| /* |
| ** ----------------------------------------------------------------------------- |
| ** |
| ** Perle Specialix driver for Linux |
| ** Ported from existing RIO Driver for SCO sources. |
| * |
| * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| ** |
| ** Module : riointr.c |
| ** SID : 1.2 |
| ** Last Modified : 11/6/98 10:33:44 |
| ** Retrieved : 11/6/98 10:33:49 |
| ** |
| ** ident @(#)riointr.c 1.2 |
| ** |
| ** ----------------------------------------------------------------------------- |
| */ |
| #ifdef SCCS_LABELS |
| static char *_riointr_c_sccs_ = "@(#)riointr.c 1.2"; |
| #endif |
| |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <asm/io.h> |
| #include <asm/system.h> |
| #include <asm/string.h> |
| #include <asm/semaphore.h> |
| #include <asm/uaccess.h> |
| |
| #include <linux/termios.h> |
| #include <linux/serial.h> |
| |
| #include <linux/generic_serial.h> |
| |
| #include <linux/delay.h> |
| |
| #include "linux_compat.h" |
| #include "rio_linux.h" |
| #include "typdef.h" |
| #include "pkt.h" |
| #include "daemon.h" |
| #include "rio.h" |
| #include "riospace.h" |
| #include "top.h" |
| #include "cmdpkt.h" |
| #include "map.h" |
| #include "riotypes.h" |
| #include "rup.h" |
| #include "port.h" |
| #include "riodrvr.h" |
| #include "rioinfo.h" |
| #include "func.h" |
| #include "errors.h" |
| #include "pci.h" |
| |
| #include "parmmap.h" |
| #include "unixrup.h" |
| #include "board.h" |
| #include "host.h" |
| #include "error.h" |
| #include "phb.h" |
| #include "link.h" |
| #include "cmdblk.h" |
| #include "route.h" |
| #include "control.h" |
| #include "cirrus.h" |
| #include "rioioctl.h" |
| |
| |
| static void RIOReceive(struct rio_info *, struct Port *); |
| |
| |
| static char *firstchars(char *p, int nch) |
| { |
| static char buf[2][128]; |
| static int t = 0; |
| t = !t; |
| memcpy(buf[t], p, nch); |
| buf[t][nch] = 0; |
| return buf[t]; |
| } |
| |
| |
| #define INCR( P, I ) ((P) = (((P)+(I)) & p->RIOBufferMask)) |
| /* Enable and start the transmission of packets */ |
| void RIOTxEnable(en) |
| char *en; |
| { |
| struct Port *PortP; |
| struct rio_info *p; |
| struct tty_struct *tty; |
| int c; |
| struct PKT *PacketP; |
| unsigned long flags; |
| |
| PortP = (struct Port *) en; |
| p = (struct rio_info *) PortP->p; |
| tty = PortP->gs.tty; |
| |
| |
| rio_dprintk(RIO_DEBUG_INTR, "tx port %d: %d chars queued.\n", PortP->PortNum, PortP->gs.xmit_cnt); |
| |
| if (!PortP->gs.xmit_cnt) |
| return; |
| |
| |
| /* This routine is an order of magnitude simpler than the specialix |
| version. One of the disadvantages is that this version will send |
| an incomplete packet (usually 64 bytes instead of 72) once for |
| every 4k worth of data. Let's just say that this won't influence |
| performance significantly..... */ |
| |
| rio_spin_lock_irqsave(&PortP->portSem, flags); |
| |
| while (can_add_transmit(&PacketP, PortP)) { |
| c = PortP->gs.xmit_cnt; |
| if (c > PKT_MAX_DATA_LEN) |
| c = PKT_MAX_DATA_LEN; |
| |
| /* Don't copy past the end of the source buffer */ |
| if (c > SERIAL_XMIT_SIZE - PortP->gs.xmit_tail) |
| c = SERIAL_XMIT_SIZE - PortP->gs.xmit_tail; |
| |
| { |
| int t; |
| t = (c > 10) ? 10 : c; |
| |
| rio_dprintk(RIO_DEBUG_INTR, "rio: tx port %d: copying %d chars: %s - %s\n", PortP->PortNum, c, firstchars(PortP->gs.xmit_buf + PortP->gs.xmit_tail, t), firstchars(PortP->gs.xmit_buf + PortP->gs.xmit_tail + c - t, t)); |
| } |
| /* If for one reason or another, we can't copy more data, |
| we're done! */ |
| if (c == 0) |
| break; |
| |
| rio_memcpy_toio(PortP->HostP->Caddr, (caddr_t) PacketP->data, PortP->gs.xmit_buf + PortP->gs.xmit_tail, c); |
| /* udelay (1); */ |
| |
| writeb(c, &(PacketP->len)); |
| if (!(PortP->State & RIO_DELETED)) { |
| add_transmit(PortP); |
| /* |
| ** Count chars tx'd for port statistics reporting |
| */ |
| if (PortP->statsGather) |
| PortP->txchars += c; |
| } |
| PortP->gs.xmit_tail = (PortP->gs.xmit_tail + c) & (SERIAL_XMIT_SIZE - 1); |
| PortP->gs.xmit_cnt -= c; |
| } |
| |
| rio_spin_unlock_irqrestore(&PortP->portSem, flags); |
| |
| if (PortP->gs.xmit_cnt <= (PortP->gs.wakeup_chars + 2 * PKT_MAX_DATA_LEN)) { |
| rio_dprintk(RIO_DEBUG_INTR, "Waking up.... ldisc:%d (%d/%d)....", (int) (PortP->gs.tty->flags & (1 << TTY_DO_WRITE_WAKEUP)), PortP->gs.wakeup_chars, PortP->gs.xmit_cnt); |
| if ((PortP->gs.tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && PortP->gs.tty->ldisc.write_wakeup) |
| (PortP->gs.tty->ldisc.write_wakeup) (PortP->gs.tty); |
| rio_dprintk(RIO_DEBUG_INTR, "(%d/%d)\n", PortP->gs.wakeup_chars, PortP->gs.xmit_cnt); |
| wake_up_interruptible(&PortP->gs.tty->write_wait); |
| } |
| |
| } |
| |
| |
| /* |
| ** RIO Host Service routine. Does all the work traditionally associated with an |
| ** interrupt. |
| */ |
| static int RupIntr; |
| static int RxIntr; |
| static int TxIntr; |
| void RIOServiceHost(p, HostP, From) |
| struct rio_info *p; |
| struct Host *HostP; |
| int From; |
| { |
| rio_spin_lock(&HostP->HostLock); |
| if ((HostP->Flags & RUN_STATE) != RC_RUNNING) { |
| static int t = 0; |
| rio_spin_unlock(&HostP->HostLock); |
| if ((t++ % 200) == 0) |
| rio_dprintk(RIO_DEBUG_INTR, "Interrupt but host not running. flags=%x.\n", (int) HostP->Flags); |
| return; |
| } |
| rio_spin_unlock(&HostP->HostLock); |
| |
| if (RWORD(HostP->ParmMapP->rup_intr)) { |
| WWORD(HostP->ParmMapP->rup_intr, 0); |
| p->RIORupCount++; |
| RupIntr++; |
| rio_dprintk(RIO_DEBUG_INTR, "rio: RUP interrupt on host %d\n", HostP - p->RIOHosts); |
| RIOPollHostCommands(p, HostP); |
| } |
| |
| if (RWORD(HostP->ParmMapP->rx_intr)) { |
| int port; |
| |
| WWORD(HostP->ParmMapP->rx_intr, 0); |
| p->RIORxCount++; |
| RxIntr++; |
| |
| rio_dprintk(RIO_DEBUG_INTR, "rio: RX interrupt on host %d\n", HostP - p->RIOHosts); |
| /* |
| ** Loop through every port. If the port is mapped into |
| ** the system ( i.e. has /dev/ttyXXXX associated ) then it is |
| ** worth checking. If the port isn't open, grab any packets |
| ** hanging on its receive queue and stuff them on the free |
| ** list; check for commands on the way. |
| */ |
| for (port = p->RIOFirstPortsBooted; port < p->RIOLastPortsBooted + PORTS_PER_RTA; port++) { |
| struct Port *PortP = p->RIOPortp[port]; |
| struct tty_struct *ttyP; |
| struct PKT *PacketP; |
| |
| /* |
| ** not mapped in - most of the RIOPortp[] information |
| ** has not been set up! |
| ** Optimise: ports come in bundles of eight. |
| */ |
| if (!PortP->Mapped) { |
| port += 7; |
| continue; /* with the next port */ |
| } |
| |
| /* |
| ** If the host board isn't THIS host board, check the next one. |
| ** optimise: ports come in bundles of eight. |
| */ |
| if (PortP->HostP != HostP) { |
| port += 7; |
| continue; |
| } |
| |
| /* |
| ** Let us see - is the port open? If not, then don't service it. |
| */ |
| if (!(PortP->PortState & PORT_ISOPEN)) { |
| continue; |
| } |
| |
| /* |
| ** find corresponding tty structure. The process of mapping |
| ** the ports puts these here. |
| */ |
| ttyP = PortP->gs.tty; |
| |
| /* |
| ** Lock the port before we begin working on it. |
| */ |
| rio_spin_lock(&PortP->portSem); |
| |
| /* |
| ** Process received data if there is any. |
| */ |
| if (can_remove_receive(&PacketP, PortP)) |
| RIOReceive(p, PortP); |
| |
| /* |
| ** If there is no data left to be read from the port, and |
| ** it's handshake bit is set, then we must clear the handshake, |
| ** so that that downstream RTA is re-enabled. |
| */ |
| if (!can_remove_receive(&PacketP, PortP) && (RWORD(PortP->PhbP->handshake) == PHB_HANDSHAKE_SET)) { |
| /* |
| ** MAGIC! ( Basically, handshake the RX buffer, so that |
| ** the RTAs upstream can be re-enabled. ) |
| */ |
| rio_dprintk(RIO_DEBUG_INTR, "Set RX handshake bit\n"); |
| WWORD(PortP->PhbP->handshake, PHB_HANDSHAKE_SET | PHB_HANDSHAKE_RESET); |
| } |
| rio_spin_unlock(&PortP->portSem); |
| } |
| } |
| |
| if (RWORD(HostP->ParmMapP->tx_intr)) { |
| int port; |
| |
| WWORD(HostP->ParmMapP->tx_intr, 0); |
| |
| p->RIOTxCount++; |
| TxIntr++; |
| rio_dprintk(RIO_DEBUG_INTR, "rio: TX interrupt on host %d\n", HostP - p->RIOHosts); |
| |
| /* |
| ** Loop through every port. |
| ** If the port is mapped into the system ( i.e. has /dev/ttyXXXX |
| ** associated ) then it is worth checking. |
| */ |
| for (port = p->RIOFirstPortsBooted; port < p->RIOLastPortsBooted + PORTS_PER_RTA; port++) { |
| struct Port *PortP = p->RIOPortp[port]; |
| struct tty_struct *ttyP; |
| struct PKT *PacketP; |
| |
| /* |
| ** not mapped in - most of the RIOPortp[] information |
| ** has not been set up! |
| */ |
| if (!PortP->Mapped) { |
| port += 7; |
| continue; /* with the next port */ |
| } |
| |
| /* |
| ** If the host board isn't running, then its data structures |
| ** are no use to us - continue quietly. |
| */ |
| if (PortP->HostP != HostP) { |
| port += 7; |
| continue; /* with the next port */ |
| } |
| |
| /* |
| ** Let us see - is the port open? If not, then don't service it. |
| */ |
| if (!(PortP->PortState & PORT_ISOPEN)) { |
| continue; |
| } |
| |
| rio_dprintk(RIO_DEBUG_INTR, "rio: Looking into port %d.\n", port); |
| /* |
| ** Lock the port before we begin working on it. |
| */ |
| rio_spin_lock(&PortP->portSem); |
| |
| /* |
| ** If we can't add anything to the transmit queue, then |
| ** we need do none of this processing. |
| */ |
| if (!can_add_transmit(&PacketP, PortP)) { |
| rio_dprintk(RIO_DEBUG_INTR, "Can't add to port, so skipping.\n"); |
| rio_spin_unlock(&PortP->portSem); |
| continue; |
| } |
| |
| /* |
| ** find corresponding tty structure. The process of mapping |
| ** the ports puts these here. |
| */ |
| ttyP = PortP->gs.tty; |
| /* If ttyP is NULL, the port is getting closed. Forget about it. */ |
| if (!ttyP) { |
| rio_dprintk(RIO_DEBUG_INTR, "no tty, so skipping.\n"); |
| rio_spin_unlock(&PortP->portSem); |
| continue; |
| } |
| /* |
| ** If there is more room available we start up the transmit |
| ** data process again. This can be direct I/O, if the cookmode |
| ** is set to COOK_RAW or COOK_MEDIUM, or will be a call to the |
| ** riotproc( T_OUTPUT ) if we are in COOK_WELL mode, to fetch |
| ** characters via the line discipline. We must always call |
| ** the line discipline, |
| ** so that user input characters can be echoed correctly. |
| ** |
| ** ++++ Update +++++ |
| ** With the advent of double buffering, we now see if |
| ** TxBufferOut-In is non-zero. If so, then we copy a packet |
| ** to the output place, and set it going. If this empties |
| ** the buffer, then we must issue a wakeup( ) on OUT. |
| ** If it frees space in the buffer then we must issue |
| ** a wakeup( ) on IN. |
| ** |
| ** ++++ Extra! Extra! If PortP->WflushFlag is set, then we |
| ** have to send a WFLUSH command down the PHB, to mark the |
| ** end point of a WFLUSH. We also need to clear out any |
| ** data from the double buffer! ( note that WflushFlag is a |
| ** *count* of the number of WFLUSH commands outstanding! ) |
| ** |
| ** ++++ And there's more! |
| ** If an RTA is powered off, then on again, and rebooted, |
| ** whilst it has ports open, then we need to re-open the ports. |
| ** ( reasonable enough ). We can't do this when we spot the |
| ** re-boot, in interrupt time, because the queue is probably |
| ** full. So, when we come in here, we need to test if any |
| ** ports are in this condition, and re-open the port before |
| ** we try to send any more data to it. Now, the re-booted |
| ** RTA will be discarding packets from the PHB until it |
| ** receives this open packet, but don't worry tooo much |
| ** about that. The one thing that is interesting is the |
| ** combination of this effect and the WFLUSH effect! |
| */ |
| /* For now don't handle RTA reboots. -- REW. |
| Reenabled. Otherwise RTA reboots didn't work. Duh. -- REW */ |
| if (PortP->MagicFlags) { |
| #if 1 |
| if (PortP->MagicFlags & MAGIC_REBOOT) { |
| /* |
| ** well, the RTA has been rebooted, and there is room |
| ** on its queue to add the open packet that is required. |
| ** |
| ** The messy part of this line is trying to decide if |
| ** we need to call the Param function as a tty or as |
| ** a modem. |
| ** DONT USE CLOCAL AS A TEST FOR THIS! |
| ** |
| ** If we can't param the port, then move on to the |
| ** next port. |
| */ |
| PortP->InUse = NOT_INUSE; |
| |
| rio_spin_unlock(&PortP->portSem); |
| if (RIOParam(PortP, OPEN, ((PortP->Cor2Copy & (COR2_RTSFLOW | COR2_CTSFLOW)) == (COR2_RTSFLOW | COR2_CTSFLOW)) ? TRUE : FALSE, DONT_SLEEP) == RIO_FAIL) { |
| continue; /* with next port */ |
| } |
| rio_spin_lock(&PortP->portSem); |
| PortP->MagicFlags &= ~MAGIC_REBOOT; |
| } |
| #endif |
| |
| /* |
| ** As mentioned above, this is a tacky hack to cope |
| ** with WFLUSH |
| */ |
| if (PortP->WflushFlag) { |
| rio_dprintk(RIO_DEBUG_INTR, "Want to WFLUSH mark this port\n"); |
| |
| if (PortP->InUse) |
| rio_dprintk(RIO_DEBUG_INTR, "FAILS - PORT IS IN USE\n"); |
| } |
| |
| while (PortP->WflushFlag && can_add_transmit(&PacketP, PortP) && (PortP->InUse == NOT_INUSE)) { |
| int p; |
| struct PktCmd *PktCmdP; |
| |
| rio_dprintk(RIO_DEBUG_INTR, "Add WFLUSH marker to data queue\n"); |
| /* |
| ** make it look just like a WFLUSH command |
| */ |
| PktCmdP = (struct PktCmd *) &PacketP->data[0]; |
| |
| WBYTE(PktCmdP->Command, WFLUSH); |
| |
| p = PortP->HostPort % (ushort) PORTS_PER_RTA; |
| |
| /* |
| ** If second block of ports for 16 port RTA, add 8 |
| ** to index 8-15. |
| */ |
| if (PortP->SecondBlock) |
| p += PORTS_PER_RTA; |
| |
| WBYTE(PktCmdP->PhbNum, p); |
| |
| /* |
| ** to make debuggery easier |
| */ |
| WBYTE(PacketP->data[2], 'W'); |
| WBYTE(PacketP->data[3], 'F'); |
| WBYTE(PacketP->data[4], 'L'); |
| WBYTE(PacketP->data[5], 'U'); |
| WBYTE(PacketP->data[6], 'S'); |
| WBYTE(PacketP->data[7], 'H'); |
| WBYTE(PacketP->data[8], ' '); |
| WBYTE(PacketP->data[9], '0' + PortP->WflushFlag); |
| WBYTE(PacketP->data[10], ' '); |
| WBYTE(PacketP->data[11], ' '); |
| WBYTE(PacketP->data[12], '\0'); |
| |
| /* |
| ** its two bytes long! |
| */ |
| WBYTE(PacketP->len, PKT_CMD_BIT | 2); |
| |
| /* |
| ** queue it! |
| */ |
| if (!(PortP->State & RIO_DELETED)) { |
| add_transmit(PortP); |
| /* |
| ** Count chars tx'd for port statistics reporting |
| */ |
| if (PortP->statsGather) |
| PortP->txchars += 2; |
| } |
| |
| if (--(PortP->WflushFlag) == 0) { |
| PortP->MagicFlags &= ~MAGIC_FLUSH; |
| } |
| |
| rio_dprintk(RIO_DEBUG_INTR, "Wflush count now stands at %d\n", PortP->WflushFlag); |
| } |
| if (PortP->MagicFlags & MORE_OUTPUT_EYGOR) { |
| if (PortP->MagicFlags & MAGIC_FLUSH) { |
| PortP->MagicFlags |= MORE_OUTPUT_EYGOR; |
| } else { |
| if (!can_add_transmit(&PacketP, PortP)) { |
| rio_spin_unlock(&PortP->portSem); |
| continue; |
| } |
| rio_spin_unlock(&PortP->portSem); |
| RIOTxEnable((char *) PortP); |
| rio_spin_lock(&PortP->portSem); |
| PortP->MagicFlags &= ~MORE_OUTPUT_EYGOR; |
| } |
| } |
| } |
| |
| |
| /* |
| ** If we can't add anything to the transmit queue, then |
| ** we need do none of the remaining processing. |
| */ |
| if (!can_add_transmit(&PacketP, PortP)) { |
| rio_spin_unlock(&PortP->portSem); |
| continue; |
| } |
| |
| rio_spin_unlock(&PortP->portSem); |
| RIOTxEnable((char *) PortP); |
| } |
| } |
| } |
| |
| /* |
| ** Routine for handling received data for clist drivers. |
| ** NB: Called with the tty locked. The spl from the lockb( ) is passed. |
| ** we return the ttySpl level that we re-locked at. |
| */ |
| static void RIOReceive(p, PortP) |
| struct rio_info *p; |
| struct Port *PortP; |
| { |
| struct tty_struct *TtyP; |
| register ushort transCount; |
| struct PKT *PacketP; |
| register uint DataCnt; |
| uchar *ptr; |
| unsigned char *buf; |
| int copied = 0; |
| |
| static int intCount, RxIntCnt; |
| |
| /* |
| ** The receive data process is to remove packets from the |
| ** PHB until there aren't any more or the current cblock |
| ** is full. When this occurs, there will be some left over |
| ** data in the packet, that we must do something with. |
| ** As we haven't unhooked the packet from the read list |
| ** yet, we can just leave the packet there, having first |
| ** made a note of how far we got. This means that we need |
| ** a pointer per port saying where we start taking the |
| ** data from - this will normally be zero, but when we |
| ** run out of space it will be set to the offset of the |
| ** next byte to copy from the packet data area. The packet |
| ** length field is decremented by the number of bytes that |
| ** we succesfully removed from the packet. When this reaches |
| ** zero, we reset the offset pointer to be zero, and free |
| ** the packet from the front of the queue. |
| */ |
| |
| intCount++; |
| |
| TtyP = PortP->gs.tty; |
| if (!TtyP) { |
| rio_dprintk(RIO_DEBUG_INTR, "RIOReceive: tty is null. \n"); |
| return; |
| } |
| |
| if (PortP->State & RIO_THROTTLE_RX) { |
| rio_dprintk(RIO_DEBUG_INTR, "RIOReceive: Throttled. Can't handle more input.\n"); |
| return; |
| } |
| |
| if (PortP->State & RIO_DELETED) { |
| while (can_remove_receive(&PacketP, PortP)) { |
| remove_receive(PortP); |
| put_free_end(PortP->HostP, PacketP); |
| } |
| } else { |
| /* |
| ** loop, just so long as: |
| ** i ) there's some data ( i.e. can_remove_receive ) |
| ** ii ) we haven't been blocked |
| ** iii ) there's somewhere to put the data |
| ** iv ) we haven't outstayed our welcome |
| */ |
| transCount = 1; |
| while (can_remove_receive(&PacketP, PortP) |
| && transCount) { |
| #ifdef STATS |
| PortP->Stat.RxIntCnt++; |
| #endif /* STATS */ |
| RxIntCnt++; |
| |
| /* |
| ** check that it is not a command! |
| */ |
| if (PacketP->len & PKT_CMD_BIT) { |
| rio_dprintk(RIO_DEBUG_INTR, "RIO: unexpected command packet received on PHB\n"); |
| /* rio_dprint(RIO_DEBUG_INTR, (" sysport = %d\n", p->RIOPortp->PortNum)); */ |
| rio_dprintk(RIO_DEBUG_INTR, " dest_unit = %d\n", PacketP->dest_unit); |
| rio_dprintk(RIO_DEBUG_INTR, " dest_port = %d\n", PacketP->dest_port); |
| rio_dprintk(RIO_DEBUG_INTR, " src_unit = %d\n", PacketP->src_unit); |
| rio_dprintk(RIO_DEBUG_INTR, " src_port = %d\n", PacketP->src_port); |
| rio_dprintk(RIO_DEBUG_INTR, " len = %d\n", PacketP->len); |
| rio_dprintk(RIO_DEBUG_INTR, " control = %d\n", PacketP->control); |
| rio_dprintk(RIO_DEBUG_INTR, " csum = %d\n", PacketP->csum); |
| rio_dprintk(RIO_DEBUG_INTR, " data bytes: "); |
| for (DataCnt = 0; DataCnt < PKT_MAX_DATA_LEN; DataCnt++) |
| rio_dprintk(RIO_DEBUG_INTR, "%d\n", PacketP->data[DataCnt]); |
| remove_receive(PortP); |
| put_free_end(PortP->HostP, PacketP); |
| continue; /* with next packet */ |
| } |
| |
| /* |
| ** How many characters can we move 'upstream' ? |
| ** |
| ** Determine the minimum of the amount of data |
| ** available and the amount of space in which to |
| ** put it. |
| ** |
| ** 1. Get the packet length by masking 'len' |
| ** for only the length bits. |
| ** 2. Available space is [buffer size] - [space used] |
| ** |
| ** Transfer count is the minimum of packet length |
| ** and available space. |
| */ |
| |
| transCount = tty_buffer_request_room(TtyP, PacketP->len & PKT_LEN_MASK); |
| rio_dprintk(RIO_DEBUG_REC, "port %d: Copy %d bytes\n", PortP->PortNum, transCount); |
| /* |
| ** To use the following 'kkprintfs' for debugging - change the '#undef' |
| ** to '#define', (this is the only place ___DEBUG_IT___ occurs in the |
| ** driver). |
| */ |
| #undef ___DEBUG_IT___ |
| #ifdef ___DEBUG_IT___ |
| kkprintf("I:%d R:%d P:%d Q:%d C:%d F:%x ", intCount, RxIntCnt, PortP->PortNum, TtyP->rxqueue.count, transCount, TtyP->flags); |
| #endif |
| ptr = (uchar *) PacketP->data + PortP->RxDataStart; |
| |
| tty_prepare_flip_string(TtyP, &buf, transCount); |
| rio_memcpy_fromio(buf, ptr, transCount); |
| #ifdef STATS |
| /* |
| ** keep a count for statistical purposes |
| */ |
| PortP->Stat.RxCharCnt += transCount; |
| #endif |
| PortP->RxDataStart += transCount; |
| PacketP->len -= transCount; |
| copied += transCount; |
| |
| |
| #ifdef ___DEBUG_IT___ |
| kkprintf("T:%d L:%d\n", DataCnt, PacketP->len); |
| #endif |
| |
| if (PacketP->len == 0) { |
| /* |
| ** If we have emptied the packet, then we can |
| ** free it, and reset the start pointer for |
| ** the next packet. |
| */ |
| remove_receive(PortP); |
| put_free_end(PortP->HostP, PacketP); |
| PortP->RxDataStart = 0; |
| #ifdef STATS |
| /* |
| ** more lies ( oops, I mean statistics ) |
| */ |
| PortP->Stat.RxPktCnt++; |
| #endif /* STATS */ |
| } |
| } |
| } |
| if (copied) { |
| rio_dprintk(RIO_DEBUG_REC, "port %d: pushing tty flip buffer: %d total bytes copied.\n", PortP->PortNum, copied); |
| tty_flip_buffer_push(TtyP); |
| } |
| |
| return; |
| } |
| |
| #ifdef FUTURE_RELEASE |
| /* |
| ** The proc routine called by the line discipline to do the work for it. |
| ** The proc routine works hand in hand with the interrupt routine. |
| */ |
| int riotproc(p, tp, cmd, port) |
| struct rio_info *p; |
| register struct ttystatics *tp; |
| int cmd; |
| int port; |
| { |
| register struct Port *PortP; |
| int SysPort; |
| struct PKT *PacketP; |
| |
| SysPort = port; /* Believe me, it works. */ |
| |
| if (SysPort < 0 || SysPort >= RIO_PORTS) { |
| rio_dprintk(RIO_DEBUG_INTR, "Illegal port %d derived from TTY in riotproc()\n", SysPort); |
| return 0; |
| } |
| PortP = p->RIOPortp[SysPort]; |
| |
| if ((uint) PortP->PhbP < (uint) PortP->Caddr || (uint) PortP->PhbP >= (uint) PortP->Caddr + SIXTY_FOUR_K) { |
| rio_dprintk(RIO_DEBUG_INTR, "RIO: NULL or BAD PhbP on sys port %d in proc routine\n", SysPort); |
| rio_dprintk(RIO_DEBUG_INTR, " PortP = 0x%x\n", PortP); |
| rio_dprintk(RIO_DEBUG_INTR, " PortP->PhbP = 0x%x\n", PortP->PhbP); |
| rio_dprintk(RIO_DEBUG_INTR, " PortP->Caddr = 0x%x\n", PortP->PhbP); |
| rio_dprintk(RIO_DEBUG_INTR, " PortP->HostPort = 0x%x\n", PortP->HostPort); |
| return 0; |
| } |
| |
| switch (cmd) { |
| case T_WFLUSH: |
| rio_dprintk(RIO_DEBUG_INTR, "T_WFLUSH\n"); |
| /* |
| ** Because of the spooky way the RIO works, we don't need |
| ** to issue a flush command on any of the SET*F commands, |
| ** as that causes trouble with getty and login, which issue |
| ** these commands to incur a READ flush, and rely on the fact |
| ** that the line discipline does a wait for drain for them. |
| ** As the rio doesn't wait for drain, the write flush would |
| ** destroy the Password: prompt. This isn't very friendly, so |
| ** here we only issue a WFLUSH command if we are in the interrupt |
| ** routine, or we aren't executing a SET*F command. |
| */ |
| if (PortP->HostP->InIntr || !PortP->FlushCmdBodge) { |
| /* |
| ** form a wflush packet - 1 byte long, no data |
| */ |
| if (PortP->State & RIO_DELETED) { |
| rio_dprintk(RIO_DEBUG_INTR, "WFLUSH on deleted RTA\n"); |
| } else { |
| if (RIOPreemptiveCmd(p, PortP, WFLUSH) == RIO_FAIL) { |
| rio_dprintk(RIO_DEBUG_INTR, "T_WFLUSH Command failed\n"); |
| } else |
| rio_dprintk(RIO_DEBUG_INTR, "T_WFLUSH Command\n"); |
| } |
| /* |
| ** WFLUSH operation - flush the data! |
| */ |
| PortP->TxBufferIn = PortP->TxBufferOut = 0; |
| } else { |
| rio_dprintk(RIO_DEBUG_INTR, "T_WFLUSH Command ignored\n"); |
| } |
| /* |
| ** sort out the line discipline |
| */ |
| if (PortP->CookMode == COOK_WELL) |
| goto start; |
| break; |
| |
| case T_RESUME: |
| rio_dprintk(RIO_DEBUG_INTR, "T_RESUME\n"); |
| /* |
| ** send pre-emptive resume packet |
| */ |
| if (PortP->State & RIO_DELETED) { |
| rio_dprintk(RIO_DEBUG_INTR, "RESUME on deleted RTA\n"); |
| } else { |
| if (RIOPreemptiveCmd(p, PortP, RESUME) == RIO_FAIL) { |
| rio_dprintk(RIO_DEBUG_INTR, "T_RESUME Command failed\n"); |
| } |
| } |
| /* |
| ** and re-start the sender software! |
| */ |
| if (PortP->CookMode == COOK_WELL) |
| goto start; |
| break; |
| |
| case T_TIME: |
| rio_dprintk(RIO_DEBUG_INTR, "T_TIME\n"); |
| /* |
| ** T_TIME is called when xDLY is set in oflags and |
| ** the line discipline timeout has expired. It's |
| ** function in life is to clear the TIMEOUT flag |
| ** and to re-start output to the port. |
| */ |
| /* |
| ** Fall through and re-start output |
| */ |
| case T_OUTPUT: |
| start: |
| if (PortP->MagicFlags & MAGIC_FLUSH) { |
| PortP->MagicFlags |= MORE_OUTPUT_EYGOR; |
| return 0; |
| } |
| RIOTxEnable((char *) PortP); |
| PortP->MagicFlags &= ~MORE_OUTPUT_EYGOR; |
| /*rio_dprint(RIO_DEBUG_INTR, PortP,DBG_PROC,"T_OUTPUT finished\n"); */ |
| break; |
| |
| case T_SUSPEND: |
| rio_dprintk(RIO_DEBUG_INTR, "T_SUSPEND\n"); |
| /* |
| ** send a suspend pre-emptive packet. |
| */ |
| if (PortP->State & RIO_DELETED) { |
| rio_dprintk(RIO_DEBUG_INTR, "SUSPEND deleted RTA\n"); |
| } else { |
| if (RIOPreemptiveCmd(p, PortP, SUSPEND) == RIO_FAIL) { |
| rio_dprintk(RIO_DEBUG_INTR, "T_SUSPEND Command failed\n"); |
| } |
| } |
| /* |
| ** done! |
| */ |
| break; |
| |
| case T_BLOCK: |
| rio_dprintk(RIO_DEBUG_INTR, "T_BLOCK\n"); |
| break; |
| |
| case T_RFLUSH: |
| rio_dprintk(RIO_DEBUG_INTR, "T_RFLUSH\n"); |
| if (PortP->State & RIO_DELETED) { |
| rio_dprintk(RIO_DEBUG_INTR, "RFLUSH on deleted RTA\n"); |
| PortP->RxDataStart = 0; |
| } else { |
| if (RIOPreemptiveCmd(p, PortP, RFLUSH) == RIO_FAIL) { |
| rio_dprintk(RIO_DEBUG_INTR, "T_RFLUSH Command failed\n"); |
| return 0; |
| } |
| PortP->RxDataStart = 0; |
| while (can_remove_receive(&PacketP, PortP)) { |
| remove_receive(PortP); |
| ShowPacket(DBG_PROC, PacketP); |
| put_free_end(PortP->HostP, PacketP); |
| } |
| if (PortP->PhbP->handshake == PHB_HANDSHAKE_SET) { |
| /* |
| ** MAGIC! |
| */ |
| rio_dprintk(RIO_DEBUG_INTR, "Set receive handshake bit\n"); |
| PortP->PhbP->handshake |= PHB_HANDSHAKE_RESET; |
| } |
| } |
| break; |
| /* FALLTHROUGH */ |
| case T_UNBLOCK: |
| rio_dprintk(RIO_DEBUG_INTR, "T_UNBLOCK\n"); |
| /* |
| ** If there is any data to receive set a timeout to service it. |
| */ |
| RIOReceive(p, PortP); |
| break; |
| |
| case T_BREAK: |
| rio_dprintk(RIO_DEBUG_INTR, "T_BREAK\n"); |
| /* |
| ** Send a break command. For Sys V |
| ** this is a timed break, so we |
| ** send a SBREAK[time] packet |
| */ |
| /* |
| ** Build a BREAK command |
| */ |
| if (PortP->State & RIO_DELETED) { |
| rio_dprintk(RIO_DEBUG_INTR, "BREAK on deleted RTA\n"); |
| } else { |
| if (RIOShortCommand(PortP, SBREAK, 2, p->RIOConf.BreakInterval) == RIO_FAIL) { |
| rio_dprintk(RIO_DEBUG_INTR, "SBREAK RIOShortCommand failed\n"); |
| } |
| } |
| |
| /* |
| ** done! |
| */ |
| break; |
| |
| case T_INPUT: |
| rio_dprintk(RIO_DEBUG_INTR, "Proc T_INPUT called - I don't know what to do!\n"); |
| break; |
| case T_PARM: |
| rio_dprintk(RIO_DEBUG_INTR, "Proc T_PARM called - I don't know what to do!\n"); |
| break; |
| |
| case T_SWTCH: |
| rio_dprintk(RIO_DEBUG_INTR, "Proc T_SWTCH called - I don't know what to do!\n"); |
| break; |
| |
| default: |
| rio_dprintk(RIO_DEBUG_INTR, "Proc UNKNOWN command %d\n", cmd); |
| } |
| /* |
| ** T_OUTPUT returns without passing through this point! |
| */ |
| /*rio_dprint(RIO_DEBUG_INTR, PortP,DBG_PROC,"riotproc done\n"); */ |
| return (0); |
| } |
| #endif |