| /* |
| * linux/kernel/hrtimer.c |
| * |
| * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar |
| * |
| * High-resolution kernel timers |
| * |
| * In contrast to the low-resolution timeout API implemented in |
| * kernel/timer.c, hrtimers provide finer resolution and accuracy |
| * depending on system configuration and capabilities. |
| * |
| * These timers are currently used for: |
| * - itimers |
| * - POSIX timers |
| * - nanosleep |
| * - precise in-kernel timing |
| * |
| * Started by: Thomas Gleixner and Ingo Molnar |
| * |
| * Credits: |
| * based on kernel/timer.c |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/module.h> |
| #include <linux/percpu.h> |
| #include <linux/hrtimer.h> |
| #include <linux/notifier.h> |
| #include <linux/syscalls.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/uaccess.h> |
| |
| /** |
| * ktime_get - get the monotonic time in ktime_t format |
| * |
| * returns the time in ktime_t format |
| */ |
| static ktime_t ktime_get(void) |
| { |
| struct timespec now; |
| |
| ktime_get_ts(&now); |
| |
| return timespec_to_ktime(now); |
| } |
| |
| /** |
| * ktime_get_real - get the real (wall-) time in ktime_t format |
| * |
| * returns the time in ktime_t format |
| */ |
| static ktime_t ktime_get_real(void) |
| { |
| struct timespec now; |
| |
| getnstimeofday(&now); |
| |
| return timespec_to_ktime(now); |
| } |
| |
| EXPORT_SYMBOL_GPL(ktime_get_real); |
| |
| /* |
| * The timer bases: |
| */ |
| |
| #define MAX_HRTIMER_BASES 2 |
| |
| static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) = |
| { |
| { |
| .index = CLOCK_REALTIME, |
| .get_time = &ktime_get_real, |
| .resolution = KTIME_REALTIME_RES, |
| }, |
| { |
| .index = CLOCK_MONOTONIC, |
| .get_time = &ktime_get, |
| .resolution = KTIME_MONOTONIC_RES, |
| }, |
| }; |
| |
| /** |
| * ktime_get_ts - get the monotonic clock in timespec format |
| * |
| * @ts: pointer to timespec variable |
| * |
| * The function calculates the monotonic clock from the realtime |
| * clock and the wall_to_monotonic offset and stores the result |
| * in normalized timespec format in the variable pointed to by ts. |
| */ |
| void ktime_get_ts(struct timespec *ts) |
| { |
| struct timespec tomono; |
| unsigned long seq; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| getnstimeofday(ts); |
| tomono = wall_to_monotonic; |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, |
| ts->tv_nsec + tomono.tv_nsec); |
| } |
| |
| /* |
| * Functions and macros which are different for UP/SMP systems are kept in a |
| * single place |
| */ |
| #ifdef CONFIG_SMP |
| |
| #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0) |
| |
| /* |
| * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
| * means that all timers which are tied to this base via timer->base are |
| * locked, and the base itself is locked too. |
| * |
| * So __run_timers/migrate_timers can safely modify all timers which could |
| * be found on the lists/queues. |
| * |
| * When the timer's base is locked, and the timer removed from list, it is |
| * possible to set timer->base = NULL and drop the lock: the timer remains |
| * locked. |
| */ |
| static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer, |
| unsigned long *flags) |
| { |
| struct hrtimer_base *base; |
| |
| for (;;) { |
| base = timer->base; |
| if (likely(base != NULL)) { |
| spin_lock_irqsave(&base->lock, *flags); |
| if (likely(base == timer->base)) |
| return base; |
| /* The timer has migrated to another CPU: */ |
| spin_unlock_irqrestore(&base->lock, *flags); |
| } |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * Switch the timer base to the current CPU when possible. |
| */ |
| static inline struct hrtimer_base * |
| switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base) |
| { |
| struct hrtimer_base *new_base; |
| |
| new_base = &__get_cpu_var(hrtimer_bases[base->index]); |
| |
| if (base != new_base) { |
| /* |
| * We are trying to schedule the timer on the local CPU. |
| * However we can't change timer's base while it is running, |
| * so we keep it on the same CPU. No hassle vs. reprogramming |
| * the event source in the high resolution case. The softirq |
| * code will take care of this when the timer function has |
| * completed. There is no conflict as we hold the lock until |
| * the timer is enqueued. |
| */ |
| if (unlikely(base->curr_timer == timer)) |
| return base; |
| |
| /* See the comment in lock_timer_base() */ |
| timer->base = NULL; |
| spin_unlock(&base->lock); |
| spin_lock(&new_base->lock); |
| timer->base = new_base; |
| } |
| return new_base; |
| } |
| |
| #else /* CONFIG_SMP */ |
| |
| #define set_curr_timer(b, t) do { } while (0) |
| |
| static inline struct hrtimer_base * |
| lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| { |
| struct hrtimer_base *base = timer->base; |
| |
| spin_lock_irqsave(&base->lock, *flags); |
| |
| return base; |
| } |
| |
| #define switch_hrtimer_base(t, b) (b) |
| |
| #endif /* !CONFIG_SMP */ |
| |
| /* |
| * Functions for the union type storage format of ktime_t which are |
| * too large for inlining: |
| */ |
| #if BITS_PER_LONG < 64 |
| # ifndef CONFIG_KTIME_SCALAR |
| /** |
| * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable |
| * |
| * @kt: addend |
| * @nsec: the scalar nsec value to add |
| * |
| * Returns the sum of kt and nsec in ktime_t format |
| */ |
| ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) |
| { |
| ktime_t tmp; |
| |
| if (likely(nsec < NSEC_PER_SEC)) { |
| tmp.tv64 = nsec; |
| } else { |
| unsigned long rem = do_div(nsec, NSEC_PER_SEC); |
| |
| tmp = ktime_set((long)nsec, rem); |
| } |
| |
| return ktime_add(kt, tmp); |
| } |
| |
| #else /* CONFIG_KTIME_SCALAR */ |
| |
| # endif /* !CONFIG_KTIME_SCALAR */ |
| |
| /* |
| * Divide a ktime value by a nanosecond value |
| */ |
| static unsigned long ktime_divns(const ktime_t kt, nsec_t div) |
| { |
| u64 dclc, inc, dns; |
| int sft = 0; |
| |
| dclc = dns = ktime_to_ns(kt); |
| inc = div; |
| /* Make sure the divisor is less than 2^32: */ |
| while (div >> 32) { |
| sft++; |
| div >>= 1; |
| } |
| dclc >>= sft; |
| do_div(dclc, (unsigned long) div); |
| |
| return (unsigned long) dclc; |
| } |
| |
| #else /* BITS_PER_LONG < 64 */ |
| # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div)) |
| #endif /* BITS_PER_LONG >= 64 */ |
| |
| /* |
| * Counterpart to lock_timer_base above: |
| */ |
| static inline |
| void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| { |
| spin_unlock_irqrestore(&timer->base->lock, *flags); |
| } |
| |
| /** |
| * hrtimer_forward - forward the timer expiry |
| * |
| * @timer: hrtimer to forward |
| * @interval: the interval to forward |
| * |
| * Forward the timer expiry so it will expire in the future. |
| * The number of overruns is added to the overrun field. |
| */ |
| unsigned long |
| hrtimer_forward(struct hrtimer *timer, const ktime_t interval) |
| { |
| unsigned long orun = 1; |
| ktime_t delta, now; |
| |
| now = timer->base->get_time(); |
| |
| delta = ktime_sub(now, timer->expires); |
| |
| if (delta.tv64 < 0) |
| return 0; |
| |
| if (unlikely(delta.tv64 >= interval.tv64)) { |
| nsec_t incr = ktime_to_ns(interval); |
| |
| orun = ktime_divns(delta, incr); |
| timer->expires = ktime_add_ns(timer->expires, incr * orun); |
| if (timer->expires.tv64 > now.tv64) |
| return orun; |
| /* |
| * This (and the ktime_add() below) is the |
| * correction for exact: |
| */ |
| orun++; |
| } |
| timer->expires = ktime_add(timer->expires, interval); |
| |
| return orun; |
| } |
| |
| /* |
| * enqueue_hrtimer - internal function to (re)start a timer |
| * |
| * The timer is inserted in expiry order. Insertion into the |
| * red black tree is O(log(n)). Must hold the base lock. |
| */ |
| static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| { |
| struct rb_node **link = &base->active.rb_node; |
| struct list_head *prev = &base->pending; |
| struct rb_node *parent = NULL; |
| struct hrtimer *entry; |
| |
| /* |
| * Find the right place in the rbtree: |
| */ |
| while (*link) { |
| parent = *link; |
| entry = rb_entry(parent, struct hrtimer, node); |
| /* |
| * We dont care about collisions. Nodes with |
| * the same expiry time stay together. |
| */ |
| if (timer->expires.tv64 < entry->expires.tv64) |
| link = &(*link)->rb_left; |
| else { |
| link = &(*link)->rb_right; |
| prev = &entry->list; |
| } |
| } |
| |
| /* |
| * Insert the timer to the rbtree and to the sorted list: |
| */ |
| rb_link_node(&timer->node, parent, link); |
| rb_insert_color(&timer->node, &base->active); |
| list_add(&timer->list, prev); |
| |
| timer->state = HRTIMER_PENDING; |
| } |
| |
| |
| /* |
| * __remove_hrtimer - internal function to remove a timer |
| * |
| * Caller must hold the base lock. |
| */ |
| static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| { |
| /* |
| * Remove the timer from the sorted list and from the rbtree: |
| */ |
| list_del(&timer->list); |
| rb_erase(&timer->node, &base->active); |
| } |
| |
| /* |
| * remove hrtimer, called with base lock held |
| */ |
| static inline int |
| remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| { |
| if (hrtimer_active(timer)) { |
| __remove_hrtimer(timer, base); |
| timer->state = HRTIMER_INACTIVE; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * hrtimer_start - (re)start an relative timer on the current CPU |
| * |
| * @timer: the timer to be added |
| * @tim: expiry time |
| * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) |
| * |
| * Returns: |
| * 0 on success |
| * 1 when the timer was active |
| */ |
| int |
| hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) |
| { |
| struct hrtimer_base *base, *new_base; |
| unsigned long flags; |
| int ret; |
| |
| base = lock_hrtimer_base(timer, &flags); |
| |
| /* Remove an active timer from the queue: */ |
| ret = remove_hrtimer(timer, base); |
| |
| /* Switch the timer base, if necessary: */ |
| new_base = switch_hrtimer_base(timer, base); |
| |
| if (mode == HRTIMER_REL) |
| tim = ktime_add(tim, new_base->get_time()); |
| timer->expires = tim; |
| |
| enqueue_hrtimer(timer, new_base); |
| |
| unlock_hrtimer_base(timer, &flags); |
| |
| return ret; |
| } |
| |
| /** |
| * hrtimer_try_to_cancel - try to deactivate a timer |
| * |
| * @timer: hrtimer to stop |
| * |
| * Returns: |
| * 0 when the timer was not active |
| * 1 when the timer was active |
| * -1 when the timer is currently excuting the callback function and |
| * can not be stopped |
| */ |
| int hrtimer_try_to_cancel(struct hrtimer *timer) |
| { |
| struct hrtimer_base *base; |
| unsigned long flags; |
| int ret = -1; |
| |
| base = lock_hrtimer_base(timer, &flags); |
| |
| if (base->curr_timer != timer) |
| ret = remove_hrtimer(timer, base); |
| |
| unlock_hrtimer_base(timer, &flags); |
| |
| return ret; |
| |
| } |
| |
| /** |
| * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
| * |
| * @timer: the timer to be cancelled |
| * |
| * Returns: |
| * 0 when the timer was not active |
| * 1 when the timer was active |
| */ |
| int hrtimer_cancel(struct hrtimer *timer) |
| { |
| for (;;) { |
| int ret = hrtimer_try_to_cancel(timer); |
| |
| if (ret >= 0) |
| return ret; |
| } |
| } |
| |
| /** |
| * hrtimer_get_remaining - get remaining time for the timer |
| * |
| * @timer: the timer to read |
| */ |
| ktime_t hrtimer_get_remaining(const struct hrtimer *timer) |
| { |
| struct hrtimer_base *base; |
| unsigned long flags; |
| ktime_t rem; |
| |
| base = lock_hrtimer_base(timer, &flags); |
| rem = ktime_sub(timer->expires, timer->base->get_time()); |
| unlock_hrtimer_base(timer, &flags); |
| |
| return rem; |
| } |
| |
| /** |
| * hrtimer_rebase - rebase an initialized hrtimer to a different base |
| * |
| * @timer: the timer to be rebased |
| * @clock_id: the clock to be used |
| */ |
| void hrtimer_rebase(struct hrtimer *timer, const clockid_t clock_id) |
| { |
| struct hrtimer_base *bases; |
| |
| bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); |
| timer->base = &bases[clock_id]; |
| } |
| |
| /** |
| * hrtimer_init - initialize a timer to the given clock |
| * |
| * @timer: the timer to be initialized |
| * @clock_id: the clock to be used |
| */ |
| void hrtimer_init(struct hrtimer *timer, const clockid_t clock_id) |
| { |
| memset(timer, 0, sizeof(struct hrtimer)); |
| hrtimer_rebase(timer, clock_id); |
| } |
| |
| /** |
| * hrtimer_get_res - get the timer resolution for a clock |
| * |
| * @which_clock: which clock to query |
| * @tp: pointer to timespec variable to store the resolution |
| * |
| * Store the resolution of the clock selected by which_clock in the |
| * variable pointed to by tp. |
| */ |
| int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) |
| { |
| struct hrtimer_base *bases; |
| |
| tp->tv_sec = 0; |
| bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); |
| tp->tv_nsec = bases[which_clock].resolution; |
| |
| return 0; |
| } |
| |
| /* |
| * Expire the per base hrtimer-queue: |
| */ |
| static inline void run_hrtimer_queue(struct hrtimer_base *base) |
| { |
| ktime_t now = base->get_time(); |
| |
| spin_lock_irq(&base->lock); |
| |
| while (!list_empty(&base->pending)) { |
| struct hrtimer *timer; |
| int (*fn)(void *); |
| int restart; |
| void *data; |
| |
| timer = list_entry(base->pending.next, struct hrtimer, list); |
| if (now.tv64 <= timer->expires.tv64) |
| break; |
| |
| fn = timer->function; |
| data = timer->data; |
| set_curr_timer(base, timer); |
| __remove_hrtimer(timer, base); |
| spin_unlock_irq(&base->lock); |
| |
| /* |
| * fn == NULL is special case for the simplest timer |
| * variant - wake up process and do not restart: |
| */ |
| if (!fn) { |
| wake_up_process(data); |
| restart = HRTIMER_NORESTART; |
| } else |
| restart = fn(data); |
| |
| spin_lock_irq(&base->lock); |
| |
| if (restart == HRTIMER_RESTART) |
| enqueue_hrtimer(timer, base); |
| else |
| timer->state = HRTIMER_EXPIRED; |
| } |
| set_curr_timer(base, NULL); |
| spin_unlock_irq(&base->lock); |
| } |
| |
| /* |
| * Called from timer softirq every jiffy, expire hrtimers: |
| */ |
| void hrtimer_run_queues(void) |
| { |
| struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); |
| int i; |
| |
| for (i = 0; i < MAX_HRTIMER_BASES; i++) |
| run_hrtimer_queue(&base[i]); |
| } |
| |
| /* |
| * Sleep related functions: |
| */ |
| |
| /** |
| * schedule_hrtimer - sleep until timeout |
| * |
| * @timer: hrtimer variable initialized with the correct clock base |
| * @mode: timeout value is abs/rel |
| * |
| * Make the current task sleep until @timeout is |
| * elapsed. |
| * |
| * You can set the task state as follows - |
| * |
| * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to |
| * pass before the routine returns. The routine will return 0 |
| * |
| * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| * delivered to the current task. In this case the remaining time |
| * will be returned |
| * |
| * The current task state is guaranteed to be TASK_RUNNING when this |
| * routine returns. |
| */ |
| static ktime_t __sched |
| schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode) |
| { |
| /* fn stays NULL, meaning single-shot wakeup: */ |
| timer->data = current; |
| |
| hrtimer_start(timer, timer->expires, mode); |
| |
| schedule(); |
| hrtimer_cancel(timer); |
| |
| /* Return the remaining time: */ |
| if (timer->state != HRTIMER_EXPIRED) |
| return ktime_sub(timer->expires, timer->base->get_time()); |
| else |
| return (ktime_t) {.tv64 = 0 }; |
| } |
| |
| static inline ktime_t __sched |
| schedule_hrtimer_interruptible(struct hrtimer *timer, |
| const enum hrtimer_mode mode) |
| { |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| return schedule_hrtimer(timer, mode); |
| } |
| |
| static long __sched |
| nanosleep_restart(struct restart_block *restart, clockid_t clockid) |
| { |
| struct timespec __user *rmtp, tu; |
| void *rfn_save = restart->fn; |
| struct hrtimer timer; |
| ktime_t rem; |
| |
| restart->fn = do_no_restart_syscall; |
| |
| hrtimer_init(&timer, clockid); |
| |
| timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0; |
| |
| rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS); |
| |
| if (rem.tv64 <= 0) |
| return 0; |
| |
| rmtp = (struct timespec __user *) restart->arg2; |
| tu = ktime_to_timespec(rem); |
| if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) |
| return -EFAULT; |
| |
| restart->fn = rfn_save; |
| |
| /* The other values in restart are already filled in */ |
| return -ERESTART_RESTARTBLOCK; |
| } |
| |
| static long __sched nanosleep_restart_mono(struct restart_block *restart) |
| { |
| return nanosleep_restart(restart, CLOCK_MONOTONIC); |
| } |
| |
| static long __sched nanosleep_restart_real(struct restart_block *restart) |
| { |
| return nanosleep_restart(restart, CLOCK_REALTIME); |
| } |
| |
| long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
| const enum hrtimer_mode mode, const clockid_t clockid) |
| { |
| struct restart_block *restart; |
| struct hrtimer timer; |
| struct timespec tu; |
| ktime_t rem; |
| |
| hrtimer_init(&timer, clockid); |
| |
| timer.expires = timespec_to_ktime(*rqtp); |
| |
| rem = schedule_hrtimer_interruptible(&timer, mode); |
| if (rem.tv64 <= 0) |
| return 0; |
| |
| /* Absolute timers do not update the rmtp value: */ |
| if (mode == HRTIMER_ABS) |
| return -ERESTARTNOHAND; |
| |
| tu = ktime_to_timespec(rem); |
| |
| if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) |
| return -EFAULT; |
| |
| restart = ¤t_thread_info()->restart_block; |
| restart->fn = (clockid == CLOCK_MONOTONIC) ? |
| nanosleep_restart_mono : nanosleep_restart_real; |
| restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF; |
| restart->arg1 = timer.expires.tv64 >> 32; |
| restart->arg2 = (unsigned long) rmtp; |
| |
| return -ERESTART_RESTARTBLOCK; |
| } |
| |
| /* |
| * Functions related to boot-time initialization: |
| */ |
| static void __devinit init_hrtimers_cpu(int cpu) |
| { |
| struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu); |
| int i; |
| |
| for (i = 0; i < MAX_HRTIMER_BASES; i++) { |
| spin_lock_init(&base->lock); |
| INIT_LIST_HEAD(&base->pending); |
| base++; |
| } |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static void migrate_hrtimer_list(struct hrtimer_base *old_base, |
| struct hrtimer_base *new_base) |
| { |
| struct hrtimer *timer; |
| struct rb_node *node; |
| |
| while ((node = rb_first(&old_base->active))) { |
| timer = rb_entry(node, struct hrtimer, node); |
| __remove_hrtimer(timer, old_base); |
| timer->base = new_base; |
| enqueue_hrtimer(timer, new_base); |
| } |
| } |
| |
| static void migrate_hrtimers(int cpu) |
| { |
| struct hrtimer_base *old_base, *new_base; |
| int i; |
| |
| BUG_ON(cpu_online(cpu)); |
| old_base = per_cpu(hrtimer_bases, cpu); |
| new_base = get_cpu_var(hrtimer_bases); |
| |
| local_irq_disable(); |
| |
| for (i = 0; i < MAX_HRTIMER_BASES; i++) { |
| |
| spin_lock(&new_base->lock); |
| spin_lock(&old_base->lock); |
| |
| BUG_ON(old_base->curr_timer); |
| |
| migrate_hrtimer_list(old_base, new_base); |
| |
| spin_unlock(&old_base->lock); |
| spin_unlock(&new_base->lock); |
| old_base++; |
| new_base++; |
| } |
| |
| local_irq_enable(); |
| put_cpu_var(hrtimer_bases); |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static int __devinit hrtimer_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| long cpu = (long)hcpu; |
| |
| switch (action) { |
| |
| case CPU_UP_PREPARE: |
| init_hrtimers_cpu(cpu); |
| break; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| case CPU_DEAD: |
| migrate_hrtimers(cpu); |
| break; |
| #endif |
| |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __devinitdata hrtimers_nb = { |
| .notifier_call = hrtimer_cpu_notify, |
| }; |
| |
| void __init hrtimers_init(void) |
| { |
| hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, |
| (void *)(long)smp_processor_id()); |
| register_cpu_notifier(&hrtimers_nb); |
| } |
| |