| /* |
| * arch/s390/kernel/time.c |
| * Time of day based timer functions. |
| * |
| * S390 version |
| * Copyright IBM Corp. 1999, 2008 |
| * Author(s): Hartmut Penner (hp@de.ibm.com), |
| * Martin Schwidefsky (schwidefsky@de.ibm.com), |
| * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) |
| * |
| * Derived from "arch/i386/kernel/time.c" |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| */ |
| |
| #define KMSG_COMPONENT "time" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu.h> |
| #include <linux/stop_machine.h> |
| #include <linux/time.h> |
| #include <linux/sysdev.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/types.h> |
| #include <linux/profile.h> |
| #include <linux/timex.h> |
| #include <linux/notifier.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/bootmem.h> |
| #include <asm/uaccess.h> |
| #include <asm/delay.h> |
| #include <asm/s390_ext.h> |
| #include <asm/div64.h> |
| #include <asm/vdso.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/timer.h> |
| #include <asm/etr.h> |
| #include <asm/cio.h> |
| |
| /* change this if you have some constant time drift */ |
| #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) |
| #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) |
| |
| /* The value of the TOD clock for 1.1.1970. */ |
| #define TOD_UNIX_EPOCH 0x7d91048bca000000ULL |
| |
| /* |
| * Create a small time difference between the timer interrupts |
| * on the different cpus to avoid lock contention. |
| */ |
| #define CPU_DEVIATION (smp_processor_id() << 12) |
| |
| #define TICK_SIZE tick |
| |
| static ext_int_info_t ext_int_info_cc; |
| static ext_int_info_t ext_int_etr_cc; |
| static u64 sched_clock_base_cc; |
| |
| static DEFINE_PER_CPU(struct clock_event_device, comparators); |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| */ |
| unsigned long long sched_clock(void) |
| { |
| return ((get_clock_xt() - sched_clock_base_cc) * 125) >> 9; |
| } |
| |
| /* |
| * Monotonic_clock - returns # of nanoseconds passed since time_init() |
| */ |
| unsigned long long monotonic_clock(void) |
| { |
| return sched_clock(); |
| } |
| EXPORT_SYMBOL(monotonic_clock); |
| |
| void tod_to_timeval(__u64 todval, struct timespec *xtime) |
| { |
| unsigned long long sec; |
| |
| sec = todval >> 12; |
| do_div(sec, 1000000); |
| xtime->tv_sec = sec; |
| todval -= (sec * 1000000) << 12; |
| xtime->tv_nsec = ((todval * 1000) >> 12); |
| } |
| |
| #ifdef CONFIG_PROFILING |
| #define s390_do_profile() profile_tick(CPU_PROFILING) |
| #else |
| #define s390_do_profile() do { ; } while(0) |
| #endif /* CONFIG_PROFILING */ |
| |
| void clock_comparator_work(void) |
| { |
| struct clock_event_device *cd; |
| |
| S390_lowcore.clock_comparator = -1ULL; |
| set_clock_comparator(S390_lowcore.clock_comparator); |
| cd = &__get_cpu_var(comparators); |
| cd->event_handler(cd); |
| s390_do_profile(); |
| } |
| |
| /* |
| * Fixup the clock comparator. |
| */ |
| static void fixup_clock_comparator(unsigned long long delta) |
| { |
| /* If nobody is waiting there's nothing to fix. */ |
| if (S390_lowcore.clock_comparator == -1ULL) |
| return; |
| S390_lowcore.clock_comparator += delta; |
| set_clock_comparator(S390_lowcore.clock_comparator); |
| } |
| |
| static int s390_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| S390_lowcore.clock_comparator = get_clock() + delta; |
| set_clock_comparator(S390_lowcore.clock_comparator); |
| return 0; |
| } |
| |
| static void s390_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| } |
| |
| /* |
| * Set up lowcore and control register of the current cpu to |
| * enable TOD clock and clock comparator interrupts. |
| */ |
| void init_cpu_timer(void) |
| { |
| struct clock_event_device *cd; |
| int cpu; |
| |
| S390_lowcore.clock_comparator = -1ULL; |
| set_clock_comparator(S390_lowcore.clock_comparator); |
| |
| cpu = smp_processor_id(); |
| cd = &per_cpu(comparators, cpu); |
| cd->name = "comparator"; |
| cd->features = CLOCK_EVT_FEAT_ONESHOT; |
| cd->mult = 16777; |
| cd->shift = 12; |
| cd->min_delta_ns = 1; |
| cd->max_delta_ns = LONG_MAX; |
| cd->rating = 400; |
| cd->cpumask = cpumask_of(cpu); |
| cd->set_next_event = s390_next_event; |
| cd->set_mode = s390_set_mode; |
| |
| clockevents_register_device(cd); |
| |
| /* Enable clock comparator timer interrupt. */ |
| __ctl_set_bit(0,11); |
| |
| /* Always allow the timing alert external interrupt. */ |
| __ctl_set_bit(0, 4); |
| } |
| |
| static void clock_comparator_interrupt(__u16 code) |
| { |
| if (S390_lowcore.clock_comparator == -1ULL) |
| set_clock_comparator(S390_lowcore.clock_comparator); |
| } |
| |
| static void etr_timing_alert(struct etr_irq_parm *); |
| static void stp_timing_alert(struct stp_irq_parm *); |
| |
| static void timing_alert_interrupt(__u16 code) |
| { |
| if (S390_lowcore.ext_params & 0x00c40000) |
| etr_timing_alert((struct etr_irq_parm *) |
| &S390_lowcore.ext_params); |
| if (S390_lowcore.ext_params & 0x00038000) |
| stp_timing_alert((struct stp_irq_parm *) |
| &S390_lowcore.ext_params); |
| } |
| |
| static void etr_reset(void); |
| static void stp_reset(void); |
| |
| /* |
| * Get the TOD clock running. |
| */ |
| static u64 __init reset_tod_clock(void) |
| { |
| u64 time; |
| |
| etr_reset(); |
| stp_reset(); |
| if (store_clock(&time) == 0) |
| return time; |
| /* TOD clock not running. Set the clock to Unix Epoch. */ |
| if (set_clock(TOD_UNIX_EPOCH) != 0 || store_clock(&time) != 0) |
| panic("TOD clock not operational."); |
| |
| return TOD_UNIX_EPOCH; |
| } |
| |
| static cycle_t read_tod_clock(void) |
| { |
| return get_clock(); |
| } |
| |
| static struct clocksource clocksource_tod = { |
| .name = "tod", |
| .rating = 400, |
| .read = read_tod_clock, |
| .mask = -1ULL, |
| .mult = 1000, |
| .shift = 12, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| |
| void update_vsyscall(struct timespec *wall_time, struct clocksource *clock) |
| { |
| if (clock != &clocksource_tod) |
| return; |
| |
| /* Make userspace gettimeofday spin until we're done. */ |
| ++vdso_data->tb_update_count; |
| smp_wmb(); |
| vdso_data->xtime_tod_stamp = clock->cycle_last; |
| vdso_data->xtime_clock_sec = xtime.tv_sec; |
| vdso_data->xtime_clock_nsec = xtime.tv_nsec; |
| vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; |
| vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; |
| smp_wmb(); |
| ++vdso_data->tb_update_count; |
| } |
| |
| extern struct timezone sys_tz; |
| |
| void update_vsyscall_tz(void) |
| { |
| /* Make userspace gettimeofday spin until we're done. */ |
| ++vdso_data->tb_update_count; |
| smp_wmb(); |
| vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; |
| vdso_data->tz_dsttime = sys_tz.tz_dsttime; |
| smp_wmb(); |
| ++vdso_data->tb_update_count; |
| } |
| |
| /* |
| * Initialize the TOD clock and the CPU timer of |
| * the boot cpu. |
| */ |
| void __init time_init(void) |
| { |
| sched_clock_base_cc = reset_tod_clock(); |
| |
| /* set xtime */ |
| tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, &xtime); |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| /* request the clock comparator external interrupt */ |
| if (register_early_external_interrupt(0x1004, |
| clock_comparator_interrupt, |
| &ext_int_info_cc) != 0) |
| panic("Couldn't request external interrupt 0x1004"); |
| |
| if (clocksource_register(&clocksource_tod) != 0) |
| panic("Could not register TOD clock source"); |
| |
| /* request the timing alert external interrupt */ |
| if (register_early_external_interrupt(0x1406, |
| timing_alert_interrupt, |
| &ext_int_etr_cc) != 0) |
| panic("Couldn't request external interrupt 0x1406"); |
| |
| /* Enable TOD clock interrupts on the boot cpu. */ |
| init_cpu_timer(); |
| /* Enable cpu timer interrupts on the boot cpu. */ |
| vtime_init(); |
| } |
| |
| /* |
| * The time is "clock". old is what we think the time is. |
| * Adjust the value by a multiple of jiffies and add the delta to ntp. |
| * "delay" is an approximation how long the synchronization took. If |
| * the time correction is positive, then "delay" is subtracted from |
| * the time difference and only the remaining part is passed to ntp. |
| */ |
| static unsigned long long adjust_time(unsigned long long old, |
| unsigned long long clock, |
| unsigned long long delay) |
| { |
| unsigned long long delta, ticks; |
| struct timex adjust; |
| |
| if (clock > old) { |
| /* It is later than we thought. */ |
| delta = ticks = clock - old; |
| delta = ticks = (delta < delay) ? 0 : delta - delay; |
| delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); |
| adjust.offset = ticks * (1000000 / HZ); |
| } else { |
| /* It is earlier than we thought. */ |
| delta = ticks = old - clock; |
| delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); |
| delta = -delta; |
| adjust.offset = -ticks * (1000000 / HZ); |
| } |
| sched_clock_base_cc += delta; |
| if (adjust.offset != 0) { |
| pr_notice("The ETR interface has adjusted the clock " |
| "by %li microseconds\n", adjust.offset); |
| adjust.modes = ADJ_OFFSET_SINGLESHOT; |
| do_adjtimex(&adjust); |
| } |
| return delta; |
| } |
| |
| static DEFINE_PER_CPU(atomic_t, clock_sync_word); |
| static unsigned long clock_sync_flags; |
| |
| #define CLOCK_SYNC_HAS_ETR 0 |
| #define CLOCK_SYNC_HAS_STP 1 |
| #define CLOCK_SYNC_ETR 2 |
| #define CLOCK_SYNC_STP 3 |
| |
| /* |
| * The synchronous get_clock function. It will write the current clock |
| * value to the clock pointer and return 0 if the clock is in sync with |
| * the external time source. If the clock mode is local it will return |
| * -ENOSYS and -EAGAIN if the clock is not in sync with the external |
| * reference. |
| */ |
| int get_sync_clock(unsigned long long *clock) |
| { |
| atomic_t *sw_ptr; |
| unsigned int sw0, sw1; |
| |
| sw_ptr = &get_cpu_var(clock_sync_word); |
| sw0 = atomic_read(sw_ptr); |
| *clock = get_clock(); |
| sw1 = atomic_read(sw_ptr); |
| put_cpu_var(clock_sync_sync); |
| if (sw0 == sw1 && (sw0 & 0x80000000U)) |
| /* Success: time is in sync. */ |
| return 0; |
| if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && |
| !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) |
| return -ENOSYS; |
| if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && |
| !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) |
| return -EACCES; |
| return -EAGAIN; |
| } |
| EXPORT_SYMBOL(get_sync_clock); |
| |
| /* |
| * Make get_sync_clock return -EAGAIN. |
| */ |
| static void disable_sync_clock(void *dummy) |
| { |
| atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); |
| /* |
| * Clear the in-sync bit 2^31. All get_sync_clock calls will |
| * fail until the sync bit is turned back on. In addition |
| * increase the "sequence" counter to avoid the race of an |
| * etr event and the complete recovery against get_sync_clock. |
| */ |
| atomic_clear_mask(0x80000000, sw_ptr); |
| atomic_inc(sw_ptr); |
| } |
| |
| /* |
| * Make get_sync_clock return 0 again. |
| * Needs to be called from a context disabled for preemption. |
| */ |
| static void enable_sync_clock(void) |
| { |
| atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); |
| atomic_set_mask(0x80000000, sw_ptr); |
| } |
| |
| /* Single threaded workqueue used for etr and stp sync events */ |
| static struct workqueue_struct *time_sync_wq; |
| |
| static void __init time_init_wq(void) |
| { |
| if (time_sync_wq) |
| return; |
| time_sync_wq = create_singlethread_workqueue("timesync"); |
| stop_machine_create(); |
| } |
| |
| /* |
| * External Time Reference (ETR) code. |
| */ |
| static int etr_port0_online; |
| static int etr_port1_online; |
| static int etr_steai_available; |
| |
| static int __init early_parse_etr(char *p) |
| { |
| if (strncmp(p, "off", 3) == 0) |
| etr_port0_online = etr_port1_online = 0; |
| else if (strncmp(p, "port0", 5) == 0) |
| etr_port0_online = 1; |
| else if (strncmp(p, "port1", 5) == 0) |
| etr_port1_online = 1; |
| else if (strncmp(p, "on", 2) == 0) |
| etr_port0_online = etr_port1_online = 1; |
| return 0; |
| } |
| early_param("etr", early_parse_etr); |
| |
| enum etr_event { |
| ETR_EVENT_PORT0_CHANGE, |
| ETR_EVENT_PORT1_CHANGE, |
| ETR_EVENT_PORT_ALERT, |
| ETR_EVENT_SYNC_CHECK, |
| ETR_EVENT_SWITCH_LOCAL, |
| ETR_EVENT_UPDATE, |
| }; |
| |
| /* |
| * Valid bit combinations of the eacr register are (x = don't care): |
| * e0 e1 dp p0 p1 ea es sl |
| * 0 0 x 0 0 0 0 0 initial, disabled state |
| * 0 0 x 0 1 1 0 0 port 1 online |
| * 0 0 x 1 0 1 0 0 port 0 online |
| * 0 0 x 1 1 1 0 0 both ports online |
| * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode |
| * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode |
| * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync |
| * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync |
| * 0 1 x 1 1 1 0 0 both ports online, port 1 usable |
| * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync |
| * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync |
| * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode |
| * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode |
| * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync |
| * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync |
| * 1 0 x 1 1 1 0 0 both ports online, port 0 usable |
| * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync |
| * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync |
| * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync |
| * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync |
| */ |
| static struct etr_eacr etr_eacr; |
| static u64 etr_tolec; /* time of last eacr update */ |
| static struct etr_aib etr_port0; |
| static int etr_port0_uptodate; |
| static struct etr_aib etr_port1; |
| static int etr_port1_uptodate; |
| static unsigned long etr_events; |
| static struct timer_list etr_timer; |
| |
| static void etr_timeout(unsigned long dummy); |
| static void etr_work_fn(struct work_struct *work); |
| static DEFINE_MUTEX(etr_work_mutex); |
| static DECLARE_WORK(etr_work, etr_work_fn); |
| |
| /* |
| * Reset ETR attachment. |
| */ |
| static void etr_reset(void) |
| { |
| etr_eacr = (struct etr_eacr) { |
| .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, |
| .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, |
| .es = 0, .sl = 0 }; |
| if (etr_setr(&etr_eacr) == 0) { |
| etr_tolec = get_clock(); |
| set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); |
| } else if (etr_port0_online || etr_port1_online) { |
| pr_warning("The real or virtual hardware system does " |
| "not provide an ETR interface\n"); |
| etr_port0_online = etr_port1_online = 0; |
| } |
| } |
| |
| static int __init etr_init(void) |
| { |
| struct etr_aib aib; |
| |
| if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) |
| return 0; |
| time_init_wq(); |
| /* Check if this machine has the steai instruction. */ |
| if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) |
| etr_steai_available = 1; |
| setup_timer(&etr_timer, etr_timeout, 0UL); |
| if (etr_port0_online) { |
| set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); |
| queue_work(time_sync_wq, &etr_work); |
| } |
| if (etr_port1_online) { |
| set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); |
| queue_work(time_sync_wq, &etr_work); |
| } |
| return 0; |
| } |
| |
| arch_initcall(etr_init); |
| |
| /* |
| * Two sorts of ETR machine checks. The architecture reads: |
| * "When a machine-check niterruption occurs and if a switch-to-local or |
| * ETR-sync-check interrupt request is pending but disabled, this pending |
| * disabled interruption request is indicated and is cleared". |
| * Which means that we can get etr_switch_to_local events from the machine |
| * check handler although the interruption condition is disabled. Lovely.. |
| */ |
| |
| /* |
| * Switch to local machine check. This is called when the last usable |
| * ETR port goes inactive. After switch to local the clock is not in sync. |
| */ |
| void etr_switch_to_local(void) |
| { |
| if (!etr_eacr.sl) |
| return; |
| if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) |
| disable_sync_clock(NULL); |
| set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events); |
| queue_work(time_sync_wq, &etr_work); |
| } |
| |
| /* |
| * ETR sync check machine check. This is called when the ETR OTE and the |
| * local clock OTE are farther apart than the ETR sync check tolerance. |
| * After a ETR sync check the clock is not in sync. The machine check |
| * is broadcasted to all cpus at the same time. |
| */ |
| void etr_sync_check(void) |
| { |
| if (!etr_eacr.es) |
| return; |
| if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) |
| disable_sync_clock(NULL); |
| set_bit(ETR_EVENT_SYNC_CHECK, &etr_events); |
| queue_work(time_sync_wq, &etr_work); |
| } |
| |
| /* |
| * ETR timing alert. There are two causes: |
| * 1) port state change, check the usability of the port |
| * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the |
| * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) |
| * or ETR-data word 4 (edf4) has changed. |
| */ |
| static void etr_timing_alert(struct etr_irq_parm *intparm) |
| { |
| if (intparm->pc0) |
| /* ETR port 0 state change. */ |
| set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); |
| if (intparm->pc1) |
| /* ETR port 1 state change. */ |
| set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); |
| if (intparm->eai) |
| /* |
| * ETR port alert on either port 0, 1 or both. |
| * Both ports are not up-to-date now. |
| */ |
| set_bit(ETR_EVENT_PORT_ALERT, &etr_events); |
| queue_work(time_sync_wq, &etr_work); |
| } |
| |
| static void etr_timeout(unsigned long dummy) |
| { |
| set_bit(ETR_EVENT_UPDATE, &etr_events); |
| queue_work(time_sync_wq, &etr_work); |
| } |
| |
| /* |
| * Check if the etr mode is pss. |
| */ |
| static inline int etr_mode_is_pps(struct etr_eacr eacr) |
| { |
| return eacr.es && !eacr.sl; |
| } |
| |
| /* |
| * Check if the etr mode is etr. |
| */ |
| static inline int etr_mode_is_etr(struct etr_eacr eacr) |
| { |
| return eacr.es && eacr.sl; |
| } |
| |
| /* |
| * Check if the port can be used for TOD synchronization. |
| * For PPS mode the port has to receive OTEs. For ETR mode |
| * the port has to receive OTEs, the ETR stepping bit has to |
| * be zero and the validity bits for data frame 1, 2, and 3 |
| * have to be 1. |
| */ |
| static int etr_port_valid(struct etr_aib *aib, int port) |
| { |
| unsigned int psc; |
| |
| /* Check that this port is receiving OTEs. */ |
| if (aib->tsp == 0) |
| return 0; |
| |
| psc = port ? aib->esw.psc1 : aib->esw.psc0; |
| if (psc == etr_lpsc_pps_mode) |
| return 1; |
| if (psc == etr_lpsc_operational_step) |
| return !aib->esw.y && aib->slsw.v1 && |
| aib->slsw.v2 && aib->slsw.v3; |
| return 0; |
| } |
| |
| /* |
| * Check if two ports are on the same network. |
| */ |
| static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) |
| { |
| // FIXME: any other fields we have to compare? |
| return aib1->edf1.net_id == aib2->edf1.net_id; |
| } |
| |
| /* |
| * Wrapper for etr_stei that converts physical port states |
| * to logical port states to be consistent with the output |
| * of stetr (see etr_psc vs. etr_lpsc). |
| */ |
| static void etr_steai_cv(struct etr_aib *aib, unsigned int func) |
| { |
| BUG_ON(etr_steai(aib, func) != 0); |
| /* Convert port state to logical port state. */ |
| if (aib->esw.psc0 == 1) |
| aib->esw.psc0 = 2; |
| else if (aib->esw.psc0 == 0 && aib->esw.p == 0) |
| aib->esw.psc0 = 1; |
| if (aib->esw.psc1 == 1) |
| aib->esw.psc1 = 2; |
| else if (aib->esw.psc1 == 0 && aib->esw.p == 1) |
| aib->esw.psc1 = 1; |
| } |
| |
| /* |
| * Check if the aib a2 is still connected to the same attachment as |
| * aib a1, the etv values differ by one and a2 is valid. |
| */ |
| static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) |
| { |
| int state_a1, state_a2; |
| |
| /* Paranoia check: e0/e1 should better be the same. */ |
| if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || |
| a1->esw.eacr.e1 != a2->esw.eacr.e1) |
| return 0; |
| |
| /* Still connected to the same etr ? */ |
| state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; |
| state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; |
| if (state_a1 == etr_lpsc_operational_step) { |
| if (state_a2 != etr_lpsc_operational_step || |
| a1->edf1.net_id != a2->edf1.net_id || |
| a1->edf1.etr_id != a2->edf1.etr_id || |
| a1->edf1.etr_pn != a2->edf1.etr_pn) |
| return 0; |
| } else if (state_a2 != etr_lpsc_pps_mode) |
| return 0; |
| |
| /* The ETV value of a2 needs to be ETV of a1 + 1. */ |
| if (a1->edf2.etv + 1 != a2->edf2.etv) |
| return 0; |
| |
| if (!etr_port_valid(a2, p)) |
| return 0; |
| |
| return 1; |
| } |
| |
| struct clock_sync_data { |
| atomic_t cpus; |
| int in_sync; |
| unsigned long long fixup_cc; |
| int etr_port; |
| struct etr_aib *etr_aib; |
| }; |
| |
| static void clock_sync_cpu(struct clock_sync_data *sync) |
| { |
| atomic_dec(&sync->cpus); |
| enable_sync_clock(); |
| /* |
| * This looks like a busy wait loop but it isn't. etr_sync_cpus |
| * is called on all other cpus while the TOD clocks is stopped. |
| * __udelay will stop the cpu on an enabled wait psw until the |
| * TOD is running again. |
| */ |
| while (sync->in_sync == 0) { |
| __udelay(1); |
| /* |
| * A different cpu changes *in_sync. Therefore use |
| * barrier() to force memory access. |
| */ |
| barrier(); |
| } |
| if (sync->in_sync != 1) |
| /* Didn't work. Clear per-cpu in sync bit again. */ |
| disable_sync_clock(NULL); |
| /* |
| * This round of TOD syncing is done. Set the clock comparator |
| * to the next tick and let the processor continue. |
| */ |
| fixup_clock_comparator(sync->fixup_cc); |
| } |
| |
| /* |
| * Sync the TOD clock using the port refered to by aibp. This port |
| * has to be enabled and the other port has to be disabled. The |
| * last eacr update has to be more than 1.6 seconds in the past. |
| */ |
| static int etr_sync_clock(void *data) |
| { |
| static int first; |
| unsigned long long clock, old_clock, delay, delta; |
| struct clock_sync_data *etr_sync; |
| struct etr_aib *sync_port, *aib; |
| int port; |
| int rc; |
| |
| etr_sync = data; |
| |
| if (xchg(&first, 1) == 1) { |
| /* Slave */ |
| clock_sync_cpu(etr_sync); |
| return 0; |
| } |
| |
| /* Wait until all other cpus entered the sync function. */ |
| while (atomic_read(&etr_sync->cpus) != 0) |
| cpu_relax(); |
| |
| port = etr_sync->etr_port; |
| aib = etr_sync->etr_aib; |
| sync_port = (port == 0) ? &etr_port0 : &etr_port1; |
| enable_sync_clock(); |
| |
| /* Set clock to next OTE. */ |
| __ctl_set_bit(14, 21); |
| __ctl_set_bit(0, 29); |
| clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; |
| old_clock = get_clock(); |
| if (set_clock(clock) == 0) { |
| __udelay(1); /* Wait for the clock to start. */ |
| __ctl_clear_bit(0, 29); |
| __ctl_clear_bit(14, 21); |
| etr_stetr(aib); |
| /* Adjust Linux timing variables. */ |
| delay = (unsigned long long) |
| (aib->edf2.etv - sync_port->edf2.etv) << 32; |
| delta = adjust_time(old_clock, clock, delay); |
| etr_sync->fixup_cc = delta; |
| fixup_clock_comparator(delta); |
| /* Verify that the clock is properly set. */ |
| if (!etr_aib_follows(sync_port, aib, port)) { |
| /* Didn't work. */ |
| disable_sync_clock(NULL); |
| etr_sync->in_sync = -EAGAIN; |
| rc = -EAGAIN; |
| } else { |
| etr_sync->in_sync = 1; |
| rc = 0; |
| } |
| } else { |
| /* Could not set the clock ?!? */ |
| __ctl_clear_bit(0, 29); |
| __ctl_clear_bit(14, 21); |
| disable_sync_clock(NULL); |
| etr_sync->in_sync = -EAGAIN; |
| rc = -EAGAIN; |
| } |
| xchg(&first, 0); |
| return rc; |
| } |
| |
| static int etr_sync_clock_stop(struct etr_aib *aib, int port) |
| { |
| struct clock_sync_data etr_sync; |
| struct etr_aib *sync_port; |
| int follows; |
| int rc; |
| |
| /* Check if the current aib is adjacent to the sync port aib. */ |
| sync_port = (port == 0) ? &etr_port0 : &etr_port1; |
| follows = etr_aib_follows(sync_port, aib, port); |
| memcpy(sync_port, aib, sizeof(*aib)); |
| if (!follows) |
| return -EAGAIN; |
| memset(&etr_sync, 0, sizeof(etr_sync)); |
| etr_sync.etr_aib = aib; |
| etr_sync.etr_port = port; |
| get_online_cpus(); |
| atomic_set(&etr_sync.cpus, num_online_cpus() - 1); |
| rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map); |
| put_online_cpus(); |
| return rc; |
| } |
| |
| /* |
| * Handle the immediate effects of the different events. |
| * The port change event is used for online/offline changes. |
| */ |
| static struct etr_eacr etr_handle_events(struct etr_eacr eacr) |
| { |
| if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) |
| eacr.es = 0; |
| if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) |
| eacr.es = eacr.sl = 0; |
| if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) |
| etr_port0_uptodate = etr_port1_uptodate = 0; |
| |
| if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { |
| if (eacr.e0) |
| /* |
| * Port change of an enabled port. We have to |
| * assume that this can have caused an stepping |
| * port switch. |
| */ |
| etr_tolec = get_clock(); |
| eacr.p0 = etr_port0_online; |
| if (!eacr.p0) |
| eacr.e0 = 0; |
| etr_port0_uptodate = 0; |
| } |
| if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { |
| if (eacr.e1) |
| /* |
| * Port change of an enabled port. We have to |
| * assume that this can have caused an stepping |
| * port switch. |
| */ |
| etr_tolec = get_clock(); |
| eacr.p1 = etr_port1_online; |
| if (!eacr.p1) |
| eacr.e1 = 0; |
| etr_port1_uptodate = 0; |
| } |
| clear_bit(ETR_EVENT_UPDATE, &etr_events); |
| return eacr; |
| } |
| |
| /* |
| * Set up a timer that expires after the etr_tolec + 1.6 seconds if |
| * one of the ports needs an update. |
| */ |
| static void etr_set_tolec_timeout(unsigned long long now) |
| { |
| unsigned long micros; |
| |
| if ((!etr_eacr.p0 || etr_port0_uptodate) && |
| (!etr_eacr.p1 || etr_port1_uptodate)) |
| return; |
| micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; |
| micros = (micros > 1600000) ? 0 : 1600000 - micros; |
| mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); |
| } |
| |
| /* |
| * Set up a time that expires after 1/2 second. |
| */ |
| static void etr_set_sync_timeout(void) |
| { |
| mod_timer(&etr_timer, jiffies + HZ/2); |
| } |
| |
| /* |
| * Update the aib information for one or both ports. |
| */ |
| static struct etr_eacr etr_handle_update(struct etr_aib *aib, |
| struct etr_eacr eacr) |
| { |
| /* With both ports disabled the aib information is useless. */ |
| if (!eacr.e0 && !eacr.e1) |
| return eacr; |
| |
| /* Update port0 or port1 with aib stored in etr_work_fn. */ |
| if (aib->esw.q == 0) { |
| /* Information for port 0 stored. */ |
| if (eacr.p0 && !etr_port0_uptodate) { |
| etr_port0 = *aib; |
| if (etr_port0_online) |
| etr_port0_uptodate = 1; |
| } |
| } else { |
| /* Information for port 1 stored. */ |
| if (eacr.p1 && !etr_port1_uptodate) { |
| etr_port1 = *aib; |
| if (etr_port0_online) |
| etr_port1_uptodate = 1; |
| } |
| } |
| |
| /* |
| * Do not try to get the alternate port aib if the clock |
| * is not in sync yet. |
| */ |
| if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags) && !eacr.es) |
| return eacr; |
| |
| /* |
| * If steai is available we can get the information about |
| * the other port immediately. If only stetr is available the |
| * data-port bit toggle has to be used. |
| */ |
| if (etr_steai_available) { |
| if (eacr.p0 && !etr_port0_uptodate) { |
| etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); |
| etr_port0_uptodate = 1; |
| } |
| if (eacr.p1 && !etr_port1_uptodate) { |
| etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); |
| etr_port1_uptodate = 1; |
| } |
| } else { |
| /* |
| * One port was updated above, if the other |
| * port is not uptodate toggle dp bit. |
| */ |
| if ((eacr.p0 && !etr_port0_uptodate) || |
| (eacr.p1 && !etr_port1_uptodate)) |
| eacr.dp ^= 1; |
| else |
| eacr.dp = 0; |
| } |
| return eacr; |
| } |
| |
| /* |
| * Write new etr control register if it differs from the current one. |
| * Return 1 if etr_tolec has been updated as well. |
| */ |
| static void etr_update_eacr(struct etr_eacr eacr) |
| { |
| int dp_changed; |
| |
| if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) |
| /* No change, return. */ |
| return; |
| /* |
| * The disable of an active port of the change of the data port |
| * bit can/will cause a change in the data port. |
| */ |
| dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || |
| (etr_eacr.dp ^ eacr.dp) != 0; |
| etr_eacr = eacr; |
| etr_setr(&etr_eacr); |
| if (dp_changed) |
| etr_tolec = get_clock(); |
| } |
| |
| /* |
| * ETR work. In this function you'll find the main logic. In |
| * particular this is the only function that calls etr_update_eacr(), |
| * it "controls" the etr control register. |
| */ |
| static void etr_work_fn(struct work_struct *work) |
| { |
| unsigned long long now; |
| struct etr_eacr eacr; |
| struct etr_aib aib; |
| int sync_port; |
| |
| /* prevent multiple execution. */ |
| mutex_lock(&etr_work_mutex); |
| |
| /* Create working copy of etr_eacr. */ |
| eacr = etr_eacr; |
| |
| /* Check for the different events and their immediate effects. */ |
| eacr = etr_handle_events(eacr); |
| |
| /* Check if ETR is supposed to be active. */ |
| eacr.ea = eacr.p0 || eacr.p1; |
| if (!eacr.ea) { |
| /* Both ports offline. Reset everything. */ |
| eacr.dp = eacr.es = eacr.sl = 0; |
| on_each_cpu(disable_sync_clock, NULL, 1); |
| del_timer_sync(&etr_timer); |
| etr_update_eacr(eacr); |
| clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); |
| goto out_unlock; |
| } |
| |
| /* Store aib to get the current ETR status word. */ |
| BUG_ON(etr_stetr(&aib) != 0); |
| etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ |
| now = get_clock(); |
| |
| /* |
| * Update the port information if the last stepping port change |
| * or data port change is older than 1.6 seconds. |
| */ |
| if (now >= etr_tolec + (1600000 << 12)) |
| eacr = etr_handle_update(&aib, eacr); |
| |
| /* |
| * Select ports to enable. The prefered synchronization mode is PPS. |
| * If a port can be enabled depends on a number of things: |
| * 1) The port needs to be online and uptodate. A port is not |
| * disabled just because it is not uptodate, but it is only |
| * enabled if it is uptodate. |
| * 2) The port needs to have the same mode (pps / etr). |
| * 3) The port needs to be usable -> etr_port_valid() == 1 |
| * 4) To enable the second port the clock needs to be in sync. |
| * 5) If both ports are useable and are ETR ports, the network id |
| * has to be the same. |
| * The eacr.sl bit is used to indicate etr mode vs. pps mode. |
| */ |
| if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { |
| eacr.sl = 0; |
| eacr.e0 = 1; |
| if (!etr_mode_is_pps(etr_eacr)) |
| eacr.es = 0; |
| if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) |
| eacr.e1 = 0; |
| // FIXME: uptodate checks ? |
| else if (etr_port0_uptodate && etr_port1_uptodate) |
| eacr.e1 = 1; |
| sync_port = (etr_port0_uptodate && |
| etr_port_valid(&etr_port0, 0)) ? 0 : -1; |
| } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { |
| eacr.sl = 0; |
| eacr.e0 = 0; |
| eacr.e1 = 1; |
| if (!etr_mode_is_pps(etr_eacr)) |
| eacr.es = 0; |
| sync_port = (etr_port1_uptodate && |
| etr_port_valid(&etr_port1, 1)) ? 1 : -1; |
| } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { |
| eacr.sl = 1; |
| eacr.e0 = 1; |
| if (!etr_mode_is_etr(etr_eacr)) |
| eacr.es = 0; |
| if (!eacr.es || !eacr.p1 || |
| aib.esw.psc1 != etr_lpsc_operational_alt) |
| eacr.e1 = 0; |
| else if (etr_port0_uptodate && etr_port1_uptodate && |
| etr_compare_network(&etr_port0, &etr_port1)) |
| eacr.e1 = 1; |
| sync_port = (etr_port0_uptodate && |
| etr_port_valid(&etr_port0, 0)) ? 0 : -1; |
| } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { |
| eacr.sl = 1; |
| eacr.e0 = 0; |
| eacr.e1 = 1; |
| if (!etr_mode_is_etr(etr_eacr)) |
| eacr.es = 0; |
| sync_port = (etr_port1_uptodate && |
| etr_port_valid(&etr_port1, 1)) ? 1 : -1; |
| } else { |
| /* Both ports not usable. */ |
| eacr.es = eacr.sl = 0; |
| sync_port = -1; |
| clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); |
| } |
| |
| if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) |
| eacr.es = 0; |
| |
| /* |
| * If the clock is in sync just update the eacr and return. |
| * If there is no valid sync port wait for a port update. |
| */ |
| if (test_bit(CLOCK_SYNC_STP, &clock_sync_flags) || |
| eacr.es || sync_port < 0) { |
| etr_update_eacr(eacr); |
| etr_set_tolec_timeout(now); |
| goto out_unlock; |
| } |
| |
| /* |
| * Prepare control register for clock syncing |
| * (reset data port bit, set sync check control. |
| */ |
| eacr.dp = 0; |
| eacr.es = 1; |
| |
| /* |
| * Update eacr and try to synchronize the clock. If the update |
| * of eacr caused a stepping port switch (or if we have to |
| * assume that a stepping port switch has occured) or the |
| * clock syncing failed, reset the sync check control bit |
| * and set up a timer to try again after 0.5 seconds |
| */ |
| etr_update_eacr(eacr); |
| set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); |
| if (now < etr_tolec + (1600000 << 12) || |
| etr_sync_clock_stop(&aib, sync_port) != 0) { |
| /* Sync failed. Try again in 1/2 second. */ |
| eacr.es = 0; |
| etr_update_eacr(eacr); |
| clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); |
| etr_set_sync_timeout(); |
| } else |
| etr_set_tolec_timeout(now); |
| out_unlock: |
| mutex_unlock(&etr_work_mutex); |
| } |
| |
| /* |
| * Sysfs interface functions |
| */ |
| static struct sysdev_class etr_sysclass = { |
| .name = "etr", |
| }; |
| |
| static struct sys_device etr_port0_dev = { |
| .id = 0, |
| .cls = &etr_sysclass, |
| }; |
| |
| static struct sys_device etr_port1_dev = { |
| .id = 1, |
| .cls = &etr_sysclass, |
| }; |
| |
| /* |
| * ETR class attributes |
| */ |
| static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf) |
| { |
| return sprintf(buf, "%i\n", etr_port0.esw.p); |
| } |
| |
| static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); |
| |
| static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf) |
| { |
| char *mode_str; |
| |
| if (etr_mode_is_pps(etr_eacr)) |
| mode_str = "pps"; |
| else if (etr_mode_is_etr(etr_eacr)) |
| mode_str = "etr"; |
| else |
| mode_str = "local"; |
| return sprintf(buf, "%s\n", mode_str); |
| } |
| |
| static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); |
| |
| /* |
| * ETR port attributes |
| */ |
| static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev) |
| { |
| if (dev == &etr_port0_dev) |
| return etr_port0_online ? &etr_port0 : NULL; |
| else |
| return etr_port1_online ? &etr_port1 : NULL; |
| } |
| |
| static ssize_t etr_online_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, |
| char *buf) |
| { |
| unsigned int online; |
| |
| online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; |
| return sprintf(buf, "%i\n", online); |
| } |
| |
| static ssize_t etr_online_store(struct sys_device *dev, |
| struct sysdev_attribute *attr, |
| const char *buf, size_t count) |
| { |
| unsigned int value; |
| |
| value = simple_strtoul(buf, NULL, 0); |
| if (value != 0 && value != 1) |
| return -EINVAL; |
| if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) |
| return -EOPNOTSUPP; |
| if (dev == &etr_port0_dev) { |
| if (etr_port0_online == value) |
| return count; /* Nothing to do. */ |
| etr_port0_online = value; |
| set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); |
| queue_work(time_sync_wq, &etr_work); |
| } else { |
| if (etr_port1_online == value) |
| return count; /* Nothing to do. */ |
| etr_port1_online = value; |
| set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); |
| queue_work(time_sync_wq, &etr_work); |
| } |
| return count; |
| } |
| |
| static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store); |
| |
| static ssize_t etr_stepping_control_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, |
| char *buf) |
| { |
| return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? |
| etr_eacr.e0 : etr_eacr.e1); |
| } |
| |
| static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); |
| |
| static ssize_t etr_mode_code_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, char *buf) |
| { |
| if (!etr_port0_online && !etr_port1_online) |
| /* Status word is not uptodate if both ports are offline. */ |
| return -ENODATA; |
| return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? |
| etr_port0.esw.psc0 : etr_port0.esw.psc1); |
| } |
| |
| static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL); |
| |
| static ssize_t etr_untuned_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, char *buf) |
| { |
| struct etr_aib *aib = etr_aib_from_dev(dev); |
| |
| if (!aib || !aib->slsw.v1) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", aib->edf1.u); |
| } |
| |
| static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL); |
| |
| static ssize_t etr_network_id_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, char *buf) |
| { |
| struct etr_aib *aib = etr_aib_from_dev(dev); |
| |
| if (!aib || !aib->slsw.v1) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", aib->edf1.net_id); |
| } |
| |
| static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL); |
| |
| static ssize_t etr_id_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, char *buf) |
| { |
| struct etr_aib *aib = etr_aib_from_dev(dev); |
| |
| if (!aib || !aib->slsw.v1) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", aib->edf1.etr_id); |
| } |
| |
| static SYSDEV_ATTR(id, 0400, etr_id_show, NULL); |
| |
| static ssize_t etr_port_number_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, char *buf) |
| { |
| struct etr_aib *aib = etr_aib_from_dev(dev); |
| |
| if (!aib || !aib->slsw.v1) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", aib->edf1.etr_pn); |
| } |
| |
| static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL); |
| |
| static ssize_t etr_coupled_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, char *buf) |
| { |
| struct etr_aib *aib = etr_aib_from_dev(dev); |
| |
| if (!aib || !aib->slsw.v3) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", aib->edf3.c); |
| } |
| |
| static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL); |
| |
| static ssize_t etr_local_time_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, char *buf) |
| { |
| struct etr_aib *aib = etr_aib_from_dev(dev); |
| |
| if (!aib || !aib->slsw.v3) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", aib->edf3.blto); |
| } |
| |
| static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL); |
| |
| static ssize_t etr_utc_offset_show(struct sys_device *dev, |
| struct sysdev_attribute *attr, char *buf) |
| { |
| struct etr_aib *aib = etr_aib_from_dev(dev); |
| |
| if (!aib || !aib->slsw.v3) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", aib->edf3.buo); |
| } |
| |
| static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); |
| |
| static struct sysdev_attribute *etr_port_attributes[] = { |
| &attr_online, |
| &attr_stepping_control, |
| &attr_state_code, |
| &attr_untuned, |
| &attr_network, |
| &attr_id, |
| &attr_port, |
| &attr_coupled, |
| &attr_local_time, |
| &attr_utc_offset, |
| NULL |
| }; |
| |
| static int __init etr_register_port(struct sys_device *dev) |
| { |
| struct sysdev_attribute **attr; |
| int rc; |
| |
| rc = sysdev_register(dev); |
| if (rc) |
| goto out; |
| for (attr = etr_port_attributes; *attr; attr++) { |
| rc = sysdev_create_file(dev, *attr); |
| if (rc) |
| goto out_unreg; |
| } |
| return 0; |
| out_unreg: |
| for (; attr >= etr_port_attributes; attr--) |
| sysdev_remove_file(dev, *attr); |
| sysdev_unregister(dev); |
| out: |
| return rc; |
| } |
| |
| static void __init etr_unregister_port(struct sys_device *dev) |
| { |
| struct sysdev_attribute **attr; |
| |
| for (attr = etr_port_attributes; *attr; attr++) |
| sysdev_remove_file(dev, *attr); |
| sysdev_unregister(dev); |
| } |
| |
| static int __init etr_init_sysfs(void) |
| { |
| int rc; |
| |
| rc = sysdev_class_register(&etr_sysclass); |
| if (rc) |
| goto out; |
| rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port); |
| if (rc) |
| goto out_unreg_class; |
| rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode); |
| if (rc) |
| goto out_remove_stepping_port; |
| rc = etr_register_port(&etr_port0_dev); |
| if (rc) |
| goto out_remove_stepping_mode; |
| rc = etr_register_port(&etr_port1_dev); |
| if (rc) |
| goto out_remove_port0; |
| return 0; |
| |
| out_remove_port0: |
| etr_unregister_port(&etr_port0_dev); |
| out_remove_stepping_mode: |
| sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode); |
| out_remove_stepping_port: |
| sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port); |
| out_unreg_class: |
| sysdev_class_unregister(&etr_sysclass); |
| out: |
| return rc; |
| } |
| |
| device_initcall(etr_init_sysfs); |
| |
| /* |
| * Server Time Protocol (STP) code. |
| */ |
| static int stp_online; |
| static struct stp_sstpi stp_info; |
| static void *stp_page; |
| |
| static void stp_work_fn(struct work_struct *work); |
| static DEFINE_MUTEX(stp_work_mutex); |
| static DECLARE_WORK(stp_work, stp_work_fn); |
| |
| static int __init early_parse_stp(char *p) |
| { |
| if (strncmp(p, "off", 3) == 0) |
| stp_online = 0; |
| else if (strncmp(p, "on", 2) == 0) |
| stp_online = 1; |
| return 0; |
| } |
| early_param("stp", early_parse_stp); |
| |
| /* |
| * Reset STP attachment. |
| */ |
| static void __init stp_reset(void) |
| { |
| int rc; |
| |
| stp_page = alloc_bootmem_pages(PAGE_SIZE); |
| rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); |
| if (rc == 0) |
| set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); |
| else if (stp_online) { |
| pr_warning("The real or virtual hardware system does " |
| "not provide an STP interface\n"); |
| free_bootmem((unsigned long) stp_page, PAGE_SIZE); |
| stp_page = NULL; |
| stp_online = 0; |
| } |
| } |
| |
| static int __init stp_init(void) |
| { |
| if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) |
| return 0; |
| time_init_wq(); |
| if (!stp_online) |
| return 0; |
| queue_work(time_sync_wq, &stp_work); |
| return 0; |
| } |
| |
| arch_initcall(stp_init); |
| |
| /* |
| * STP timing alert. There are three causes: |
| * 1) timing status change |
| * 2) link availability change |
| * 3) time control parameter change |
| * In all three cases we are only interested in the clock source state. |
| * If a STP clock source is now available use it. |
| */ |
| static void stp_timing_alert(struct stp_irq_parm *intparm) |
| { |
| if (intparm->tsc || intparm->lac || intparm->tcpc) |
| queue_work(time_sync_wq, &stp_work); |
| } |
| |
| /* |
| * STP sync check machine check. This is called when the timing state |
| * changes from the synchronized state to the unsynchronized state. |
| * After a STP sync check the clock is not in sync. The machine check |
| * is broadcasted to all cpus at the same time. |
| */ |
| void stp_sync_check(void) |
| { |
| if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) |
| return; |
| disable_sync_clock(NULL); |
| queue_work(time_sync_wq, &stp_work); |
| } |
| |
| /* |
| * STP island condition machine check. This is called when an attached |
| * server attempts to communicate over an STP link and the servers |
| * have matching CTN ids and have a valid stratum-1 configuration |
| * but the configurations do not match. |
| */ |
| void stp_island_check(void) |
| { |
| if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) |
| return; |
| disable_sync_clock(NULL); |
| queue_work(time_sync_wq, &stp_work); |
| } |
| |
| |
| static int stp_sync_clock(void *data) |
| { |
| static int first; |
| unsigned long long old_clock, delta; |
| struct clock_sync_data *stp_sync; |
| int rc; |
| |
| stp_sync = data; |
| |
| if (xchg(&first, 1) == 1) { |
| /* Slave */ |
| clock_sync_cpu(stp_sync); |
| return 0; |
| } |
| |
| /* Wait until all other cpus entered the sync function. */ |
| while (atomic_read(&stp_sync->cpus) != 0) |
| cpu_relax(); |
| |
| enable_sync_clock(); |
| |
| set_bit(CLOCK_SYNC_STP, &clock_sync_flags); |
| if (test_and_clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) |
| queue_work(time_sync_wq, &etr_work); |
| |
| rc = 0; |
| if (stp_info.todoff[0] || stp_info.todoff[1] || |
| stp_info.todoff[2] || stp_info.todoff[3] || |
| stp_info.tmd != 2) { |
| old_clock = get_clock(); |
| rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); |
| if (rc == 0) { |
| delta = adjust_time(old_clock, get_clock(), 0); |
| fixup_clock_comparator(delta); |
| rc = chsc_sstpi(stp_page, &stp_info, |
| sizeof(struct stp_sstpi)); |
| if (rc == 0 && stp_info.tmd != 2) |
| rc = -EAGAIN; |
| } |
| } |
| if (rc) { |
| disable_sync_clock(NULL); |
| stp_sync->in_sync = -EAGAIN; |
| clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); |
| if (etr_port0_online || etr_port1_online) |
| queue_work(time_sync_wq, &etr_work); |
| } else |
| stp_sync->in_sync = 1; |
| xchg(&first, 0); |
| return 0; |
| } |
| |
| /* |
| * STP work. Check for the STP state and take over the clock |
| * synchronization if the STP clock source is usable. |
| */ |
| static void stp_work_fn(struct work_struct *work) |
| { |
| struct clock_sync_data stp_sync; |
| int rc; |
| |
| /* prevent multiple execution. */ |
| mutex_lock(&stp_work_mutex); |
| |
| if (!stp_online) { |
| chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); |
| goto out_unlock; |
| } |
| |
| rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); |
| if (rc) |
| goto out_unlock; |
| |
| rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); |
| if (rc || stp_info.c == 0) |
| goto out_unlock; |
| |
| memset(&stp_sync, 0, sizeof(stp_sync)); |
| get_online_cpus(); |
| atomic_set(&stp_sync.cpus, num_online_cpus() - 1); |
| stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map); |
| put_online_cpus(); |
| |
| out_unlock: |
| mutex_unlock(&stp_work_mutex); |
| } |
| |
| /* |
| * STP class sysfs interface functions |
| */ |
| static struct sysdev_class stp_sysclass = { |
| .name = "stp", |
| }; |
| |
| static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online) |
| return -ENODATA; |
| return sprintf(buf, "%016llx\n", |
| *(unsigned long long *) stp_info.ctnid); |
| } |
| |
| static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); |
| |
| static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", stp_info.ctn); |
| } |
| |
| static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); |
| |
| static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online || !(stp_info.vbits & 0x2000)) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); |
| } |
| |
| static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); |
| |
| static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online || !(stp_info.vbits & 0x8000)) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); |
| } |
| |
| static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); |
| |
| static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); |
| } |
| |
| static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL); |
| |
| static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online || !(stp_info.vbits & 0x0800)) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", (int) stp_info.tto); |
| } |
| |
| static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL); |
| |
| static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online || !(stp_info.vbits & 0x4000)) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); |
| } |
| |
| static SYSDEV_CLASS_ATTR(time_zone_offset, 0400, |
| stp_time_zone_offset_show, NULL); |
| |
| static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", stp_info.tmd); |
| } |
| |
| static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); |
| |
| static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf) |
| { |
| if (!stp_online) |
| return -ENODATA; |
| return sprintf(buf, "%i\n", stp_info.tst); |
| } |
| |
| static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL); |
| |
| static ssize_t stp_online_show(struct sysdev_class *class, char *buf) |
| { |
| return sprintf(buf, "%i\n", stp_online); |
| } |
| |
| static ssize_t stp_online_store(struct sysdev_class *class, |
| const char *buf, size_t count) |
| { |
| unsigned int value; |
| |
| value = simple_strtoul(buf, NULL, 0); |
| if (value != 0 && value != 1) |
| return -EINVAL; |
| if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) |
| return -EOPNOTSUPP; |
| stp_online = value; |
| queue_work(time_sync_wq, &stp_work); |
| return count; |
| } |
| |
| /* |
| * Can't use SYSDEV_CLASS_ATTR because the attribute should be named |
| * stp/online but attr_online already exists in this file .. |
| */ |
| static struct sysdev_class_attribute attr_stp_online = { |
| .attr = { .name = "online", .mode = 0600 }, |
| .show = stp_online_show, |
| .store = stp_online_store, |
| }; |
| |
| static struct sysdev_class_attribute *stp_attributes[] = { |
| &attr_ctn_id, |
| &attr_ctn_type, |
| &attr_dst_offset, |
| &attr_leap_seconds, |
| &attr_stp_online, |
| &attr_stratum, |
| &attr_time_offset, |
| &attr_time_zone_offset, |
| &attr_timing_mode, |
| &attr_timing_state, |
| NULL |
| }; |
| |
| static int __init stp_init_sysfs(void) |
| { |
| struct sysdev_class_attribute **attr; |
| int rc; |
| |
| rc = sysdev_class_register(&stp_sysclass); |
| if (rc) |
| goto out; |
| for (attr = stp_attributes; *attr; attr++) { |
| rc = sysdev_class_create_file(&stp_sysclass, *attr); |
| if (rc) |
| goto out_unreg; |
| } |
| return 0; |
| out_unreg: |
| for (; attr >= stp_attributes; attr--) |
| sysdev_class_remove_file(&stp_sysclass, *attr); |
| sysdev_class_unregister(&stp_sysclass); |
| out: |
| return rc; |
| } |
| |
| device_initcall(stp_init_sysfs); |