(i82077AA, ft_t_warn, "Type 82077AA FDC found"); |
| } |
| /* FDC_PARTID cmd succeeded */ |
| switch (stat[0] >> 5) { |
| case 0x0: |
| /* i82078SL or i82078-1. The SL part cannot run at |
| * 2Mbps (the SL and -1 dies are identical; they are |
| * speed graded after production, according to Intel). |
| * Some SL's can be detected by doing a SAVE cmd and |
| * look at bit 7 of the first byte (the SEL3V# bit). |
| * If it is 0, the part runs off 3Volts, and hence it |
| * is a SL. |
| */ |
| cmd[0] = FDC_SAVE; |
| if(fdc_issue_command(cmd, 1, stat, 16) < 0) { |
| TRACE(ft_t_err, "FDC_SAVE failed. Dunno why"); |
| /* guess we better claim the fdc to be a i82078 */ |
| TRACE_ABORT(i82078, |
| ft_t_warn, |
| "Type i82078 FDC (i suppose) found"); |
| } |
| if ((stat[0] & FDC_SEL3V_BIT)) { |
| /* fdc running off 5Volts; Pray that it's a i82078-1 |
| */ |
| TRACE_ABORT(i82078_1, ft_t_warn, |
| "Type i82078-1 or 5Volt i82078SL FDC found"); |
| } |
| TRACE_ABORT(i82078, ft_t_warn, |
| "Type 3Volt i82078SL FDC (1Mbps) found"); |
| case 0x1: |
| case 0x2: /* S82078B */ |
| /* The '78B isn't '78 compatible. Detect it as a '77AA */ |
| TRACE_ABORT(i82077AA, ft_t_warn, "Type i82077AA FDC found"); |
| case 0x3: /* NSC PC8744 core; used in several super-IO chips */ |
| TRACE_ABORT(i82077AA, |
| ft_t_warn, "Type 82077AA compatible FDC found"); |
| default: |
| TRACE(ft_t_warn, "A previously undetected FDC found"); |
| TRACE_ABORT(i82077AA, ft_t_warn, |
| "Treating it as a 82077AA. Please report partid= %d", |
| stat[0]); |
| } /* switch(stat[ 0] >> 5) */ |
| TRACE_EXIT no_fdc; |
| } |
| |
| static int fdc_request_regions(void) |
| { |
| TRACE_FUN(ft_t_flow); |
| |
| if (ft_mach2 || ft_probe_fc10) { |
| if (!request_region(fdc.sra, 8, "fdc (ft)")) { |
| #ifndef BROKEN_FLOPPY_DRIVER |
| TRACE_EXIT -EBUSY; |
| #else |
| TRACE(ft_t_warn, |
| "address 0x%03x occupied (by floppy driver?), using it anyway", fdc.sra); |
| #endif |
| } |
| } else { |
| if (!request_region(fdc.sra, 6, "fdc (ft)")) { |
| #ifndef BROKEN_FLOPPY_DRIVER |
| TRACE_EXIT -EBUSY; |
| #else |
| TRACE(ft_t_warn, |
| "address 0x%03x occupied (by floppy driver?), using it anyway", fdc.sra); |
| #endif |
| } |
| if (!request_region(fdc.sra + 7, 1, "fdc (ft)")) { |
| #ifndef BROKEN_FLOPPY_DRIVER |
| release_region(fdc.sra, 6); |
| TRACE_EXIT -EBUSY; |
| #else |
| TRACE(ft_t_warn, |
| "address 0x%03x occupied (by floppy driver?), using it anyway", fdc.sra + 7); |
| #endif |
| } |
| } |
| TRACE_EXIT 0; |
| } |
| |
| void fdc_release_regions(void) |
| { |
| TRACE_FUN(ft_t_flow); |
| |
| if (fdc.sra != 0) { |
| if (fdc.dor2 != 0) { |
| release_region(fdc.sra, 8); |
| } else { |
| release_region(fdc.sra, 6); |
| release_region(fdc.dir, 1); |
| } |
| } |
| TRACE_EXIT; |
| } |
| |
| static int fdc_config_regs(unsigned int fdc_base, |
| unsigned int fdc_irq, |
| unsigned int fdc_dma) |
| { |
| TRACE_FUN(ft_t_flow); |
| |
| fdc.irq = fdc_irq; |
| fdc.dma = fdc_dma; |
| fdc.sra = fdc_base; |
| fdc.srb = fdc_base + 1; |
| fdc.dor = fdc_base + 2; |
| fdc.tdr = fdc_base + 3; |
| fdc.msr = fdc.dsr = fdc_base + 4; |
| fdc.fifo = fdc_base + 5; |
| fdc.dir = fdc.ccr = fdc_base + 7; |
| fdc.dor2 = (ft_mach2 || ft_probe_fc10) ? fdc_base + 6 : 0; |
| TRACE_CATCH(fdc_request_regions(), fdc.sra = 0); |
| TRACE_EXIT 0; |
| } |
| |
| static int fdc_config(void) |
| { |
| static int already_done; |
| TRACE_FUN(ft_t_any); |
| |
| if (already_done) { |
| TRACE_CATCH(fdc_request_regions(),); |
| *(fdc.hook) = fdc_isr; /* hook our handler in */ |
| TRACE_EXIT 0; |
| } |
| if (ft_probe_fc10) { |
| int fc_type; |
| |
| TRACE_CATCH(fdc_config_regs(ft_fdc_base, |
| ft_fdc_irq, ft_fdc_dma),); |
| fc_type = fc10_enable(); |
| if (fc_type != 0) { |
| TRACE(ft_t_warn, "FC-%c0 controller found", '0' + fc_type); |
| fdc.type = fc10; |
| fdc.hook = &do_ftape; |
| *(fdc.hook) = fdc_isr; /* hook our handler in */ |
| already_done = 1; |
| TRACE_EXIT 0; |
| } else { |
| TRACE(ft_t_warn, "FC-10/20 controller not found"); |
| fdc_release_regions(); |
| fdc.type = no_fdc; |
| ft_probe_fc10 = 0; |
| ft_fdc_base = 0x3f0; |
| ft_fdc_irq = 6; |
| ft_fdc_dma = 2; |
| } |
| } |
| TRACE(ft_t_warn, "fdc base: 0x%x, irq: %d, dma: %d", |
| ft_fdc_base, ft_fdc_irq, ft_fdc_dma); |
| TRACE_CATCH(fdc_config_regs(ft_fdc_base, ft_fdc_irq, ft_fdc_dma),); |
| fdc.hook = &do_ftape; |
| *(fdc.hook) = fdc_isr; /* hook our handler in */ |
| already_done = 1; |
| TRACE_EXIT 0; |
| } |
| |
| static irqreturn_t ftape_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| void (*handler) (void) = *fdc.hook; |
| int handled = 0; |
| TRACE_FUN(ft_t_any); |
| |
| *fdc.hook = NULL; |
| if (handler) { |
| handled = 1; |
| handler(); |
| } else { |
| TRACE(ft_t_bug, "Unexpected ftape interrupt"); |
| } |
| TRACE_EXIT IRQ_RETVAL(handled); |
| } |
| |
| static int fdc_grab_irq_and_dma(void) |
| { |
| TRACE_FUN(ft_t_any); |
| |
| if (fdc.hook == &do_ftape) { |
| /* Get fast interrupt handler. |
| */ |
| if (request_irq(fdc.irq, ftape_interrupt, |
| SA_INTERRUPT, "ft", ftape_id)) { |
| TRACE_ABORT(-EIO, ft_t_bug, |
| "Unable to grab IRQ%d for ftape driver", |
| fdc.irq); |
| } |
| if (request_dma(fdc.dma, ftape_id)) { |
| free_irq(fdc.irq, ftape_id); |
| TRACE_ABORT(-EIO, ft_t_bug, |
| "Unable to grab DMA%d for ftape driver", |
| fdc.dma); |
| } |
| } |
| if (ft_fdc_base != 0x3f0 && (ft_fdc_dma == 2 || ft_fdc_irq == 6)) { |
| /* Using same dma channel or irq as standard fdc, need |
| * to disable the dma-gate on the std fdc. This |
| * couldn't be done in the floppy driver as some |
| * laptops are using the dma-gate to enter a low power |
| * or even suspended state :-( |
| */ |
| outb_p(FDC_RESET_NOT, 0x3f2); |
| TRACE(ft_t_noise, "DMA-gate on standard fdc disabled"); |
| } |
| TRACE_EXIT 0; |
| } |
| |
| int fdc_release_irq_and_dma(void) |
| { |
| TRACE_FUN(ft_t_any); |
| |
| if (fdc.hook == &do_ftape) { |
| disable_dma(fdc.dma); /* just in case... */ |
| free_dma(fdc.dma); |
| free_irq(fdc.irq, ftape_id); |
| } |
| if (ft_fdc_base != 0x3f0 && (ft_fdc_dma == 2 || ft_fdc_irq == 6)) { |
| /* Using same dma channel as standard fdc, need to |
| * disable the dma-gate on the std fdc. This couldn't |
| * be done in the floppy driver as some laptops are |
| * using the dma-gate to enter a low power or even |
| * suspended state :-( |
| */ |
| outb_p(FDC_RESET_NOT | FDC_DMA_MODE, 0x3f2); |
| TRACE(ft_t_noise, "DMA-gate on standard fdc enabled again"); |
| } |
| TRACE_EXIT 0; |
| } |
| |
| int fdc_init(void) |
| { |
| TRACE_FUN(ft_t_any); |
| |
| /* find a FDC to use */ |
| TRACE_CATCH(fdc_config(),); |
| TRACE_CATCH(fdc_grab_irq_and_dma(), fdc_release_regions()); |
| ftape_motor = 0; |
| fdc_catch_stray_interrupts(0); /* clear number of awainted |
| * stray interrupte |
| */ |
| fdc_catch_stray_interrupts(1); /* one always comes (?) */ |
| TRACE(ft_t_flow, "resetting fdc"); |
| fdc_set_seek_rate(2); /* use nominal QIC step rate */ |
| fdc_reset(); /* init fdc & clear track counters */ |
| if (fdc.type == no_fdc) { /* no FC-10 or FC-20 found */ |
| fdc.type = fdc_probe(); |
| fdc_reset(); /* update with new knowledge */ |
| } |
| if (fdc.type == no_fdc) { |
| fdc_release_irq_and_dma(); |
| fdc_release_regions(); |
| TRACE_EXIT -ENXIO; |
| } |
| if (fdc.type >= i82077) { |
| if (fdc_fifo_enable() < 0) { |
| TRACE(ft_t_warn, "couldn't enable fdc fifo !"); |
| } else { |
| TRACE(ft_t_flow, "fdc fifo enabled and locked"); |
| } |
| } |
| TRACE_EXIT 0; |
| } |