| /* |
| * Copyright (C) 2009 Red Hat, Inc. |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/sched.h> |
| #include <linux/highmem.h> |
| #include <linux/hugetlb.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/rmap.h> |
| #include <linux/swap.h> |
| #include <asm/tlb.h> |
| #include <asm/pgalloc.h> |
| #include "internal.h" |
| |
| unsigned long transparent_hugepage_flags __read_mostly = |
| (1<<TRANSPARENT_HUGEPAGE_FLAG); |
| |
| #ifdef CONFIG_SYSFS |
| static ssize_t double_flag_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf, |
| enum transparent_hugepage_flag enabled, |
| enum transparent_hugepage_flag req_madv) |
| { |
| if (test_bit(enabled, &transparent_hugepage_flags)) { |
| VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); |
| return sprintf(buf, "[always] madvise never\n"); |
| } else if (test_bit(req_madv, &transparent_hugepage_flags)) |
| return sprintf(buf, "always [madvise] never\n"); |
| else |
| return sprintf(buf, "always madvise [never]\n"); |
| } |
| static ssize_t double_flag_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count, |
| enum transparent_hugepage_flag enabled, |
| enum transparent_hugepage_flag req_madv) |
| { |
| if (!memcmp("always", buf, |
| min(sizeof("always")-1, count))) { |
| set_bit(enabled, &transparent_hugepage_flags); |
| clear_bit(req_madv, &transparent_hugepage_flags); |
| } else if (!memcmp("madvise", buf, |
| min(sizeof("madvise")-1, count))) { |
| clear_bit(enabled, &transparent_hugepage_flags); |
| set_bit(req_madv, &transparent_hugepage_flags); |
| } else if (!memcmp("never", buf, |
| min(sizeof("never")-1, count))) { |
| clear_bit(enabled, &transparent_hugepage_flags); |
| clear_bit(req_madv, &transparent_hugepage_flags); |
| } else |
| return -EINVAL; |
| |
| return count; |
| } |
| |
| static ssize_t enabled_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return double_flag_show(kobj, attr, buf, |
| TRANSPARENT_HUGEPAGE_FLAG, |
| TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); |
| } |
| static ssize_t enabled_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| return double_flag_store(kobj, attr, buf, count, |
| TRANSPARENT_HUGEPAGE_FLAG, |
| TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); |
| } |
| static struct kobj_attribute enabled_attr = |
| __ATTR(enabled, 0644, enabled_show, enabled_store); |
| |
| static ssize_t single_flag_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf, |
| enum transparent_hugepage_flag flag) |
| { |
| if (test_bit(flag, &transparent_hugepage_flags)) |
| return sprintf(buf, "[yes] no\n"); |
| else |
| return sprintf(buf, "yes [no]\n"); |
| } |
| static ssize_t single_flag_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count, |
| enum transparent_hugepage_flag flag) |
| { |
| if (!memcmp("yes", buf, |
| min(sizeof("yes")-1, count))) { |
| set_bit(flag, &transparent_hugepage_flags); |
| } else if (!memcmp("no", buf, |
| min(sizeof("no")-1, count))) { |
| clear_bit(flag, &transparent_hugepage_flags); |
| } else |
| return -EINVAL; |
| |
| return count; |
| } |
| |
| /* |
| * Currently defrag only disables __GFP_NOWAIT for allocation. A blind |
| * __GFP_REPEAT is too aggressive, it's never worth swapping tons of |
| * memory just to allocate one more hugepage. |
| */ |
| static ssize_t defrag_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return double_flag_show(kobj, attr, buf, |
| TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, |
| TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); |
| } |
| static ssize_t defrag_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| return double_flag_store(kobj, attr, buf, count, |
| TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, |
| TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); |
| } |
| static struct kobj_attribute defrag_attr = |
| __ATTR(defrag, 0644, defrag_show, defrag_store); |
| |
| #ifdef CONFIG_DEBUG_VM |
| static ssize_t debug_cow_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return single_flag_show(kobj, attr, buf, |
| TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); |
| } |
| static ssize_t debug_cow_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| return single_flag_store(kobj, attr, buf, count, |
| TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); |
| } |
| static struct kobj_attribute debug_cow_attr = |
| __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); |
| #endif /* CONFIG_DEBUG_VM */ |
| |
| static struct attribute *hugepage_attr[] = { |
| &enabled_attr.attr, |
| &defrag_attr.attr, |
| #ifdef CONFIG_DEBUG_VM |
| &debug_cow_attr.attr, |
| #endif |
| NULL, |
| }; |
| |
| static struct attribute_group hugepage_attr_group = { |
| .attrs = hugepage_attr, |
| .name = "transparent_hugepage", |
| }; |
| #endif /* CONFIG_SYSFS */ |
| |
| static int __init hugepage_init(void) |
| { |
| #ifdef CONFIG_SYSFS |
| int err; |
| |
| err = sysfs_create_group(mm_kobj, &hugepage_attr_group); |
| if (err) |
| printk(KERN_ERR "hugepage: register sysfs failed\n"); |
| #endif |
| return 0; |
| } |
| module_init(hugepage_init) |
| |
| static int __init setup_transparent_hugepage(char *str) |
| { |
| int ret = 0; |
| if (!str) |
| goto out; |
| if (!strcmp(str, "always")) { |
| set_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| &transparent_hugepage_flags); |
| clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| &transparent_hugepage_flags); |
| ret = 1; |
| } else if (!strcmp(str, "madvise")) { |
| clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| &transparent_hugepage_flags); |
| set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| &transparent_hugepage_flags); |
| ret = 1; |
| } else if (!strcmp(str, "never")) { |
| clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| &transparent_hugepage_flags); |
| clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| &transparent_hugepage_flags); |
| ret = 1; |
| } |
| out: |
| if (!ret) |
| printk(KERN_WARNING |
| "transparent_hugepage= cannot parse, ignored\n"); |
| return ret; |
| } |
| __setup("transparent_hugepage=", setup_transparent_hugepage); |
| |
| static void prepare_pmd_huge_pte(pgtable_t pgtable, |
| struct mm_struct *mm) |
| { |
| assert_spin_locked(&mm->page_table_lock); |
| |
| /* FIFO */ |
| if (!mm->pmd_huge_pte) |
| INIT_LIST_HEAD(&pgtable->lru); |
| else |
| list_add(&pgtable->lru, &mm->pmd_huge_pte->lru); |
| mm->pmd_huge_pte = pgtable; |
| } |
| |
| static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) |
| { |
| if (likely(vma->vm_flags & VM_WRITE)) |
| pmd = pmd_mkwrite(pmd); |
| return pmd; |
| } |
| |
| static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, |
| struct vm_area_struct *vma, |
| unsigned long haddr, pmd_t *pmd, |
| struct page *page) |
| { |
| int ret = 0; |
| pgtable_t pgtable; |
| |
| VM_BUG_ON(!PageCompound(page)); |
| pgtable = pte_alloc_one(mm, haddr); |
| if (unlikely(!pgtable)) { |
| put_page(page); |
| return VM_FAULT_OOM; |
| } |
| |
| clear_huge_page(page, haddr, HPAGE_PMD_NR); |
| __SetPageUptodate(page); |
| |
| spin_lock(&mm->page_table_lock); |
| if (unlikely(!pmd_none(*pmd))) { |
| spin_unlock(&mm->page_table_lock); |
| put_page(page); |
| pte_free(mm, pgtable); |
| } else { |
| pmd_t entry; |
| entry = mk_pmd(page, vma->vm_page_prot); |
| entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| entry = pmd_mkhuge(entry); |
| /* |
| * The spinlocking to take the lru_lock inside |
| * page_add_new_anon_rmap() acts as a full memory |
| * barrier to be sure clear_huge_page writes become |
| * visible after the set_pmd_at() write. |
| */ |
| page_add_new_anon_rmap(page, vma, haddr); |
| set_pmd_at(mm, haddr, pmd, entry); |
| prepare_pmd_huge_pte(pgtable, mm); |
| add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| spin_unlock(&mm->page_table_lock); |
| } |
| |
| return ret; |
| } |
| |
| static inline struct page *alloc_hugepage(int defrag) |
| { |
| return alloc_pages(GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT), |
| HPAGE_PMD_ORDER); |
| } |
| |
| int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmd, |
| unsigned int flags) |
| { |
| struct page *page; |
| unsigned long haddr = address & HPAGE_PMD_MASK; |
| pte_t *pte; |
| |
| if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { |
| if (unlikely(anon_vma_prepare(vma))) |
| return VM_FAULT_OOM; |
| page = alloc_hugepage(transparent_hugepage_defrag(vma)); |
| if (unlikely(!page)) |
| goto out; |
| |
| return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page); |
| } |
| out: |
| /* |
| * Use __pte_alloc instead of pte_alloc_map, because we can't |
| * run pte_offset_map on the pmd, if an huge pmd could |
| * materialize from under us from a different thread. |
| */ |
| if (unlikely(__pte_alloc(mm, vma, pmd, address))) |
| return VM_FAULT_OOM; |
| /* if an huge pmd materialized from under us just retry later */ |
| if (unlikely(pmd_trans_huge(*pmd))) |
| return 0; |
| /* |
| * A regular pmd is established and it can't morph into a huge pmd |
| * from under us anymore at this point because we hold the mmap_sem |
| * read mode and khugepaged takes it in write mode. So now it's |
| * safe to run pte_offset_map(). |
| */ |
| pte = pte_offset_map(pmd, address); |
| return handle_pte_fault(mm, vma, address, pte, pmd, flags); |
| } |
| |
| int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, |
| struct vm_area_struct *vma) |
| { |
| struct page *src_page; |
| pmd_t pmd; |
| pgtable_t pgtable; |
| int ret; |
| |
| ret = -ENOMEM; |
| pgtable = pte_alloc_one(dst_mm, addr); |
| if (unlikely(!pgtable)) |
| goto out; |
| |
| spin_lock(&dst_mm->page_table_lock); |
| spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); |
| |
| ret = -EAGAIN; |
| pmd = *src_pmd; |
| if (unlikely(!pmd_trans_huge(pmd))) { |
| pte_free(dst_mm, pgtable); |
| goto out_unlock; |
| } |
| if (unlikely(pmd_trans_splitting(pmd))) { |
| /* split huge page running from under us */ |
| spin_unlock(&src_mm->page_table_lock); |
| spin_unlock(&dst_mm->page_table_lock); |
| pte_free(dst_mm, pgtable); |
| |
| wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ |
| goto out; |
| } |
| src_page = pmd_page(pmd); |
| VM_BUG_ON(!PageHead(src_page)); |
| get_page(src_page); |
| page_dup_rmap(src_page); |
| add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| |
| pmdp_set_wrprotect(src_mm, addr, src_pmd); |
| pmd = pmd_mkold(pmd_wrprotect(pmd)); |
| set_pmd_at(dst_mm, addr, dst_pmd, pmd); |
| prepare_pmd_huge_pte(pgtable, dst_mm); |
| |
| ret = 0; |
| out_unlock: |
| spin_unlock(&src_mm->page_table_lock); |
| spin_unlock(&dst_mm->page_table_lock); |
| out: |
| return ret; |
| } |
| |
| /* no "address" argument so destroys page coloring of some arch */ |
| pgtable_t get_pmd_huge_pte(struct mm_struct *mm) |
| { |
| pgtable_t pgtable; |
| |
| assert_spin_locked(&mm->page_table_lock); |
| |
| /* FIFO */ |
| pgtable = mm->pmd_huge_pte; |
| if (list_empty(&pgtable->lru)) |
| mm->pmd_huge_pte = NULL; |
| else { |
| mm->pmd_huge_pte = list_entry(pgtable->lru.next, |
| struct page, lru); |
| list_del(&pgtable->lru); |
| } |
| return pgtable; |
| } |
| |
| static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, |
| struct vm_area_struct *vma, |
| unsigned long address, |
| pmd_t *pmd, pmd_t orig_pmd, |
| struct page *page, |
| unsigned long haddr) |
| { |
| pgtable_t pgtable; |
| pmd_t _pmd; |
| int ret = 0, i; |
| struct page **pages; |
| |
| pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, |
| GFP_KERNEL); |
| if (unlikely(!pages)) { |
| ret |= VM_FAULT_OOM; |
| goto out; |
| } |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++) { |
| pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
| vma, address); |
| if (unlikely(!pages[i])) { |
| while (--i >= 0) |
| put_page(pages[i]); |
| kfree(pages); |
| ret |= VM_FAULT_OOM; |
| goto out; |
| } |
| } |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++) { |
| copy_user_highpage(pages[i], page + i, |
| haddr + PAGE_SHIFT*i, vma); |
| __SetPageUptodate(pages[i]); |
| cond_resched(); |
| } |
| |
| spin_lock(&mm->page_table_lock); |
| if (unlikely(!pmd_same(*pmd, orig_pmd))) |
| goto out_free_pages; |
| VM_BUG_ON(!PageHead(page)); |
| |
| pmdp_clear_flush_notify(vma, haddr, pmd); |
| /* leave pmd empty until pte is filled */ |
| |
| pgtable = get_pmd_huge_pte(mm); |
| pmd_populate(mm, &_pmd, pgtable); |
| |
| for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { |
| pte_t *pte, entry; |
| entry = mk_pte(pages[i], vma->vm_page_prot); |
| entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
| page_add_new_anon_rmap(pages[i], vma, haddr); |
| pte = pte_offset_map(&_pmd, haddr); |
| VM_BUG_ON(!pte_none(*pte)); |
| set_pte_at(mm, haddr, pte, entry); |
| pte_unmap(pte); |
| } |
| kfree(pages); |
| |
| mm->nr_ptes++; |
| smp_wmb(); /* make pte visible before pmd */ |
| pmd_populate(mm, pmd, pgtable); |
| page_remove_rmap(page); |
| spin_unlock(&mm->page_table_lock); |
| |
| ret |= VM_FAULT_WRITE; |
| put_page(page); |
| |
| out: |
| return ret; |
| |
| out_free_pages: |
| spin_unlock(&mm->page_table_lock); |
| for (i = 0; i < HPAGE_PMD_NR; i++) |
| put_page(pages[i]); |
| kfree(pages); |
| goto out; |
| } |
| |
| int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmd, pmd_t orig_pmd) |
| { |
| int ret = 0; |
| struct page *page, *new_page; |
| unsigned long haddr; |
| |
| VM_BUG_ON(!vma->anon_vma); |
| spin_lock(&mm->page_table_lock); |
| if (unlikely(!pmd_same(*pmd, orig_pmd))) |
| goto out_unlock; |
| |
| page = pmd_page(orig_pmd); |
| VM_BUG_ON(!PageCompound(page) || !PageHead(page)); |
| haddr = address & HPAGE_PMD_MASK; |
| if (page_mapcount(page) == 1) { |
| pmd_t entry; |
| entry = pmd_mkyoung(orig_pmd); |
| entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) |
| update_mmu_cache(vma, address, entry); |
| ret |= VM_FAULT_WRITE; |
| goto out_unlock; |
| } |
| get_page(page); |
| spin_unlock(&mm->page_table_lock); |
| |
| if (transparent_hugepage_enabled(vma) && |
| !transparent_hugepage_debug_cow()) |
| new_page = alloc_hugepage(transparent_hugepage_defrag(vma)); |
| else |
| new_page = NULL; |
| |
| if (unlikely(!new_page)) { |
| ret = do_huge_pmd_wp_page_fallback(mm, vma, address, |
| pmd, orig_pmd, page, haddr); |
| put_page(page); |
| goto out; |
| } |
| |
| copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); |
| __SetPageUptodate(new_page); |
| |
| spin_lock(&mm->page_table_lock); |
| put_page(page); |
| if (unlikely(!pmd_same(*pmd, orig_pmd))) |
| put_page(new_page); |
| else { |
| pmd_t entry; |
| VM_BUG_ON(!PageHead(page)); |
| entry = mk_pmd(new_page, vma->vm_page_prot); |
| entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| entry = pmd_mkhuge(entry); |
| pmdp_clear_flush_notify(vma, haddr, pmd); |
| page_add_new_anon_rmap(new_page, vma, haddr); |
| set_pmd_at(mm, haddr, pmd, entry); |
| update_mmu_cache(vma, address, entry); |
| page_remove_rmap(page); |
| put_page(page); |
| ret |= VM_FAULT_WRITE; |
| } |
| out_unlock: |
| spin_unlock(&mm->page_table_lock); |
| out: |
| return ret; |
| } |
| |
| struct page *follow_trans_huge_pmd(struct mm_struct *mm, |
| unsigned long addr, |
| pmd_t *pmd, |
| unsigned int flags) |
| { |
| struct page *page = NULL; |
| |
| assert_spin_locked(&mm->page_table_lock); |
| |
| if (flags & FOLL_WRITE && !pmd_write(*pmd)) |
| goto out; |
| |
| page = pmd_page(*pmd); |
| VM_BUG_ON(!PageHead(page)); |
| if (flags & FOLL_TOUCH) { |
| pmd_t _pmd; |
| /* |
| * We should set the dirty bit only for FOLL_WRITE but |
| * for now the dirty bit in the pmd is meaningless. |
| * And if the dirty bit will become meaningful and |
| * we'll only set it with FOLL_WRITE, an atomic |
| * set_bit will be required on the pmd to set the |
| * young bit, instead of the current set_pmd_at. |
| */ |
| _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); |
| set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd); |
| } |
| page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; |
| VM_BUG_ON(!PageCompound(page)); |
| if (flags & FOLL_GET) |
| get_page(page); |
| |
| out: |
| return page; |
| } |
| |
| int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| pmd_t *pmd) |
| { |
| int ret = 0; |
| |
| spin_lock(&tlb->mm->page_table_lock); |
| if (likely(pmd_trans_huge(*pmd))) { |
| if (unlikely(pmd_trans_splitting(*pmd))) { |
| spin_unlock(&tlb->mm->page_table_lock); |
| wait_split_huge_page(vma->anon_vma, |
| pmd); |
| } else { |
| struct page *page; |
| pgtable_t pgtable; |
| pgtable = get_pmd_huge_pte(tlb->mm); |
| page = pmd_page(*pmd); |
| pmd_clear(pmd); |
| page_remove_rmap(page); |
| VM_BUG_ON(page_mapcount(page) < 0); |
| add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); |
| VM_BUG_ON(!PageHead(page)); |
| spin_unlock(&tlb->mm->page_table_lock); |
| tlb_remove_page(tlb, page); |
| pte_free(tlb->mm, pgtable); |
| ret = 1; |
| } |
| } else |
| spin_unlock(&tlb->mm->page_table_lock); |
| |
| return ret; |
| } |
| |
| pmd_t *page_check_address_pmd(struct page *page, |
| struct mm_struct *mm, |
| unsigned long address, |
| enum page_check_address_pmd_flag flag) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd, *ret = NULL; |
| |
| if (address & ~HPAGE_PMD_MASK) |
| goto out; |
| |
| pgd = pgd_offset(mm, address); |
| if (!pgd_present(*pgd)) |
| goto out; |
| |
| pud = pud_offset(pgd, address); |
| if (!pud_present(*pud)) |
| goto out; |
| |
| pmd = pmd_offset(pud, address); |
| if (pmd_none(*pmd)) |
| goto out; |
| if (pmd_page(*pmd) != page) |
| goto out; |
| VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && |
| pmd_trans_splitting(*pmd)); |
| if (pmd_trans_huge(*pmd)) { |
| VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && |
| !pmd_trans_splitting(*pmd)); |
| ret = pmd; |
| } |
| out: |
| return ret; |
| } |
| |
| static int __split_huge_page_splitting(struct page *page, |
| struct vm_area_struct *vma, |
| unsigned long address) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| pmd_t *pmd; |
| int ret = 0; |
| |
| spin_lock(&mm->page_table_lock); |
| pmd = page_check_address_pmd(page, mm, address, |
| PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); |
| if (pmd) { |
| /* |
| * We can't temporarily set the pmd to null in order |
| * to split it, the pmd must remain marked huge at all |
| * times or the VM won't take the pmd_trans_huge paths |
| * and it won't wait on the anon_vma->root->lock to |
| * serialize against split_huge_page*. |
| */ |
| pmdp_splitting_flush_notify(vma, address, pmd); |
| ret = 1; |
| } |
| spin_unlock(&mm->page_table_lock); |
| |
| return ret; |
| } |
| |
| static void __split_huge_page_refcount(struct page *page) |
| { |
| int i; |
| unsigned long head_index = page->index; |
| struct zone *zone = page_zone(page); |
| |
| /* prevent PageLRU to go away from under us, and freeze lru stats */ |
| spin_lock_irq(&zone->lru_lock); |
| compound_lock(page); |
| |
| for (i = 1; i < HPAGE_PMD_NR; i++) { |
| struct page *page_tail = page + i; |
| |
| /* tail_page->_count cannot change */ |
| atomic_sub(atomic_read(&page_tail->_count), &page->_count); |
| BUG_ON(page_count(page) <= 0); |
| atomic_add(page_mapcount(page) + 1, &page_tail->_count); |
| BUG_ON(atomic_read(&page_tail->_count) <= 0); |
| |
| /* after clearing PageTail the gup refcount can be released */ |
| smp_mb(); |
| |
| page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| page_tail->flags |= (page->flags & |
| ((1L << PG_referenced) | |
| (1L << PG_swapbacked) | |
| (1L << PG_mlocked) | |
| (1L << PG_uptodate))); |
| page_tail->flags |= (1L << PG_dirty); |
| |
| /* |
| * 1) clear PageTail before overwriting first_page |
| * 2) clear PageTail before clearing PageHead for VM_BUG_ON |
| */ |
| smp_wmb(); |
| |
| /* |
| * __split_huge_page_splitting() already set the |
| * splitting bit in all pmd that could map this |
| * hugepage, that will ensure no CPU can alter the |
| * mapcount on the head page. The mapcount is only |
| * accounted in the head page and it has to be |
| * transferred to all tail pages in the below code. So |
| * for this code to be safe, the split the mapcount |
| * can't change. But that doesn't mean userland can't |
| * keep changing and reading the page contents while |
| * we transfer the mapcount, so the pmd splitting |
| * status is achieved setting a reserved bit in the |
| * pmd, not by clearing the present bit. |
| */ |
| BUG_ON(page_mapcount(page_tail)); |
| page_tail->_mapcount = page->_mapcount; |
| |
| BUG_ON(page_tail->mapping); |
| page_tail->mapping = page->mapping; |
| |
| page_tail->index = ++head_index; |
| |
| BUG_ON(!PageAnon(page_tail)); |
| BUG_ON(!PageUptodate(page_tail)); |
| BUG_ON(!PageDirty(page_tail)); |
| BUG_ON(!PageSwapBacked(page_tail)); |
| |
| lru_add_page_tail(zone, page, page_tail); |
| } |
| |
| ClearPageCompound(page); |
| compound_unlock(page); |
| spin_unlock_irq(&zone->lru_lock); |
| |
| for (i = 1; i < HPAGE_PMD_NR; i++) { |
| struct page *page_tail = page + i; |
| BUG_ON(page_count(page_tail) <= 0); |
| /* |
| * Tail pages may be freed if there wasn't any mapping |
| * like if add_to_swap() is running on a lru page that |
| * had its mapping zapped. And freeing these pages |
| * requires taking the lru_lock so we do the put_page |
| * of the tail pages after the split is complete. |
| */ |
| put_page(page_tail); |
| } |
| |
| /* |
| * Only the head page (now become a regular page) is required |
| * to be pinned by the caller. |
| */ |
| BUG_ON(page_count(page) <= 0); |
| } |
| |
| static int __split_huge_page_map(struct page *page, |
| struct vm_area_struct *vma, |
| unsigned long address) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| pmd_t *pmd, _pmd; |
| int ret = 0, i; |
| pgtable_t pgtable; |
| unsigned long haddr; |
| |
| spin_lock(&mm->page_table_lock); |
| pmd = page_check_address_pmd(page, mm, address, |
| PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); |
| if (pmd) { |
| pgtable = get_pmd_huge_pte(mm); |
| pmd_populate(mm, &_pmd, pgtable); |
| |
| for (i = 0, haddr = address; i < HPAGE_PMD_NR; |
| i++, haddr += PAGE_SIZE) { |
| pte_t *pte, entry; |
| BUG_ON(PageCompound(page+i)); |
| entry = mk_pte(page + i, vma->vm_page_prot); |
| entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
| if (!pmd_write(*pmd)) |
| entry = pte_wrprotect(entry); |
| else |
| BUG_ON(page_mapcount(page) != 1); |
| if (!pmd_young(*pmd)) |
| entry = pte_mkold(entry); |
| pte = pte_offset_map(&_pmd, haddr); |
| BUG_ON(!pte_none(*pte)); |
| set_pte_at(mm, haddr, pte, entry); |
| pte_unmap(pte); |
| } |
| |
| mm->nr_ptes++; |
| smp_wmb(); /* make pte visible before pmd */ |
| /* |
| * Up to this point the pmd is present and huge and |
| * userland has the whole access to the hugepage |
| * during the split (which happens in place). If we |
| * overwrite the pmd with the not-huge version |
| * pointing to the pte here (which of course we could |
| * if all CPUs were bug free), userland could trigger |
| * a small page size TLB miss on the small sized TLB |
| * while the hugepage TLB entry is still established |
| * in the huge TLB. Some CPU doesn't like that. See |
| * http://support.amd.com/us/Processor_TechDocs/41322.pdf, |
| * Erratum 383 on page 93. Intel should be safe but is |
| * also warns that it's only safe if the permission |
| * and cache attributes of the two entries loaded in |
| * the two TLB is identical (which should be the case |
| * here). But it is generally safer to never allow |
| * small and huge TLB entries for the same virtual |
| * address to be loaded simultaneously. So instead of |
| * doing "pmd_populate(); flush_tlb_range();" we first |
| * mark the current pmd notpresent (atomically because |
| * here the pmd_trans_huge and pmd_trans_splitting |
| * must remain set at all times on the pmd until the |
| * split is complete for this pmd), then we flush the |
| * SMP TLB and finally we write the non-huge version |
| * of the pmd entry with pmd_populate. |
| */ |
| set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd)); |
| flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); |
| pmd_populate(mm, pmd, pgtable); |
| ret = 1; |
| } |
| spin_unlock(&mm->page_table_lock); |
| |
| return ret; |
| } |
| |
| /* must be called with anon_vma->root->lock hold */ |
| static void __split_huge_page(struct page *page, |
| struct anon_vma *anon_vma) |
| { |
| int mapcount, mapcount2; |
| struct anon_vma_chain *avc; |
| |
| BUG_ON(!PageHead(page)); |
| BUG_ON(PageTail(page)); |
| |
| mapcount = 0; |
| list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
| struct vm_area_struct *vma = avc->vma; |
| unsigned long addr = vma_address(page, vma); |
| BUG_ON(is_vma_temporary_stack(vma)); |
| if (addr == -EFAULT) |
| continue; |
| mapcount += __split_huge_page_splitting(page, vma, addr); |
| } |
| /* |
| * It is critical that new vmas are added to the tail of the |
| * anon_vma list. This guarantes that if copy_huge_pmd() runs |
| * and establishes a child pmd before |
| * __split_huge_page_splitting() freezes the parent pmd (so if |
| * we fail to prevent copy_huge_pmd() from running until the |
| * whole __split_huge_page() is complete), we will still see |
| * the newly established pmd of the child later during the |
| * walk, to be able to set it as pmd_trans_splitting too. |
| */ |
| if (mapcount != page_mapcount(page)) |
| printk(KERN_ERR "mapcount %d page_mapcount %d\n", |
| mapcount, page_mapcount(page)); |
| BUG_ON(mapcount != page_mapcount(page)); |
| |
| __split_huge_page_refcount(page); |
| |
| mapcount2 = 0; |
| list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
| struct vm_area_struct *vma = avc->vma; |
| unsigned long addr = vma_address(page, vma); |
| BUG_ON(is_vma_temporary_stack(vma)); |
| if (addr == -EFAULT) |
| continue; |
| mapcount2 += __split_huge_page_map(page, vma, addr); |
| } |
| if (mapcount != mapcount2) |
| printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", |
| mapcount, mapcount2, page_mapcount(page)); |
| BUG_ON(mapcount != mapcount2); |
| } |
| |
| int split_huge_page(struct page *page) |
| { |
| struct anon_vma *anon_vma; |
| int ret = 1; |
| |
| BUG_ON(!PageAnon(page)); |
| anon_vma = page_lock_anon_vma(page); |
| if (!anon_vma) |
| goto out; |
| ret = 0; |
| if (!PageCompound(page)) |
| goto out_unlock; |
| |
| BUG_ON(!PageSwapBacked(page)); |
| __split_huge_page(page, anon_vma); |
| |
| BUG_ON(PageCompound(page)); |
| out_unlock: |
| page_unlock_anon_vma(anon_vma); |
| out: |
| return ret; |
| } |
| |
| int hugepage_madvise(unsigned long *vm_flags) |
| { |
| /* |
| * Be somewhat over-protective like KSM for now! |
| */ |
| if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE | |
| VM_PFNMAP | VM_IO | VM_DONTEXPAND | |
| VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE | |
| VM_MIXEDMAP | VM_SAO)) |
| return -EINVAL; |
| |
| *vm_flags |= VM_HUGEPAGE; |
| |
| return 0; |
| } |
| |
| void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd) |
| { |
| struct page *page; |
| |
| spin_lock(&mm->page_table_lock); |
| if (unlikely(!pmd_trans_huge(*pmd))) { |
| spin_unlock(&mm->page_table_lock); |
| return; |
| } |
| page = pmd_page(*pmd); |
| VM_BUG_ON(!page_count(page)); |
| get_page(page); |
| spin_unlock(&mm->page_table_lock); |
| |
| split_huge_page(page); |
| |
| put_page(page); |
| BUG_ON(pmd_trans_huge(*pmd)); |
| } |