| /* |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation. |
| * |
| * Copyright (C) 2011-2012 John Crispin <blogic@openwrt.org> |
| */ |
| |
| #include <linux/ioport.h> |
| #include <linux/export.h> |
| #include <linux/clkdev.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/of_address.h> |
| |
| #include <lantiq_soc.h> |
| |
| #include "../clk.h" |
| #include "../prom.h" |
| |
| /* clock control register */ |
| #define CGU_IFCCR 0x0018 |
| /* system clock register */ |
| #define CGU_SYS 0x0010 |
| /* pci control register */ |
| #define CGU_PCICR 0x0034 |
| /* ephy configuration register */ |
| #define CGU_EPHY 0x10 |
| /* power control register */ |
| #define PMU_PWDCR 0x1C |
| /* power status register */ |
| #define PMU_PWDSR 0x20 |
| /* power control register */ |
| #define PMU_PWDCR1 0x24 |
| /* power status register */ |
| #define PMU_PWDSR1 0x28 |
| /* power control register */ |
| #define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR)) |
| /* power status register */ |
| #define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR)) |
| |
| /* clock gates that we can en/disable */ |
| #define PMU_USB0_P BIT(0) |
| #define PMU_PCI BIT(4) |
| #define PMU_DMA BIT(5) |
| #define PMU_USB0 BIT(6) |
| #define PMU_ASC0 BIT(7) |
| #define PMU_EPHY BIT(7) /* ase */ |
| #define PMU_SPI BIT(8) |
| #define PMU_DFE BIT(9) |
| #define PMU_EBU BIT(10) |
| #define PMU_STP BIT(11) |
| #define PMU_GPT BIT(12) |
| #define PMU_AHBS BIT(13) /* vr9 */ |
| #define PMU_FPI BIT(14) |
| #define PMU_AHBM BIT(15) |
| #define PMU_ASC1 BIT(17) |
| #define PMU_PPE_QSB BIT(18) |
| #define PMU_PPE_SLL01 BIT(19) |
| #define PMU_PPE_TC BIT(21) |
| #define PMU_PPE_EMA BIT(22) |
| #define PMU_PPE_DPLUM BIT(23) |
| #define PMU_PPE_DPLUS BIT(24) |
| #define PMU_USB1_P BIT(26) |
| #define PMU_USB1 BIT(27) |
| #define PMU_SWITCH BIT(28) |
| #define PMU_PPE_TOP BIT(29) |
| #define PMU_GPHY BIT(30) |
| #define PMU_PCIE_CLK BIT(31) |
| |
| #define PMU1_PCIE_PHY BIT(0) |
| #define PMU1_PCIE_CTL BIT(1) |
| #define PMU1_PCIE_PDI BIT(4) |
| #define PMU1_PCIE_MSI BIT(5) |
| |
| #define pmu_w32(x, y) ltq_w32((x), pmu_membase + (y)) |
| #define pmu_r32(x) ltq_r32(pmu_membase + (x)) |
| |
| static void __iomem *pmu_membase; |
| void __iomem *ltq_cgu_membase; |
| void __iomem *ltq_ebu_membase; |
| |
| /* legacy function kept alive to ease clkdev transition */ |
| void ltq_pmu_enable(unsigned int module) |
| { |
| int err = 1000000; |
| |
| pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR); |
| do {} while (--err && (pmu_r32(PMU_PWDSR) & module)); |
| |
| if (!err) |
| panic("activating PMU module failed!"); |
| } |
| EXPORT_SYMBOL(ltq_pmu_enable); |
| |
| /* legacy function kept alive to ease clkdev transition */ |
| void ltq_pmu_disable(unsigned int module) |
| { |
| pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR); |
| } |
| EXPORT_SYMBOL(ltq_pmu_disable); |
| |
| /* enable a hw clock */ |
| static int cgu_enable(struct clk *clk) |
| { |
| ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) | clk->bits, CGU_IFCCR); |
| return 0; |
| } |
| |
| /* disable a hw clock */ |
| static void cgu_disable(struct clk *clk) |
| { |
| ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) & ~clk->bits, CGU_IFCCR); |
| } |
| |
| /* enable a clock gate */ |
| static int pmu_enable(struct clk *clk) |
| { |
| int retry = 1000000; |
| |
| pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits, |
| PWDCR(clk->module)); |
| do {} while (--retry && (pmu_r32(PWDSR(clk->module)) & clk->bits)); |
| |
| if (!retry) |
| panic("activating PMU module failed!\n"); |
| |
| return 0; |
| } |
| |
| /* disable a clock gate */ |
| static void pmu_disable(struct clk *clk) |
| { |
| pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits, |
| PWDCR(clk->module)); |
| } |
| |
| /* the pci enable helper */ |
| static int pci_enable(struct clk *clk) |
| { |
| unsigned int ifccr = ltq_cgu_r32(CGU_IFCCR); |
| /* set bus clock speed */ |
| if (of_machine_is_compatible("lantiq,ar9")) { |
| ifccr &= ~0x1f00000; |
| if (clk->rate == CLOCK_33M) |
| ifccr |= 0xe00000; |
| else |
| ifccr |= 0x700000; /* 62.5M */ |
| } else { |
| ifccr &= ~0xf00000; |
| if (clk->rate == CLOCK_33M) |
| ifccr |= 0x800000; |
| else |
| ifccr |= 0x400000; /* 62.5M */ |
| } |
| ltq_cgu_w32(ifccr, CGU_IFCCR); |
| pmu_enable(clk); |
| return 0; |
| } |
| |
| /* enable the external clock as a source */ |
| static int pci_ext_enable(struct clk *clk) |
| { |
| ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) & ~(1 << 16), |
| CGU_IFCCR); |
| ltq_cgu_w32((1 << 30), CGU_PCICR); |
| return 0; |
| } |
| |
| /* disable the external clock as a source */ |
| static void pci_ext_disable(struct clk *clk) |
| { |
| ltq_cgu_w32(ltq_cgu_r32(CGU_IFCCR) | (1 << 16), |
| CGU_IFCCR); |
| ltq_cgu_w32((1 << 31) | (1 << 30), CGU_PCICR); |
| } |
| |
| /* enable a clockout source */ |
| static int clkout_enable(struct clk *clk) |
| { |
| int i; |
| |
| /* get the correct rate */ |
| for (i = 0; i < 4; i++) { |
| if (clk->rates[i] == clk->rate) { |
| int shift = 14 - (2 * clk->module); |
| unsigned int ifccr = ltq_cgu_r32(CGU_IFCCR); |
| |
| ifccr &= ~(3 << shift); |
| ifccr |= i << shift; |
| ltq_cgu_w32(ifccr, CGU_IFCCR); |
| return 0; |
| } |
| } |
| return -1; |
| } |
| |
| /* manage the clock gates via PMU */ |
| static void clkdev_add_pmu(const char *dev, const char *con, |
| unsigned int module, unsigned int bits) |
| { |
| struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL); |
| |
| clk->cl.dev_id = dev; |
| clk->cl.con_id = con; |
| clk->cl.clk = clk; |
| clk->enable = pmu_enable; |
| clk->disable = pmu_disable; |
| clk->module = module; |
| clk->bits = bits; |
| clkdev_add(&clk->cl); |
| } |
| |
| /* manage the clock generator */ |
| static void clkdev_add_cgu(const char *dev, const char *con, |
| unsigned int bits) |
| { |
| struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL); |
| |
| clk->cl.dev_id = dev; |
| clk->cl.con_id = con; |
| clk->cl.clk = clk; |
| clk->enable = cgu_enable; |
| clk->disable = cgu_disable; |
| clk->bits = bits; |
| clkdev_add(&clk->cl); |
| } |
| |
| /* pci needs its own enable function as the setup is a bit more complex */ |
| static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0}; |
| |
| static void clkdev_add_pci(void) |
| { |
| struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL); |
| struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL); |
| |
| /* main pci clock */ |
| clk->cl.dev_id = "17000000.pci"; |
| clk->cl.con_id = NULL; |
| clk->cl.clk = clk; |
| clk->rate = CLOCK_33M; |
| clk->rates = valid_pci_rates; |
| clk->enable = pci_enable; |
| clk->disable = pmu_disable; |
| clk->module = 0; |
| clk->bits = PMU_PCI; |
| clkdev_add(&clk->cl); |
| |
| /* use internal/external bus clock */ |
| clk_ext->cl.dev_id = "17000000.pci"; |
| clk_ext->cl.con_id = "external"; |
| clk_ext->cl.clk = clk_ext; |
| clk_ext->enable = pci_ext_enable; |
| clk_ext->disable = pci_ext_disable; |
| clkdev_add(&clk_ext->cl); |
| } |
| |
| /* xway socs can generate clocks on gpio pins */ |
| static unsigned long valid_clkout_rates[4][5] = { |
| {CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0}, |
| {CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0}, |
| {CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0}, |
| {CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0}, |
| }; |
| |
| static void clkdev_add_clkout(void) |
| { |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| struct clk *clk; |
| char *name; |
| |
| name = kzalloc(sizeof("clkout0"), GFP_KERNEL); |
| sprintf(name, "clkout%d", i); |
| |
| clk = kzalloc(sizeof(struct clk), GFP_KERNEL); |
| clk->cl.dev_id = "1f103000.cgu"; |
| clk->cl.con_id = name; |
| clk->cl.clk = clk; |
| clk->rate = 0; |
| clk->rates = valid_clkout_rates[i]; |
| clk->enable = clkout_enable; |
| clk->module = i; |
| clkdev_add(&clk->cl); |
| } |
| } |
| |
| /* bring up all register ranges that we need for basic system control */ |
| void __init ltq_soc_init(void) |
| { |
| struct resource res_pmu, res_cgu, res_ebu; |
| struct device_node *np_pmu = |
| of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway"); |
| struct device_node *np_cgu = |
| of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway"); |
| struct device_node *np_ebu = |
| of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway"); |
| |
| /* check if all the core register ranges are available */ |
| if (!np_pmu || !np_cgu || !np_ebu) |
| panic("Failed to load core nodess from devicetree"); |
| |
| if (of_address_to_resource(np_pmu, 0, &res_pmu) || |
| of_address_to_resource(np_cgu, 0, &res_cgu) || |
| of_address_to_resource(np_ebu, 0, &res_ebu)) |
| panic("Failed to get core resources"); |
| |
| if ((request_mem_region(res_pmu.start, resource_size(&res_pmu), |
| res_pmu.name) < 0) || |
| (request_mem_region(res_cgu.start, resource_size(&res_cgu), |
| res_cgu.name) < 0) || |
| (request_mem_region(res_ebu.start, resource_size(&res_ebu), |
| res_ebu.name) < 0)) |
| pr_err("Failed to request core reources"); |
| |
| pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu)); |
| ltq_cgu_membase = ioremap_nocache(res_cgu.start, |
| resource_size(&res_cgu)); |
| ltq_ebu_membase = ioremap_nocache(res_ebu.start, |
| resource_size(&res_ebu)); |
| if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase) |
| panic("Failed to remap core resources"); |
| |
| /* make sure to unprotect the memory region where flash is located */ |
| ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0); |
| |
| /* add our generic xway clocks */ |
| clkdev_add_pmu("10000000.fpi", NULL, 0, PMU_FPI); |
| clkdev_add_pmu("1e100400.serial", NULL, 0, PMU_ASC0); |
| clkdev_add_pmu("1e100a00.gptu", NULL, 0, PMU_GPT); |
| clkdev_add_pmu("1e100bb0.stp", NULL, 0, PMU_STP); |
| clkdev_add_pmu("1e104100.dma", NULL, 0, PMU_DMA); |
| clkdev_add_pmu("1e100800.spi", NULL, 0, PMU_SPI); |
| clkdev_add_pmu("1e105300.ebu", NULL, 0, PMU_EBU); |
| clkdev_add_clkout(); |
| |
| /* add the soc dependent clocks */ |
| if (!of_machine_is_compatible("lantiq,vr9")) |
| clkdev_add_pmu("1e180000.etop", NULL, 0, PMU_PPE); |
| |
| if (!of_machine_is_compatible("lantiq,ase")) { |
| clkdev_add_pmu("1e100c00.serial", NULL, 0, PMU_ASC1); |
| clkdev_add_pci(); |
| } |
| |
| if (of_machine_is_compatible("lantiq,ase")) { |
| if (ltq_cgu_r32(CGU_SYS) & (1 << 5)) |
| clkdev_add_static(CLOCK_266M, CLOCK_133M, CLOCK_133M); |
| else |
| clkdev_add_static(CLOCK_133M, CLOCK_133M, CLOCK_133M); |
| clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY), |
| clkdev_add_pmu("1e180000.etop", "ephy", 0, PMU_EPHY); |
| } else if (of_machine_is_compatible("lantiq,vr9")) { |
| clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(), |
| ltq_vr9_fpi_hz()); |
| clkdev_add_pmu("1d900000.pcie", "phy", 1, PMU1_PCIE_PHY); |
| clkdev_add_pmu("1d900000.pcie", "bus", 0, PMU_PCIE_CLK); |
| clkdev_add_pmu("1d900000.pcie", "msi", 1, PMU1_PCIE_MSI); |
| clkdev_add_pmu("1d900000.pcie", "pdi", 1, PMU1_PCIE_PDI); |
| clkdev_add_pmu("1d900000.pcie", "ctl", 1, PMU1_PCIE_CTL); |
| clkdev_add_pmu("1d900000.pcie", "ahb", 0, PMU_AHBM | PMU_AHBS); |
| } else if (of_machine_is_compatible("lantiq,ar9")) { |
| clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(), |
| ltq_ar9_fpi_hz()); |
| clkdev_add_pmu("1e180000.etop", "switch", 0, PMU_SWITCH); |
| } else { |
| clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(), |
| ltq_danube_fpi_hz()); |
| } |
| } |