blob: 5fc201b49d3070721cade7821c3d259f15b5f441 [file] [log] [blame]
/*
* Copyright 2005-2006 Erik Waling
* Copyright 2006 Stephane Marchesin
* Copyright 2007-2009 Stuart Bennett
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "drmP.h"
#define NV_DEBUG_NOTRACE
#include "nouveau_drv.h"
#include "nouveau_hw.h"
#include "nouveau_encoder.h"
#include <linux/io-mapping.h>
/* these defines are made up */
#define NV_CIO_CRE_44_HEADA 0x0
#define NV_CIO_CRE_44_HEADB 0x3
#define FEATURE_MOBILE 0x10 /* also FEATURE_QUADRO for BMP */
#define LEGACY_I2C_CRT 0x80
#define LEGACY_I2C_PANEL 0x81
#define LEGACY_I2C_TV 0x82
#define EDID1_LEN 128
#define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
#define LOG_OLD_VALUE(x)
struct init_exec {
bool execute;
bool repeat;
};
static bool nv_cksum(const uint8_t *data, unsigned int length)
{
/*
* There's a few checksums in the BIOS, so here's a generic checking
* function.
*/
int i;
uint8_t sum = 0;
for (i = 0; i < length; i++)
sum += data[i];
if (sum)
return true;
return false;
}
static int
score_vbios(struct drm_device *dev, const uint8_t *data, const bool writeable)
{
if (!(data[0] == 0x55 && data[1] == 0xAA)) {
NV_TRACEWARN(dev, "... BIOS signature not found\n");
return 0;
}
if (nv_cksum(data, data[2] * 512)) {
NV_TRACEWARN(dev, "... BIOS checksum invalid\n");
/* if a ro image is somewhat bad, it's probably all rubbish */
return writeable ? 2 : 1;
} else
NV_TRACE(dev, "... appears to be valid\n");
return 3;
}
static void load_vbios_prom(struct drm_device *dev, uint8_t *data)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t pci_nv_20, save_pci_nv_20;
int pcir_ptr;
int i;
if (dev_priv->card_type >= NV_50)
pci_nv_20 = 0x88050;
else
pci_nv_20 = NV_PBUS_PCI_NV_20;
/* enable ROM access */
save_pci_nv_20 = nvReadMC(dev, pci_nv_20);
nvWriteMC(dev, pci_nv_20,
save_pci_nv_20 & ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
/* bail if no rom signature */
if (nv_rd08(dev, NV_PROM_OFFSET) != 0x55 ||
nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
goto out;
/* additional check (see note below) - read PCI record header */
pcir_ptr = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
if (nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr) != 'P' ||
nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 1) != 'C' ||
nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 2) != 'I' ||
nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 3) != 'R')
goto out;
/* on some 6600GT/6800LE prom reads are messed up. nvclock alleges a
* a good read may be obtained by waiting or re-reading (cargocult: 5x)
* each byte. we'll hope pramin has something usable instead
*/
for (i = 0; i < NV_PROM_SIZE; i++)
data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);
out:
/* disable ROM access */
nvWriteMC(dev, pci_nv_20,
save_pci_nv_20 | NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
}
static void load_vbios_pramin(struct drm_device *dev, uint8_t *data)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t old_bar0_pramin = 0;
int i;
if (dev_priv->card_type >= NV_50) {
u64 addr = (u64)(nv_rd32(dev, 0x619f04) & 0xffffff00) << 8;
if (!addr) {
addr = (u64)nv_rd32(dev, 0x1700) << 16;
addr += 0xf0000;
}
old_bar0_pramin = nv_rd32(dev, 0x1700);
nv_wr32(dev, 0x1700, addr >> 16);
}
/* bail if no rom signature */
if (nv_rd08(dev, NV_PRAMIN_OFFSET) != 0x55 ||
nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
goto out;
for (i = 0; i < NV_PROM_SIZE; i++)
data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);
out:
if (dev_priv->card_type >= NV_50)
nv_wr32(dev, 0x1700, old_bar0_pramin);
}
static void load_vbios_pci(struct drm_device *dev, uint8_t *data)
{
void __iomem *rom = NULL;
size_t rom_len;
int ret;
ret = pci_enable_rom(dev->pdev);
if (ret)
return;
rom = pci_map_rom(dev->pdev, &rom_len);
if (!rom)
goto out;
memcpy_fromio(data, rom, rom_len);
pci_unmap_rom(dev->pdev, rom);
out:
pci_disable_rom(dev->pdev);
}
static void load_vbios_acpi(struct drm_device *dev, uint8_t *data)
{
int i;
int ret;
int size = 64 * 1024;
if (!nouveau_acpi_rom_supported(dev->pdev))
return;
for (i = 0; i < (size / ROM_BIOS_PAGE); i++) {
ret = nouveau_acpi_get_bios_chunk(data,
(i * ROM_BIOS_PAGE),
ROM_BIOS_PAGE);
if (ret <= 0)
break;
}
return;
}
struct methods {
const char desc[8];
void (*loadbios)(struct drm_device *, uint8_t *);
const bool rw;
};
static struct methods shadow_methods[] = {
{ "PRAMIN", load_vbios_pramin, true },
{ "PROM", load_vbios_prom, false },
{ "PCIROM", load_vbios_pci, true },
{ "ACPI", load_vbios_acpi, true },
};
#define NUM_SHADOW_METHODS ARRAY_SIZE(shadow_methods)
static bool NVShadowVBIOS(struct drm_device *dev, uint8_t *data)
{
struct methods *methods = shadow_methods;
int testscore = 3;
int scores[NUM_SHADOW_METHODS], i;
if (nouveau_vbios) {
for (i = 0; i < NUM_SHADOW_METHODS; i++)
if (!strcasecmp(nouveau_vbios, methods[i].desc))
break;
if (i < NUM_SHADOW_METHODS) {
NV_INFO(dev, "Attempting to use BIOS image from %s\n",
methods[i].desc);
methods[i].loadbios(dev, data);
if (score_vbios(dev, data, methods[i].rw))
return true;
}
NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
}
for (i = 0; i < NUM_SHADOW_METHODS; i++) {
NV_TRACE(dev, "Attempting to load BIOS image from %s\n",
methods[i].desc);
data[0] = data[1] = 0; /* avoid reuse of previous image */
methods[i].loadbios(dev, data);
scores[i] = score_vbios(dev, data, methods[i].rw);
if (scores[i] == testscore)
return true;
}
while (--testscore > 0) {
for (i = 0; i < NUM_SHADOW_METHODS; i++) {
if (scores[i] == testscore) {
NV_TRACE(dev, "Using BIOS image from %s\n",
methods[i].desc);
methods[i].loadbios(dev, data);
return true;
}
}
}
NV_ERROR(dev, "No valid BIOS image found\n");
return false;
}
struct init_tbl_entry {
char *name;
uint8_t id;
/* Return:
* > 0: success, length of opcode
* 0: success, but abort further parsing of table (INIT_DONE etc)
* < 0: failure, table parsing will be aborted
*/
int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
};
static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *);
#define MACRO_INDEX_SIZE 2
#define MACRO_SIZE 8
#define CONDITION_SIZE 12
#define IO_FLAG_CONDITION_SIZE 9
#define IO_CONDITION_SIZE 5
#define MEM_INIT_SIZE 66
static void still_alive(void)
{
#if 0
sync();
mdelay(2);
#endif
}
static uint32_t
munge_reg(struct nvbios *bios, uint32_t reg)
{
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
struct dcb_entry *dcbent = bios->display.output;
if (dev_priv->card_type < NV_50)
return reg;
if (reg & 0x80000000) {
BUG_ON(bios->display.crtc < 0);
reg += bios->display.crtc * 0x800;
}
if (reg & 0x40000000) {
BUG_ON(!dcbent);
reg += (ffs(dcbent->or) - 1) * 0x800;
if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
reg += 0x00000080;
}
reg &= ~0xe0000000;
return reg;
}
static int
valid_reg(struct nvbios *bios, uint32_t reg)
{
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
struct drm_device *dev = bios->dev;
/* C51 has misaligned regs on purpose. Marvellous */
if (reg & 0x2 ||
(reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);
/* warn on C51 regs that haven't been verified accessible in tracing */
if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
reg);
if (reg >= (8*1024*1024)) {
NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
return 0;
}
return 1;
}
static bool
valid_idx_port(struct nvbios *bios, uint16_t port)
{
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
struct drm_device *dev = bios->dev;
/*
* If adding more ports here, the read/write functions below will need
* updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
* used for the port in question
*/
if (dev_priv->card_type < NV_50) {
if (port == NV_CIO_CRX__COLOR)
return true;
if (port == NV_VIO_SRX)
return true;
} else {
if (port == NV_CIO_CRX__COLOR)
return true;
}
NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
port);
return false;
}
static bool
valid_port(struct nvbios *bios, uint16_t port)
{
struct drm_device *dev = bios->dev;
/*
* If adding more ports here, the read/write functions below will need
* updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
* used for the port in question
*/
if (port == NV_VIO_VSE2)
return true;
NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);
return false;
}
static uint32_t
bios_rd32(struct nvbios *bios, uint32_t reg)
{
uint32_t data;
reg = munge_reg(bios, reg);
if (!valid_reg(bios, reg))
return 0;
/*
* C51 sometimes uses regs with bit0 set in the address. For these
* cases there should exist a translation in a BIOS table to an IO
* port address which the BIOS uses for accessing the reg
*
* These only seem to appear for the power control regs to a flat panel,
* and the GPIO regs at 0x60081*. In C51 mmio traces the normal regs
* for 0x1308 and 0x1310 are used - hence the mask below. An S3
* suspend-resume mmio trace from a C51 will be required to see if this
* is true for the power microcode in 0x14.., or whether the direct IO
* port access method is needed
*/
if (reg & 0x1)
reg &= ~0x1;
data = nv_rd32(bios->dev, reg);
BIOSLOG(bios, " Read: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
return data;
}
static void
bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
{
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
reg = munge_reg(bios, reg);
if (!valid_reg(bios, reg))
return;
/* see note in bios_rd32 */
if (reg & 0x1)
reg &= 0xfffffffe;
LOG_OLD_VALUE(bios_rd32(bios, reg));
BIOSLOG(bios, " Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
if (dev_priv->vbios.execute) {
still_alive();
nv_wr32(bios->dev, reg, data);
}
}
static uint8_t
bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
{
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
struct drm_device *dev = bios->dev;
uint8_t data;
if (!valid_idx_port(bios, port))
return 0;
if (dev_priv->card_type < NV_50) {
if (port == NV_VIO_SRX)
data = NVReadVgaSeq(dev, bios->state.crtchead, index);
else /* assume NV_CIO_CRX__COLOR */
data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
} else {
uint32_t data32;
data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
data = (data32 >> ((index & 3) << 3)) & 0xff;
}
BIOSLOG(bios, " Indexed IO read: Port: 0x%04X, Index: 0x%02X, "
"Head: 0x%02X, Data: 0x%02X\n",
port, index, bios->state.crtchead, data);
return data;
}
static void
bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
{
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
struct drm_device *dev = bios->dev;
if (!valid_idx_port(bios, port))
return;
/*
* The current head is maintained in the nvbios member state.crtchead.
* We trap changes to CR44 and update the head variable and hence the
* register set written.
* As CR44 only exists on CRTC0, we update crtchead to head0 in advance
* of the write, and to head1 after the write
*/
if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
data != NV_CIO_CRE_44_HEADB)
bios->state.crtchead = 0;
LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
BIOSLOG(bios, " Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
"Head: 0x%02X, Data: 0x%02X\n",
port, index, bios->state.crtchead, data);
if (bios->execute && dev_priv->card_type < NV_50) {
still_alive();
if (port == NV_VIO_SRX)
NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
else /* assume NV_CIO_CRX__COLOR */
NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
} else
if (bios->execute) {
uint32_t data32, shift = (index & 3) << 3;
still_alive();
data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
data32 &= ~(0xff << shift);
data32 |= (data << shift);
bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
}
if (port == NV_CIO_CRX__COLOR &&
index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
bios->state.crtchead = 1;
}
static uint8_t
bios_port_rd(struct nvbios *bios, uint16_t port)
{
uint8_t data, head = bios->state.crtchead;
if (!valid_port(bios, port))
return 0;
data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);
BIOSLOG(bios, " IO read: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
port, head, data);
return data;
}
static void
bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
{
int head = bios->state.crtchead;
if (!valid_port(bios, port))
return;
LOG_OLD_VALUE(bios_port_rd(bios, port));
BIOSLOG(bios, " IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
port, head, data);
if (!bios->execute)
return;
still_alive();
NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
}
static bool
io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
/*
* The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
* for the CRTC index; 1 byte for the mask to apply to the value
* retrieved from the CRTC; 1 byte for the shift right to apply to the
* masked CRTC value; 2 bytes for the offset to the flag array, to
* which the shifted value is added; 1 byte for the mask applied to the
* value read from the flag array; and 1 byte for the value to compare
* against the masked byte from the flag table.
*/
uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
uint16_t crtcport = ROM16(bios->data[condptr]);
uint8_t crtcindex = bios->data[condptr + 2];
uint8_t mask = bios->data[condptr + 3];
uint8_t shift = bios->data[condptr + 4];
uint16_t flagarray = ROM16(bios->data[condptr + 5]);
uint8_t flagarraymask = bios->data[condptr + 7];
uint8_t cmpval = bios->data[condptr + 8];
uint8_t data;
BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
"Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
"Cmpval: 0x%02X\n",
offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);
data = bios_idxprt_rd(bios, crtcport, crtcindex);
data = bios->data[flagarray + ((data & mask) >> shift)];
data &= flagarraymask;
BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
offset, data, cmpval);
return (data == cmpval);
}
static bool
bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
/*
* The condition table entry has 4 bytes for the address of the
* register to check, 4 bytes for a mask to apply to the register and
* 4 for a test comparison value
*/
uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
uint32_t reg = ROM32(bios->data[condptr]);
uint32_t mask = ROM32(bios->data[condptr + 4]);
uint32_t cmpval = ROM32(bios->data[condptr + 8]);
uint32_t data;
BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
offset, cond, reg, mask);
data = bios_rd32(bios, reg) & mask;
BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
offset, data, cmpval);
return (data == cmpval);
}
static bool
io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
/*
* The IO condition entry has 2 bytes for the IO port address; 1 byte
* for the index to write to io_port; 1 byte for the mask to apply to
* the byte read from io_port+1; and 1 byte for the value to compare
* against the masked byte.
*/
uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
uint16_t io_port = ROM16(bios->data[condptr]);
uint8_t port_index = bios->data[condptr + 2];
uint8_t mask = bios->data[condptr + 3];
uint8_t cmpval = bios->data[condptr + 4];
uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;
BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
offset, data, cmpval);
return (data == cmpval);
}
static int
nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_pll_vals pll;
struct pll_lims pll_limits;
u32 ctrl, mask, coef;
int ret;
ret = get_pll_limits(dev, reg, &pll_limits);
if (ret)
return ret;
clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
if (!clk)
return -ERANGE;
coef = pll.N1 << 8 | pll.M1;
ctrl = pll.log2P << 16;
mask = 0x00070000;
if (reg == 0x004008) {
mask |= 0x01f80000;
ctrl |= (pll_limits.log2p_bias << 19);
ctrl |= (pll.log2P << 22);
}
if (!dev_priv->vbios.execute)
return 0;
nv_mask(dev, reg + 0, mask, ctrl);
nv_wr32(dev, reg + 4, coef);
return 0;
}
static int
setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
{
struct drm_device *dev = bios->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
/* clk in kHz */
struct pll_lims pll_lim;
struct nouveau_pll_vals pllvals;
int ret;
if (dev_priv->card_type >= NV_50)
return nv50_pll_set(dev, reg, clk);
/* high regs (such as in the mac g5 table) are not -= 4 */
ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
if (ret)
return ret;
clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
if (!clk)
return -ERANGE;
if (bios->execute) {
still_alive();
nouveau_hw_setpll(dev, reg, &pllvals);
}
return 0;
}
static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
/*
* For the results of this function to be correct, CR44 must have been
* set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
* and the DCB table parsed, before the script calling the function is
* run. run_digital_op_script is example of how to do such setup
*/
uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);
if (dcb_entry > bios->dcb.entries) {
NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
"(%02X)\n", dcb_entry);
dcb_entry = 0x7f; /* unused / invalid marker */
}
return dcb_entry;
}
static int
read_dcb_i2c_entry(struct drm_device *dev, int dcb_version, uint8_t *i2ctable, int index, struct dcb_i2c_entry *i2c)
{
uint8_t dcb_i2c_ver = dcb_version, headerlen = 0, entry_len = 4;
int i2c_entries = DCB_MAX_NUM_I2C_ENTRIES;
int recordoffset = 0, rdofs = 1, wrofs = 0;
uint8_t port_type = 0;
if (!i2ctable)
return -EINVAL;
if (dcb_version >= 0x30) {
if (i2ctable[0] != dcb_version) /* necessary? */
NV_WARN(dev,
"DCB I2C table version mismatch (%02X vs %02X)\n",
i2ctable[0], dcb_version);
dcb_i2c_ver = i2ctable[0];
headerlen = i2ctable[1];
if (i2ctable[2] <= DCB_MAX_NUM_I2C_ENTRIES)
i2c_entries = i2ctable[2];
else
NV_WARN(dev,
"DCB I2C table has more entries than indexable "
"(%d entries, max %d)\n", i2ctable[2],
DCB_MAX_NUM_I2C_ENTRIES);
entry_len = i2ctable[3];
/* [4] is i2c_default_indices, read in parse_dcb_table() */
}
/*
* It's your own fault if you call this function on a DCB 1.1 BIOS --
* the test below is for DCB 1.2
*/
if (dcb_version < 0x14) {
recordoffset = 2;
rdofs = 0;
wrofs = 1;
}
if (index == 0xf)
return 0;
if (index >= i2c_entries) {
NV_ERROR(dev, "DCB I2C index too big (%d >= %d)\n",
index, i2ctable[2]);
return -ENOENT;
}
if (i2ctable[headerlen + entry_len * index + 3] == 0xff) {
NV_ERROR(dev, "DCB I2C entry invalid\n");
return -EINVAL;
}
if (dcb_i2c_ver >= 0x30) {
port_type = i2ctable[headerlen + recordoffset + 3 + entry_len * index];
/*
* Fixup for chips using same address offset for read and
* write.
*/
if (port_type == 4) /* seen on C51 */
rdofs = wrofs = 1;
if (port_type >= 5) /* G80+ */
rdofs = wrofs = 0;
}
if (dcb_i2c_ver >= 0x40) {
if (port_type != 5 && port_type != 6)
NV_WARN(dev, "DCB I2C table has port type %d\n", port_type);
i2c->entry = ROM32(i2ctable[headerlen + recordoffset + entry_len * index]);
}
i2c->port_type = port_type;
i2c->read = i2ctable[headerlen + recordoffset + rdofs + entry_len * index];
i2c->write = i2ctable[headerlen + recordoffset + wrofs + entry_len * index];
return 0;
}
static struct nouveau_i2c_chan *
init_i2c_device_find(struct drm_device *dev, int i2c_index)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct dcb_table *dcb = &dev_priv->vbios.dcb;
if (i2c_index == 0xff) {
/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
int idx = dcb_entry_idx_from_crtchead(dev), shift = 0;
int default_indices = dcb->i2c_default_indices;
if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
shift = 4;
i2c_index = (default_indices >> shift) & 0xf;
}
if (i2c_index == 0x80) /* g80+ */
i2c_index = dcb->i2c_default_indices & 0xf;
else
if (i2c_index == 0x81)
i2c_index = (dcb->i2c_default_indices & 0xf0) >> 4;
if (i2c_index >= DCB_MAX_NUM_I2C_ENTRIES) {
NV_ERROR(dev, "invalid i2c_index 0x%x\n", i2c_index);
return NULL;
}
/* Make sure i2c table entry has been parsed, it may not
* have been if this is a bus not referenced by a DCB encoder
*/
read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
i2c_index, &dcb->i2c[i2c_index]);
return nouveau_i2c_find(dev, i2c_index);
}
static uint32_t
get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
{
/*
* For mlv < 0x80, it is an index into a table of TMDS base addresses.
* For mlv == 0x80 use the "or" value of the dcb_entry indexed by
* CR58 for CR57 = 0 to index a table of offsets to the basic
* 0x6808b0 address.
* For mlv == 0x81 use the "or" value of the dcb_entry indexed by
* CR58 for CR57 = 0 to index a table of offsets to the basic
* 0x6808b0 address, and then flip the offset by 8.
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
const int pramdac_offset[13] = {
0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
const uint32_t pramdac_table[4] = {
0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };
if (mlv >= 0x80) {
int dcb_entry, dacoffset;
/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
dcb_entry = dcb_entry_idx_from_crtchead(dev);
if (dcb_entry == 0x7f)
return 0;
dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
if (mlv == 0x81)
dacoffset ^= 8;
return 0x6808b0 + dacoffset;
} else {
if (mlv >= ARRAY_SIZE(pramdac_table)) {
NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
mlv);
return 0;
}
return pramdac_table[mlv];
}
}
static int
init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_IO_RESTRICT_PROG opcode: 0x32 ('2')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): CRTC port
* offset + 3 (8 bit): CRTC index
* offset + 4 (8 bit): mask
* offset + 5 (8 bit): shift
* offset + 6 (8 bit): count
* offset + 7 (32 bit): register
* offset + 11 (32 bit): configuration 1
* ...
*
* Starting at offset + 11 there are "count" 32 bit values.
* To find out which value to use read index "CRTC index" on "CRTC
* port", AND this value with "mask" and then bit shift right "shift"
* bits. Read the appropriate value using this index and write to
* "register"
*/
uint16_t crtcport = ROM16(bios->data[offset + 1]);
uint8_t crtcindex = bios->data[offset + 3];
uint8_t mask = bios->data[offset + 4];
uint8_t shift = bios->data[offset + 5];
uint8_t count = bios->data[offset + 6];
uint32_t reg = ROM32(bios->data[offset + 7]);
uint8_t config;
uint32_t configval;
int len = 11 + count * 4;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
"Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
offset, crtcport, crtcindex, mask, shift, count, reg);
config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
if (config > count) {
NV_ERROR(bios->dev,
"0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
offset, config, count);
return len;
}
configval = ROM32(bios->data[offset + 11 + config * 4]);
BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);
bios_wr32(bios, reg, configval);
return len;
}
static int
init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_REPEAT opcode: 0x33 ('3')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): count
*
* Execute script following this opcode up to INIT_REPEAT_END
* "count" times
*/
uint8_t count = bios->data[offset + 1];
uint8_t i;
/* no iexec->execute check by design */
BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
offset, count);
iexec->repeat = true;
/*
* count - 1, as the script block will execute once when we leave this
* opcode -- this is compatible with bios behaviour as:
* a) the block is always executed at least once, even if count == 0
* b) the bios interpreter skips to the op following INIT_END_REPEAT,
* while we don't
*/
for (i = 0; i < count - 1; i++)
parse_init_table(bios, offset + 2, iexec);
iexec->repeat = false;
return 2;
}
static int
init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_IO_RESTRICT_PLL opcode: 0x34 ('4')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): CRTC port
* offset + 3 (8 bit): CRTC index
* offset + 4 (8 bit): mask
* offset + 5 (8 bit): shift
* offset + 6 (8 bit): IO flag condition index
* offset + 7 (8 bit): count
* offset + 8 (32 bit): register
* offset + 12 (16 bit): frequency 1
* ...
*
* Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
* Set PLL register "register" to coefficients for frequency n,
* selected by reading index "CRTC index" of "CRTC port" ANDed with
* "mask" and shifted right by "shift".
*
* If "IO flag condition index" > 0, and condition met, double
* frequency before setting it.
*/
uint16_t crtcport = ROM16(bios->data[offset + 1]);
uint8_t crtcindex = bios->data[offset + 3];
uint8_t mask = bios->data[offset + 4];
uint8_t shift = bios->data[offset + 5];
int8_t io_flag_condition_idx = bios->data[offset + 6];
uint8_t count = bios->data[offset + 7];
uint32_t reg = ROM32(bios->data[offset + 8]);
uint8_t config;
uint16_t freq;
int len = 12 + count * 2;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
"Shift: 0x%02X, IO Flag Condition: 0x%02X, "
"Count: 0x%02X, Reg: 0x%08X\n",
offset, crtcport, crtcindex, mask, shift,
io_flag_condition_idx, count, reg);
config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
if (config > count) {
NV_ERROR(bios->dev,
"0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
offset, config, count);
return len;
}
freq = ROM16(bios->data[offset + 12 + config * 2]);
if (io_flag_condition_idx > 0) {
if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
"frequency doubled\n", offset);
freq *= 2;
} else
BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
"frequency unchanged\n", offset);
}
BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
offset, reg, config, freq);
setPLL(bios, reg, freq * 10);
return len;
}
static int
init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_END_REPEAT opcode: 0x36 ('6')
*
* offset (8 bit): opcode
*
* Marks the end of the block for INIT_REPEAT to repeat
*/
/* no iexec->execute check by design */
/*
* iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
* we're not in repeat mode
*/
if (iexec->repeat)
return 0;
return 1;
}
static int
init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_COPY opcode: 0x37 ('7')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): register
* offset + 5 (8 bit): shift
* offset + 6 (8 bit): srcmask
* offset + 7 (16 bit): CRTC port
* offset + 9 (8 bit): CRTC index
* offset + 10 (8 bit): mask
*
* Read index "CRTC index" on "CRTC port", AND with "mask", OR with
* (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
* port
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint8_t shift = bios->data[offset + 5];
uint8_t srcmask = bios->data[offset + 6];
uint16_t crtcport = ROM16(bios->data[offset + 7]);
uint8_t crtcindex = bios->data[offset + 9];
uint8_t mask = bios->data[offset + 10];
uint32_t data;
uint8_t crtcdata;
if (!iexec->execute)
return 11;
BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
"Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
offset, reg, shift, srcmask, crtcport, crtcindex, mask);
data = bios_rd32(bios, reg);
if (shift < 0x80)
data >>= shift;
else
data <<= (0x100 - shift);
data &= srcmask;
crtcdata = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
crtcdata |= (uint8_t)data;
bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);
return 11;
}
static int
init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_NOT opcode: 0x38 ('8')
*
* offset (8 bit): opcode
*
* Invert the current execute / no-execute condition (i.e. "else")
*/
if (iexec->execute)
BIOSLOG(bios, "0x%04X: ------ Skipping following commands ------\n", offset);
else
BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);
iexec->execute = !iexec->execute;
return 1;
}
static int
init_io_flag_condition(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_IO_FLAG_CONDITION opcode: 0x39 ('9')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): condition number
*
* Check condition "condition number" in the IO flag condition table.
* If condition not met skip subsequent opcodes until condition is
* inverted (INIT_NOT), or we hit INIT_RESUME
*/
uint8_t cond = bios->data[offset + 1];
if (!iexec->execute)
return 2;
if (io_flag_condition_met(bios, offset, cond))
BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
else {
BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
iexec->execute = false;
}
return 2;
}
static int
init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_DP_CONDITION opcode: 0x3A ('')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): "sub" opcode
* offset + 2 (8 bit): unknown
*
*/
struct dcb_entry *dcb = bios->display.output;
struct drm_device *dev = bios->dev;
uint8_t cond = bios->data[offset + 1];
uint8_t *table, *entry;
BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond);
if (!iexec->execute)
return 3;
table = nouveau_dp_bios_data(dev, dcb, &entry);
if (!table)
return 3;
switch (cond) {
case 0:
{
struct dcb_connector_table_entry *ent =
&bios->dcb.connector.entry[dcb->connector];
if (ent->type != DCB_CONNECTOR_eDP)
iexec->execute = false;
}
break;
case 1:
case 2:
if (!(entry[5] & cond))
iexec->execute = false;
break;
case 5:
{
struct nouveau_i2c_chan *auxch;
int ret;
auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index);
if (!auxch) {
NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset);
return 3;
}
ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1);
if (ret) {
NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret);
return 3;
}
if (!(cond & 1))
iexec->execute = false;
}
break;
default:
NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond);
break;
}
if (iexec->execute)
BIOSLOG(bios, "0x%04X: continuing to execute\n", offset);
else
BIOSLOG(bios, "0x%04X: skipping following commands\n", offset);
return 3;
}
static int
init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_3B opcode: 0x3B ('')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): crtc index
*
*/
uint8_t or = ffs(bios->display.output->or) - 1;
uint8_t index = bios->data[offset + 1];
uint8_t data;
if (!iexec->execute)
return 2;
data = bios_idxprt_rd(bios, 0x3d4, index);
bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or));
return 2;
}
static int
init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_3C opcode: 0x3C ('')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): crtc index
*
*/
uint8_t or = ffs(bios->display.output->or) - 1;
uint8_t index = bios->data[offset + 1];
uint8_t data;
if (!iexec->execute)
return 2;
data = bios_idxprt_rd(bios, 0x3d4, index);
bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or));
return 2;
}
static int
init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_INDEX_ADDRESS_LATCHED opcode: 0x49 ('I')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): control register
* offset + 5 (32 bit): data register
* offset + 9 (32 bit): mask
* offset + 13 (32 bit): data
* offset + 17 (8 bit): count
* offset + 18 (8 bit): address 1
* offset + 19 (8 bit): data 1
* ...
*
* For each of "count" address and data pairs, write "data n" to
* "data register", read the current value of "control register",
* and write it back once ANDed with "mask", ORed with "data",
* and ORed with "address n"
*/
uint32_t controlreg = ROM32(bios->data[offset + 1]);
uint32_t datareg = ROM32(bios->data[offset + 5]);
uint32_t mask = ROM32(bios->data[offset + 9]);
uint32_t data = ROM32(bios->data[offset + 13]);
uint8_t count = bios->data[offset + 17];
int len = 18 + count * 2;
uint32_t value;
int i;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
"Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
offset, controlreg, datareg, mask, data, count);
for (i = 0; i < count; i++) {
uint8_t instaddress = bios->data[offset + 18 + i * 2];
uint8_t instdata = bios->data[offset + 19 + i * 2];
BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
offset, instaddress, instdata);
bios_wr32(bios, datareg, instdata);
value = bios_rd32(bios, controlreg) & mask;
value |= data;
value |= instaddress;
bios_wr32(bios, controlreg, value);
}
return len;
}
static int
init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_IO_RESTRICT_PLL2 opcode: 0x4A ('J')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): CRTC port
* offset + 3 (8 bit): CRTC index
* offset + 4 (8 bit): mask
* offset + 5 (8 bit): shift
* offset + 6 (8 bit): count
* offset + 7 (32 bit): register
* offset + 11 (32 bit): frequency 1
* ...
*
* Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
* Set PLL register "register" to coefficients for frequency n,
* selected by reading index "CRTC index" of "CRTC port" ANDed with
* "mask" and shifted right by "shift".
*/
uint16_t crtcport = ROM16(bios->data[offset + 1]);
uint8_t crtcindex = bios->data[offset + 3];
uint8_t mask = bios->data[offset + 4];
uint8_t shift = bios->data[offset + 5];
uint8_t count = bios->data[offset + 6];
uint32_t reg = ROM32(bios->data[offset + 7]);
int len = 11 + count * 4;
uint8_t config;
uint32_t freq;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
"Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
offset, crtcport, crtcindex, mask, shift, count, reg);
if (!reg)
return len;
config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
if (config > count) {
NV_ERROR(bios->dev,
"0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
offset, config, count);
return len;
}
freq = ROM32(bios->data[offset + 11 + config * 4]);
BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
offset, reg, config, freq);
setPLL(bios, reg, freq);
return len;
}
static int
init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_PLL2 opcode: 0x4B ('K')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): register
* offset + 5 (32 bit): freq
*
* Set PLL register "register" to coefficients for frequency "freq"
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint32_t freq = ROM32(bios->data[offset + 5]);
if (!iexec->execute)
return 9;
BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
offset, reg, freq);
setPLL(bios, reg, freq);
return 9;
}
static int
init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_I2C_BYTE opcode: 0x4C ('L')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): DCB I2C table entry index
* offset + 2 (8 bit): I2C slave address
* offset + 3 (8 bit): count
* offset + 4 (8 bit): I2C register 1
* offset + 5 (8 bit): mask 1
* offset + 6 (8 bit): data 1
* ...
*
* For each of "count" registers given by "I2C register n" on the device
* addressed by "I2C slave address" on the I2C bus given by
* "DCB I2C table entry index", read the register, AND the result with
* "mask n" and OR it with "data n" before writing it back to the device
*/
struct drm_device *dev = bios->dev;
uint8_t i2c_index = bios->data[offset + 1];
uint8_t i2c_address = bios->data[offset + 2] >> 1;
uint8_t count = bios->data[offset + 3];
struct nouveau_i2c_chan *chan;
int len = 4 + count * 3;
int ret, i;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
"Count: 0x%02X\n",
offset, i2c_index, i2c_address, count);
chan = init_i2c_device_find(dev, i2c_index);
if (!chan) {
NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
return len;
}
for (i = 0; i < count; i++) {
uint8_t reg = bios->data[offset + 4 + i * 3];
uint8_t mask = bios->data[offset + 5 + i * 3];
uint8_t data = bios->data[offset + 6 + i * 3];
union i2c_smbus_data val;
ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
I2C_SMBUS_READ, reg,
I2C_SMBUS_BYTE_DATA, &val);
if (ret < 0) {
NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret);
return len;
}
BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
"Mask: 0x%02X, Data: 0x%02X\n",
offset, reg, val.byte, mask, data);
if (!bios->execute)
continue;
val.byte &= mask;
val.byte |= data;
ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
I2C_SMBUS_WRITE, reg,
I2C_SMBUS_BYTE_DATA, &val);
if (ret < 0) {
NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
return len;
}
}
return len;
}
static int
init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_ZM_I2C_BYTE opcode: 0x4D ('M')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): DCB I2C table entry index
* offset + 2 (8 bit): I2C slave address
* offset + 3 (8 bit): count
* offset + 4 (8 bit): I2C register 1
* offset + 5 (8 bit): data 1
* ...
*
* For each of "count" registers given by "I2C register n" on the device
* addressed by "I2C slave address" on the I2C bus given by
* "DCB I2C table entry index", set the register to "data n"
*/
struct drm_device *dev = bios->dev;
uint8_t i2c_index = bios->data[offset + 1];
uint8_t i2c_address = bios->data[offset + 2] >> 1;
uint8_t count = bios->data[offset + 3];
struct nouveau_i2c_chan *chan;
int len = 4 + count * 2;
int ret, i;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
"Count: 0x%02X\n",
offset, i2c_index, i2c_address, count);
chan = init_i2c_device_find(dev, i2c_index);
if (!chan) {
NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
return len;
}
for (i = 0; i < count; i++) {
uint8_t reg = bios->data[offset + 4 + i * 2];
union i2c_smbus_data val;
val.byte = bios->data[offset + 5 + i * 2];
BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
offset, reg, val.byte);
if (!bios->execute)
continue;
ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
I2C_SMBUS_WRITE, reg,
I2C_SMBUS_BYTE_DATA, &val);
if (ret < 0) {
NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
return len;
}
}
return len;
}
static int
init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_ZM_I2C opcode: 0x4E ('N')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): DCB I2C table entry index
* offset + 2 (8 bit): I2C slave address
* offset + 3 (8 bit): count
* offset + 4 (8 bit): data 1
* ...
*
* Send "count" bytes ("data n") to the device addressed by "I2C slave
* address" on the I2C bus given by "DCB I2C table entry index"
*/
struct drm_device *dev = bios->dev;
uint8_t i2c_index = bios->data[offset + 1];
uint8_t i2c_address = bios->data[offset + 2] >> 1;
uint8_t count = bios->data[offset + 3];
int len = 4 + count;
struct nouveau_i2c_chan *chan;
struct i2c_msg msg;
uint8_t data[256];
int ret, i;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
"Count: 0x%02X\n",
offset, i2c_index, i2c_address, count);
chan = init_i2c_device_find(dev, i2c_index);
if (!chan) {
NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
return len;
}
for (i = 0; i < count; i++) {
data[i] = bios->data[offset + 4 + i];
BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
}
if (bios->execute) {
msg.addr = i2c_address;
msg.flags = 0;
msg.len = count;
msg.buf = data;
ret = i2c_transfer(&chan->adapter, &msg, 1);
if (ret != 1) {
NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
return len;
}
}
return len;
}
static int
init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_TMDS opcode: 0x4F ('O') (non-canon name)
*
* offset (8 bit): opcode
* offset + 1 (8 bit): magic lookup value
* offset + 2 (8 bit): TMDS address
* offset + 3 (8 bit): mask
* offset + 4 (8 bit): data
*
* Read the data reg for TMDS address "TMDS address", AND it with mask
* and OR it with data, then write it back
* "magic lookup value" determines which TMDS base address register is
* used -- see get_tmds_index_reg()
*/
struct drm_device *dev = bios->dev;
uint8_t mlv = bios->data[offset + 1];
uint32_t tmdsaddr = bios->data[offset + 2];
uint8_t mask = bios->data[offset + 3];
uint8_t data = bios->data[offset + 4];
uint32_t reg, value;
if (!iexec->execute)
return 5;
BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
"Mask: 0x%02X, Data: 0x%02X\n",
offset, mlv, tmdsaddr, mask, data);
reg = get_tmds_index_reg(bios->dev, mlv);
if (!reg) {
NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
return 5;
}
bios_wr32(bios, reg,
tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
value = (bios_rd32(bios, reg + 4) & mask) | data;
bios_wr32(bios, reg + 4, value);
bios_wr32(bios, reg, tmdsaddr);
return 5;
}
static int
init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_ZM_TMDS_GROUP opcode: 0x50 ('P') (non-canon name)
*
* offset (8 bit): opcode
* offset + 1 (8 bit): magic lookup value
* offset + 2 (8 bit): count
* offset + 3 (8 bit): addr 1
* offset + 4 (8 bit): data 1
* ...
*
* For each of "count" TMDS address and data pairs write "data n" to
* "addr n". "magic lookup value" determines which TMDS base address
* register is used -- see get_tmds_index_reg()
*/
struct drm_device *dev = bios->dev;
uint8_t mlv = bios->data[offset + 1];
uint8_t count = bios->data[offset + 2];
int len = 3 + count * 2;
uint32_t reg;
int i;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
offset, mlv, count);
reg = get_tmds_index_reg(bios->dev, mlv);
if (!reg) {
NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
return len;
}
for (i = 0; i < count; i++) {
uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
uint8_t tmdsdata = bios->data[offset + 4 + i * 2];
bios_wr32(bios, reg + 4, tmdsdata);
bios_wr32(bios, reg, tmdsaddr);
}
return len;
}
static int
init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_CR_INDEX_ADDRESS_LATCHED opcode: 0x51 ('Q')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): CRTC index1
* offset + 2 (8 bit): CRTC index2
* offset + 3 (8 bit): baseaddr
* offset + 4 (8 bit): count
* offset + 5 (8 bit): data 1
* ...
*
* For each of "count" address and data pairs, write "baseaddr + n" to
* "CRTC index1" and "data n" to "CRTC index2"
* Once complete, restore initial value read from "CRTC index1"
*/
uint8_t crtcindex1 = bios->data[offset + 1];
uint8_t crtcindex2 = bios->data[offset + 2];
uint8_t baseaddr = bios->data[offset + 3];
uint8_t count = bios->data[offset + 4];
int len = 5 + count;
uint8_t oldaddr, data;
int i;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
"BaseAddr: 0x%02X, Count: 0x%02X\n",
offset, crtcindex1, crtcindex2, baseaddr, count);
oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);
for (i = 0; i < count; i++) {
bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
baseaddr + i);
data = bios->data[offset + 5 + i];
bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
}
bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);
return len;
}
static int
init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_CR opcode: 0x52 ('R')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): CRTC index
* offset + 2 (8 bit): mask
* offset + 3 (8 bit): data
*
* Assign the value of at "CRTC index" ANDed with mask and ORed with
* data back to "CRTC index"
*/
uint8_t crtcindex = bios->data[offset + 1];
uint8_t mask = bios->data[offset + 2];
uint8_t data = bios->data[offset + 3];
uint8_t value;
if (!iexec->execute)
return 4;
BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
offset, crtcindex, mask, data);
value = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
value |= data;
bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);
return 4;
}
static int
init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_ZM_CR opcode: 0x53 ('S')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): CRTC index
* offset + 2 (8 bit): value
*
* Assign "value" to CRTC register with index "CRTC index".
*/
uint8_t crtcindex = ROM32(bios->data[offset + 1]);
uint8_t data = bios->data[offset + 2];
if (!iexec->execute)
return 3;
bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);
return 3;
}
static int
init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_ZM_CR_GROUP opcode: 0x54 ('T')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): count
* offset + 2 (8 bit): CRTC index 1
* offset + 3 (8 bit): value 1
* ...
*
* For "count", assign "value n" to CRTC register with index
* "CRTC index n".
*/
uint8_t count = bios->data[offset + 1];
int len = 2 + count * 2;
int i;
if (!iexec->execute)
return len;
for (i = 0; i < count; i++)
init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);
return len;
}
static int
init_condition_time(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_CONDITION_TIME opcode: 0x56 ('V')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): condition number
* offset + 2 (8 bit): retries / 50
*
* Check condition "condition number" in the condition table.
* Bios code then sleeps for 2ms if the condition is not met, and
* repeats up to "retries" times, but on one C51 this has proved
* insufficient. In mmiotraces the driver sleeps for 20ms, so we do
* this, and bail after "retries" times, or 2s, whichever is less.
* If still not met after retries, clear execution flag for this table.
*/
uint8_t cond = bios->data[offset + 1];
uint16_t retries = bios->data[offset + 2] * 50;
unsigned cnt;
if (!iexec->execute)
return 3;
if (retries > 100)
retries = 100;
BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
offset, cond, retries);
if (!bios->execute) /* avoid 2s delays when "faking" execution */
retries = 1;
for (cnt = 0; cnt < retries; cnt++) {
if (bios_condition_met(bios, offset, cond)) {
BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
offset);
break;
} else {
BIOSLOG(bios, "0x%04X: "
"Condition not met, sleeping for 20ms\n",
offset);
mdelay(20);
}
}
if (!bios_condition_met(bios, offset, cond)) {
NV_WARN(bios->dev,
"0x%04X: Condition still not met after %dms, "
"skipping following opcodes\n", offset, 20 * retries);
iexec->execute = false;
}
return 3;
}
static int
init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_LTIME opcode: 0x57 ('V')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): time
*
* Sleep for "time" milliseconds.
*/
unsigned time = ROM16(bios->data[offset + 1]);
if (!iexec->execute)
return 3;
BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n",
offset, time);
mdelay(time);
return 3;
}
static int
init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_ZM_REG_SEQUENCE opcode: 0x58 ('X')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): base register
* offset + 5 (8 bit): count
* offset + 6 (32 bit): value 1
* ...
*
* Starting at offset + 6 there are "count" 32 bit values.
* For "count" iterations set "base register" + 4 * current_iteration
* to "value current_iteration"
*/
uint32_t basereg = ROM32(bios->data[offset + 1]);
uint32_t count = bios->data[offset + 5];
int len = 6 + count * 4;
int i;
if (!iexec->execute)
return len;
BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
offset, basereg, count);
for (i = 0; i < count; i++) {
uint32_t reg = basereg + i * 4;
uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);
bios_wr32(bios, reg, data);
}
return len;
}
static int
init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_SUB_DIRECT opcode: 0x5B ('[')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): subroutine offset (in bios)
*
* Calls a subroutine that will execute commands until INIT_DONE
* is found.
*/
uint16_t sub_offset = ROM16(bios->data[offset + 1]);
if (!iexec->execute)
return 3;
BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
offset, sub_offset);
parse_init_table(bios, sub_offset, iexec);
BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);
return 3;
}
static int
init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_JUMP opcode: 0x5C ('\')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): offset (in bios)
*
* Continue execution of init table from 'offset'
*/
uint16_t jmp_offset = ROM16(bios->data[offset + 1]);
if (!iexec->execute)
return 3;
BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset);
return jmp_offset - offset;
}
static int
init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_I2C_IF opcode: 0x5E ('^')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): DCB I2C table entry index
* offset + 2 (8 bit): I2C slave address
* offset + 3 (8 bit): I2C register
* offset + 4 (8 bit): mask
* offset + 5 (8 bit): data
*
* Read the register given by "I2C register" on the device addressed
* by "I2C slave address" on the I2C bus given by "DCB I2C table
* entry index". Compare the result AND "mask" to "data".
* If they're not equal, skip subsequent opcodes until condition is
* inverted (INIT_NOT), or we hit INIT_RESUME
*/
uint8_t i2c_index = bios->data[offset + 1];
uint8_t i2c_address = bios->data[offset + 2] >> 1;
uint8_t reg = bios->data[offset + 3];
uint8_t mask = bios->data[offset + 4];
uint8_t data = bios->data[offset + 5];
struct nouveau_i2c_chan *chan;
union i2c_smbus_data val;
int ret;
/* no execute check by design */
BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
offset, i2c_index, i2c_address);
chan = init_i2c_device_find(bios->dev, i2c_index);
if (!chan)
return -ENODEV;
ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
I2C_SMBUS_READ, reg,
I2C_SMBUS_BYTE_DATA, &val);
if (ret < 0) {
BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], "
"Mask: 0x%02X, Data: 0x%02X\n",
offset, reg, mask, data);
iexec->execute = 0;
return 6;
}
BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
"Mask: 0x%02X, Data: 0x%02X\n",
offset, reg, val.byte, mask, data);
iexec->execute = ((val.byte & mask) == data);
return 6;
}
static int
init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_COPY_NV_REG opcode: 0x5F ('_')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): src reg
* offset + 5 (8 bit): shift
* offset + 6 (32 bit): src mask
* offset + 10 (32 bit): xor
* offset + 14 (32 bit): dst reg
* offset + 18 (32 bit): dst mask
*
* Shift REGVAL("src reg") right by (signed) "shift", AND result with
* "src mask", then XOR with "xor". Write this OR'd with
* (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
*/
uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
uint8_t shift = bios->data[offset + 5];
uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
uint32_t srcvalue, dstvalue;
if (!iexec->execute)
return 22;
BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
"Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
offset, srcreg, shift, srcmask, xor, dstreg, dstmask);
srcvalue = bios_rd32(bios, srcreg);
if (shift < 0x80)
srcvalue >>= shift;
else
srcvalue <<= (0x100 - shift);
srcvalue = (srcvalue & srcmask) ^ xor;
dstvalue = bios_rd32(bios, dstreg) & dstmask;
bios_wr32(bios, dstreg, dstvalue | srcvalue);
return 22;
}
static int
init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_ZM_INDEX_IO opcode: 0x62 ('b')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): CRTC port
* offset + 3 (8 bit): CRTC index
* offset + 4 (8 bit): data
*
* Write "data" to index "CRTC index" of "CRTC port"
*/
uint16_t crtcport = ROM16(bios->data[offset + 1]);
uint8_t crtcindex = bios->data[offset + 3];
uint8_t data = bios->data[offset + 4];
if (!iexec->execute)
return 5;
bios_idxprt_wr(bios, crtcport, crtcindex, data);
return 5;
}
static inline void
bios_md32(struct nvbios *bios, uint32_t reg,
uint32_t mask, uint32_t val)
{
bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val);
}
static uint32_t
peek_fb(struct drm_device *dev, struct io_mapping *fb,
uint32_t off)
{
uint32_t val = 0;
if (off < pci_resource_len(dev->pdev, 1)) {
uint8_t __iomem *p =
io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
val = ioread32(p + (off & ~PAGE_MASK));
io_mapping_unmap_atomic(p);
}
return val;
}
static void
poke_fb(struct drm_device *dev, struct io_mapping *fb,
uint32_t off, uint32_t val)
{
if (off < pci_resource_len(dev->pdev, 1)) {
uint8_t __iomem *p =
io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
iowrite32(val, p + (off & ~PAGE_MASK));
wmb();
io_mapping_unmap_atomic(p);
}
}
static inline bool
read_back_fb(struct drm_device *dev, struct io_mapping *fb,
uint32_t off, uint32_t val)
{
poke_fb(dev, fb, off, val);
return val == peek_fb(dev, fb, off);
}
static int
nv04_init_compute_mem(struct nvbios *bios)
{
struct drm_device *dev = bios->dev;
uint32_t patt = 0xdeadbeef;
struct io_mapping *fb;
int i;
/* Map the framebuffer aperture */
fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
pci_resource_len(dev->pdev, 1));
if (!fb)
return -ENOMEM;
/* Sequencer and refresh off */
NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF);
bios_md32(bios, NV04_PFB_BOOT_0, ~0,
NV04_PFB_BOOT_0_RAM_AMOUNT_16MB |
NV04_PFB_BOOT_0_RAM_WIDTH_128 |
NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT);
for (i = 0; i < 4; i++)
poke_fb(dev, fb, 4 * i, patt);
poke_fb(dev, fb, 0x400000, patt + 1);
if (peek_fb(dev, fb, 0) == patt + 1) {
bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT);
bios_md32(bios, NV04_PFB_DEBUG_0,
NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
for (i = 0; i < 4; i++)
poke_fb(dev, fb, 4 * i, patt);
if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff))
bios_md32(bios, NV04_PFB_BOOT_0,
NV04_PFB_BOOT_0_RAM_WIDTH_128 |
NV04_PFB_BOOT_0_RAM_AMOUNT,
NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
} else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) !=
(patt & 0xffff0000)) {
bios_md32(bios, NV04_PFB_BOOT_0,
NV04_PFB_BOOT_0_RAM_WIDTH_128 |
NV04_PFB_BOOT_0_RAM_AMOUNT,
NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
} else if (peek_fb(dev, fb, 0) != patt) {
if (read_back_fb(dev, fb, 0x800000, patt))
bios_md32(bios, NV04_PFB_BOOT_0,
NV04_PFB_BOOT_0_RAM_AMOUNT,
NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
else
bios_md32(bios, NV04_PFB_BOOT_0,
NV04_PFB_BOOT_0_RAM_AMOUNT,
NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT);
} else if (!read_back_fb(dev, fb, 0x800000, patt)) {
bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
}
/* Refresh on, sequencer on */
bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
io_mapping_free(fb);
return 0;
}
static const uint8_t *
nv05_memory_config(struct nvbios *bios)
{
/* Defaults for BIOSes lacking a memory config table */
static const uint8_t default_config_tab[][2] = {
{ 0x24, 0x00 },
{ 0x28, 0x00 },
{ 0x24, 0x01 },
{ 0x1f, 0x00 },
{ 0x0f, 0x00 },
{ 0x17, 0x00 },
{ 0x06, 0x00 },
{ 0x00, 0x00 }
};
int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) &
NV_PEXTDEV_BOOT_0_RAMCFG) >> 2;
if (bios->legacy.mem_init_tbl_ptr)
return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i];
else
return default_config_tab[i];
}
static int
nv05_init_compute_mem(struct nvbios *bios)
{
struct drm_device *dev = bios->dev;
const uint8_t *ramcfg = nv05_memory_config(bios);
uint32_t patt = 0xdeadbeef;
struct io_mapping *fb;
int i, v;
/* Map the framebuffer aperture */
fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
pci_resource_len(dev->pdev, 1));
if (!fb)
return -ENOMEM;
/* Sequencer off */
NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE)
goto out;
bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
/* If present load the hardcoded scrambling table */
if (bios->legacy.mem_init_tbl_ptr) {
uint32_t *scramble_tab = (uint32_t *)&bios->data[
bios->legacy.mem_init_tbl_ptr + 0x10];
for (i = 0; i < 8; i++)
bios_wr32(bios, NV04_PFB_SCRAMBLE(i),
ROM32(scramble_tab[i]));
}
/* Set memory type/width/length defaults depending on the straps */
bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]);
if (ramcfg[1] & 0x80)
bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE);
bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20);
bios_md32(bios, NV04_PFB_CFG1, 0, 1);
/* Probe memory bus width */
for (i = 0; i < 4; i++)
poke_fb(dev, fb, 4 * i, patt);
if (peek_fb(dev, fb, 0xc) != patt)
bios_md32(bios, NV04_PFB_BOOT_0,
NV04_PFB_BOOT_0_RAM_WIDTH_128, 0);
/* Probe memory length */
v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT;
if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB &&
(!read_back_fb(dev, fb, 0x1000000, ++patt) ||
!read_back_fb(dev, fb, 0, ++patt)))
bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
NV04_PFB_BOOT_0_RAM_AMOUNT_16MB);
if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB &&
!read_back_fb(dev, fb, 0x800000, ++patt))
bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
if (!read_back_fb(dev, fb, 0x400000, ++patt))
bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
out:
/* Sequencer on */
NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
io_mapping_free(fb);
return 0;
}
static int
nv10_init_compute_mem(struct nvbios *bios)
{
struct drm_device *dev = bios->dev;
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
const int mem_width[] = { 0x10, 0x00, 0x20 };
const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2);
uint32_t patt = 0xdeadbeef;
struct io_mapping *fb;
int i, j, k;
/* Map the framebuffer aperture */
fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
pci_resource_len(dev->pdev, 1));
if (!fb)
return -ENOMEM;
bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
/* Probe memory bus width */
for (i = 0; i < mem_width_count; i++) {
bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]);
for (j = 0; j < 4; j++) {
for (k = 0; k < 4; k++)
poke_fb(dev, fb, 0x1c, 0);
poke_fb(dev, fb, 0x1c, patt);
poke_fb(dev, fb, 0x3c, 0);
if (peek_fb(dev, fb, 0x1c) == patt)
goto mem_width_found;
}
}
mem_width_found:
patt <<= 1;
/* Probe amount of installed memory */
for (i = 0; i < 4; i++) {
int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000;
poke_fb(dev, fb, off, patt);
poke_fb(dev, fb, 0, 0);
peek_fb(dev, fb, 0);
peek_fb(dev, fb, 0);
peek_fb(dev, fb, 0);
peek_fb(dev, fb, 0);
if (peek_fb(dev, fb, off) == patt)
goto amount_found;
}
/* IC missing - disable the upper half memory space. */
bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0);
amount_found:
io_mapping_free(fb);
return 0;
}
static int
nv20_init_compute_mem(struct nvbios *bios)
{
struct drm_device *dev = bios->dev;
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900);
uint32_t amount, off;
struct io_mapping *fb;
/* Map the framebuffer aperture */
fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
pci_resource_len(dev->pdev, 1));
if (!fb)
return -ENOMEM;
bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
/* Allow full addressing */
bios_md32(bios, NV04_PFB_CFG0, 0, mask);
amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
for (off = amount; off > 0x2000000; off -= 0x2000000)
poke_fb(dev, fb, off - 4, off);
amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
if (amount != peek_fb(dev, fb, amount - 4))
/* IC missing - disable the upper half memory space. */
bios_md32(bios, NV04_PFB_CFG0, mask, 0);
io_mapping_free(fb);
return 0;
}
static int
init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_COMPUTE_MEM opcode: 0x63 ('c')
*
* offset (8 bit): opcode
*
* This opcode is meant to set the PFB memory config registers
* appropriately so that we can correctly calculate how much VRAM it
* has (on nv10 and better chipsets the amount of installed VRAM is
* subsequently reported in NV_PFB_CSTATUS (0x10020C)).
*
* The implementation of this opcode in general consists of several
* parts:
*
* 1) Determination of memory type and density. Only necessary for
* really old chipsets, the memory type reported by the strap bits
* (0x101000) is assumed to be accurate on nv05 and newer.
*
* 2) Determination of the memory bus width. Usually done by a cunning
* combination of writes to offsets 0x1c and 0x3c in the fb, and
* seeing whether the written values are read back correctly.
*
* Only necessary on nv0x-nv1x and nv34, on the other cards we can
* trust the straps.
*
* 3) Determination of how many of the card's RAM pads have ICs
* attached, usually done by a cunning combination of writes to an
* offset slightly less than the maximum memory reported by
* NV_PFB_CSTATUS, then seeing if the test pattern can be read back.
*
* This appears to be a NOP on IGPs and NV4x or newer chipsets, both io
* logs of the VBIOS and kmmio traces of the binary driver POSTing the
* card show nothing being done for this opcode. Why is it still listed
* in the table?!
*/
/* no iexec->execute check by design */
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
int ret;
if (dev_priv->chipset >= 0x40 ||
dev_priv->chipset == 0x1a ||
dev_priv->chipset == 0x1f)
ret = 0;
else if (dev_priv->chipset >= 0x20 &&
dev_priv->chipset != 0x34)
ret = nv20_init_compute_mem(bios);
else if (dev_priv->chipset >= 0x10)
ret = nv10_init_compute_mem(bios);
else if (dev_priv->chipset >= 0x5)
ret = nv05_init_compute_mem(bios);
else
ret = nv04_init_compute_mem(bios);
if (ret)
return ret;
return 1;
}
static int
init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_RESET opcode: 0x65 ('e')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): register
* offset + 5 (32 bit): value1
* offset + 9 (32 bit): value2
*
* Assign "value1" to "register", then assign "value2" to "register"
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint32_t value1 = ROM32(bios->data[offset + 5]);
uint32_t value2 = ROM32(bios->data[offset + 9]);
uint32_t pci_nv_19, pci_nv_20;
/* no iexec->execute check by design */
pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00);
bios_wr32(bios, reg, value1);
udelay(10);
bios_wr32(bios, reg, value2);
bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);
pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED; /* 0xfffffffe */
bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);
return 13;
}
static int
init_configure_mem(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_CONFIGURE_MEM opcode: 0x66 ('f')
*
* offset (8 bit): opcode
*
* Equivalent to INIT_DONE on bios version 3 or greater.
* For early bios versions, sets up the memory registers, using values
* taken from the memory init table
*/
/* no iexec->execute check by design */
uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
uint32_t reg, data;
if (bios->major_version > 2)
return 0;
bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);
if (bios->data[meminitoffs] & 1)
seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;
for (reg = ROM32(bios->data[seqtbloffs]);
reg != 0xffffffff;
reg = ROM32(bios->data[seqtbloffs += 4])) {
switch (reg) {
case NV04_PFB_PRE:
data = NV04_PFB_PRE_CMD_PRECHARGE;
break;
case NV04_PFB_PAD:
data = NV04_PFB_PAD_CKE_NORMAL;
break;
case NV04_PFB_REF:
data = NV04_PFB_REF_CMD_REFRESH;
break;
default:
data = ROM32(bios->data[meminitdata]);
meminitdata += 4;
if (data == 0xffffffff)
continue;
}
bios_wr32(bios, reg, data);
}
return 1;
}
static int
init_configure_clk(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_CONFIGURE_CLK opcode: 0x67 ('g')
*
* offset (8 bit): opcode
*
* Equivalent to INIT_DONE on bios version 3 or greater.
* For early bios versions, sets up the NVClk and MClk PLLs, using
* values taken from the memory init table
*/
/* no iexec->execute check by design */
uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
int clock;
if (bios->major_version > 2)
return 0;
clock = ROM16(bios->data[meminitoffs + 4]) * 10;
setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);
clock = ROM16(bios->data[meminitoffs + 2]) * 10;
if (bios->data[meminitoffs] & 1) /* DDR */
clock *= 2;
setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);
return 1;
}
static int
init_configure_preinit(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_CONFIGURE_PREINIT opcode: 0x68 ('h')
*
* offset (8 bit): opcode
*
* Equivalent to INIT_DONE on bios version 3 or greater.
* For early bios versions, does early init, loading ram and crystal
* configuration from straps into CR3C
*/
/* no iexec->execute check by design */
uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6;
if (bios->major_version > 2)
return 0;
bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
NV_CIO_CRE_SCRATCH4__INDEX, cr3c);
return 1;
}
static int
init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_IO opcode: 0x69 ('i')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): CRTC port
* offset + 3 (8 bit): mask
* offset + 4 (8 bit): data
*
* Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
*/
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
uint16_t crtcport = ROM16(bios->data[offset + 1]);
uint8_t mask = bios->data[offset + 3];
uint8_t data = bios->data[offset + 4];
if (!iexec->execute)
return 5;
BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
offset, crtcport, mask, data);
/*
* I have no idea what this does, but NVIDIA do this magic sequence
* in the places where this INIT_IO happens..
*/
if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
int i;
bios_wr32(bios, 0x614100, (bios_rd32(
bios, 0x614100) & 0x0fffffff) | 0x00800000);
bios_wr32(bios, 0x00e18c, bios_rd32(
bios, 0x00e18c) | 0x00020000);
bios_wr32(bios, 0x614900, (bios_rd32(
bios, 0x614900) & 0x0fffffff) | 0x00800000);
bios_wr32(bios, 0x000200, bios_rd32(
bios, 0x000200) & ~0x40000000);
mdelay(10);
bios_wr32(bios, 0x00e18c, bios_rd32(
bios, 0x00e18c) & ~0x00020000);
bios_wr32(bios, 0x000200, bios_rd32(
bios, 0x000200) | 0x40000000);
bios_wr32(bios, 0x614100, 0x00800018);
bios_wr32(bios, 0x614900, 0x00800018);
mdelay(10);
bios_wr32(bios, 0x614100, 0x10000018);
bios_wr32(bios, 0x614900, 0x10000018);
for (i = 0; i < 3; i++)
bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);
for (i = 0; i < 2; i++)
bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
bios, 0x614300 + (i*0x800)) & 0xfffff0f0);
for (i = 0; i < 3; i++)
bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
bios, 0x614380 + (i*0x800)) & 0xfffff0f0);
for (i = 0; i < 2; i++)
bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
bios, 0x614200 + (i*0x800)) & 0xfffffff0);
for (i = 0; i < 2; i++)
bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
bios, 0x614108 + (i*0x800)) & 0x0fffffff);
return 5;
}
bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
data);
return 5;
}
static int
init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_SUB opcode: 0x6B ('k')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): script number
*
* Execute script number "script number", as a subroutine
*/
uint8_t sub = bios->data[offset + 1];
if (!iexec->execute)
return 2;
BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);
parse_init_table(bios,
ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
iexec);
BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);
return 2;
}
static int
init_ram_condition(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_RAM_CONDITION opcode: 0x6D ('m')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): mask
* offset + 2 (8 bit): cmpval
*
* Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval".
* If condition not met skip subsequent opcodes until condition is
* inverted (INIT_NOT), or we hit INIT_RESUME
*/
uint8_t mask = bios->data[offset + 1];
uint8_t cmpval = bios->data[offset + 2];
uint8_t data;
if (!iexec->execute)
return 3;
data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask;
BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
offset, data, cmpval);
if (data == cmpval)
BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
else {
BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
iexec->execute = false;
}
return 3;
}
static int
init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_NV_REG opcode: 0x6E ('n')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): register
* offset + 5 (32 bit): mask
* offset + 9 (32 bit): data
*
* Assign ((REGVAL("register") & "mask") | "data") to "register"
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint32_t mask = ROM32(bios->data[offset + 5]);
uint32_t data = ROM32(bios->data[offset + 9]);
if (!iexec->execute)
return 13;
BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
offset, reg, mask, data);
bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);
return 13;
}
static int
init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_MACRO opcode: 0x6F ('o')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): macro number
*
* Look up macro index "macro number" in the macro index table.
* The macro index table entry has 1 byte for the index in the macro
* table, and 1 byte for the number of times to repeat the macro.
* The macro table entry has 4 bytes for the register address and
* 4 bytes for the value to write to that register
*/
uint8_t macro_index_tbl_idx = bios->data[offset + 1];
uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
uint8_t macro_tbl_idx = bios->data[tmp];
uint8_t count = bios->data[tmp + 1];
uint32_t reg, data;
int i;
if (!iexec->execute)
return 2;
BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
"Count: 0x%02X\n",
offset, macro_index_tbl_idx, macro_tbl_idx, count);
for (i = 0; i < count; i++) {
uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;
reg = ROM32(bios->data[macroentryptr]);
data = ROM32(bios->data[macroentryptr + 4]);
bios_wr32(bios, reg, data);
}
return 2;
}
static int
init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_DONE opcode: 0x71 ('q')
*
* offset (8 bit): opcode
*
* End the current script
*/
/* mild retval abuse to stop parsing this table */
return 0;
}
static int
init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_RESUME opcode: 0x72 ('r')
*
* offset (8 bit): opcode
*
* End the current execute / no-execute condition
*/
if (iexec->execute)
return 1;
iexec->execute = true;
BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);
return 1;
}
static int
init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_TIME opcode: 0x74 ('t')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): time
*
* Sleep for "time" microseconds.
*/
unsigned time = ROM16(bios->data[offset + 1]);
if (!iexec->execute)
return 3;
BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
offset, time);
if (time < 1000)
udelay(time);
else
mdelay((time + 900) / 1000);
return 3;
}
static int
init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_CONDITION opcode: 0x75 ('u')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): condition number
*
* Check condition "condition number" in the condition table.
* If condition not met skip subsequent opcodes until condition is
* inverted (INIT_NOT), or we hit INIT_RESUME
*/
uint8_t cond = bios->data[offset + 1];
if (!iexec->execute)
return 2;
BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);
if (bios_condition_met(bios, offset, cond))
BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
else {
BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
iexec->execute = false;
}
return 2;
}
static int
init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_IO_CONDITION opcode: 0x76
*
* offset (8 bit): opcode
* offset + 1 (8 bit): condition number
*
* Check condition "condition number" in the io condition table.
* If condition not met skip subsequent opcodes until condition is
* inverted (INIT_NOT), or we hit INIT_RESUME
*/
uint8_t cond = bios->data[offset + 1];
if (!iexec->execute)
return 2;
BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);
if (io_condition_met(bios, offset, cond))
BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
else {
BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
iexec->execute = false;
}
return 2;
}
static int
init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_INDEX_IO opcode: 0x78 ('x')
*
* offset (8 bit): opcode
* offset + 1 (16 bit): CRTC port
* offset + 3 (8 bit): CRTC index
* offset + 4 (8 bit): mask
* offset + 5 (8 bit): data
*
* Read value at index "CRTC index" on "CRTC port", AND with "mask",
* OR with "data", write-back
*/
uint16_t crtcport = ROM16(bios->data[offset + 1]);
uint8_t crtcindex = bios->data[offset + 3];
uint8_t mask = bios->data[offset + 4];
uint8_t data = bios->data[offset + 5];
uint8_t value;
if (!iexec->execute)
return 6;
BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
"Data: 0x%02X\n",
offset, crtcport, crtcindex, mask, data);
value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
bios_idxprt_wr(bios, crtcport, crtcindex, value);
return 6;
}
static int
init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_PLL opcode: 0x79 ('y')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): register
* offset + 5 (16 bit): freq
*
* Set PLL register "register" to coefficients for frequency (10kHz)
* "freq"
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint16_t freq = ROM16(bios->data[offset + 5]);
if (!iexec->execute)
return 7;
BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);
setPLL(bios, reg, freq * 10);
return 7;
}
static int
init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_ZM_REG opcode: 0x7A ('z')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): register
* offset + 5 (32 bit): value
*
* Assign "value" to "register"
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint32_t value = ROM32(bios->data[offset + 5]);
if (!iexec->execute)
return 9;
if (reg == 0x000200)
value |= 1;
bios_wr32(bios, reg, value);
return 9;
}
static int
init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_RAM_RESTRICT_PLL opcode: 0x87 ('')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): PLL type
* offset + 2 (32 bit): frequency 0
*
* Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
* ram_restrict_table_ptr. The value read from there is used to select
* a frequency from the table starting at 'frequency 0' to be
* programmed into the PLL corresponding to 'type'.
*
* The PLL limits table on cards using this opcode has a mapping of
* 'type' to the relevant registers.
*/
struct drm_device *dev = bios->dev;
uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
uint8_t type = bios->data[offset + 1];
uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
int len = 2 + bios->ram_restrict_group_count * 4;
int i;
if (!iexec->execute)
return len;
if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
NV_ERROR(dev, "PLL limits table not version 3.x\n");
return len; /* deliberate, allow default clocks to remain */
}
entry = pll_limits + pll_limits[1];
for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
if (entry[0] == type) {
uint32_t reg = ROM32(entry[3]);
BIOSLOG(bios, "0x%04X: "
"Type %02x Reg 0x%08x Freq %dKHz\n",
offset, type, reg, freq);
setPLL(bios, reg, freq);
return len;
}
}
NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
return len;
}
static int
init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_8C opcode: 0x8C ('')
*
* NOP so far....
*
*/
return 1;
}
static int
init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_8D opcode: 0x8D ('')
*
* NOP so far....
*
*/
return 1;
}
static void
init_gpio_unknv50(struct nvbios *bios, struct dcb_gpio_entry *gpio)
{
const uint32_t nv50_gpio_ctl[2] = { 0xe100, 0xe28c };
u32 r, s, v;
/* Not a clue, needs de-magicing */
r = nv50_gpio_ctl[gpio->line >> 4];
s = (gpio->line & 0x0f);
v = bios_rd32(bios, r) & ~(0x00010001 << s);
switch ((gpio->entry & 0x06000000) >> 25) {
case 1:
v |= (0x00000001 << s);
break;
case 2:
v |= (0x00010000 << s);
break;
default:
break;
}
bios_wr32(bios, r, v);
}
static void
init_gpio_unknvd0(struct nvbios *bios, struct dcb_gpio_entry *gpio)
{
u32 v, i;
v = bios_rd32(bios, 0x00d610 + (gpio->line * 4));
v &= 0xffffff00;
v |= (gpio->entry & 0x00ff0000) >> 16;
bios_wr32(bios, 0x00d610 + (gpio->line * 4), v);
i = (gpio->entry & 0x1f000000) >> 24;
if (i) {
v = bios_rd32(bios, 0x00d640 + ((i - 1) * 4));
v &= 0xffffff00;
v |= gpio->line;
bios_wr32(bios, 0x00d640 + ((i - 1) * 4), v);
}
}
static int
init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_GPIO opcode: 0x8E ('')
*
* offset (8 bit): opcode
*
* Loop over all entries in the DCB GPIO table, and initialise
* each GPIO according to various values listed in each entry
*/
struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio;
int i;
if (dev_priv->card_type < NV_50) {
NV_ERROR(bios->dev, "INIT_GPIO on unsupported chipset\n");
return 1;
}
if (!iexec->execute)
return 1;
for (i = 0; i < bios->dcb.gpio.entries; i++) {
struct dcb_gpio_entry *gpio = &bios->dcb.gpio.entry[i];
BIOSLOG(bios, "0x%04X: Entry: 0x%08X\n", offset, gpio->entry);
BIOSLOG(bios, "0x%04X: set gpio 0x%02x, state %d\n",
offset, gpio->tag, gpio->state_default);
if (!bios->execute)
continue;
pgpio->set(bios->dev, gpio->tag, gpio->state_default);
if (dev_priv->card_type < NV_D0)
init_gpio_unknv50(bios, gpio);
else
init_gpio_unknvd0(bios, gpio);
}
return 1;
}
static int
init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_RAM_RESTRICT_ZM_REG_GROUP opcode: 0x8F ('')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): reg
* offset + 5 (8 bit): regincrement
* offset + 6 (8 bit): count
* offset + 7 (32 bit): value 1,1
* ...
*
* Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
* ram_restrict_table_ptr. The value read from here is 'n', and
* "value 1,n" gets written to "reg". This repeats "count" times and on
* each iteration 'm', "reg" increases by "regincrement" and
* "value m,n" is used. The extent of n is limited by a number read
* from the 'M' BIT table, herein called "blocklen"
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint8_t regincrement = bios->data[offset + 5];
uint8_t count = bios->data[offset + 6];
uint32_t strap_ramcfg, data;
/* previously set by 'M' BIT table */
uint16_t blocklen = bios->ram_restrict_group_count * 4;
int len = 7 + count * blocklen;
uint8_t index;
int i;
/* critical! to know the length of the opcode */;
if (!blocklen) {
NV_ERROR(bios->dev,
"0x%04X: Zero block length - has the M table "
"been parsed?\n", offset);
return -EINVAL;
}
if (!iexec->execute)
return len;
strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];
BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
"Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
offset, reg, regincrement, count, strap_ramcfg, index);
for (i = 0; i < count; i++) {
data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);
bios_wr32(bios, reg, data);
reg += regincrement;
}
return len;
}
static int
init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_COPY_ZM_REG opcode: 0x90 ('')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): src reg
* offset + 5 (32 bit): dst reg
*
* Put contents of "src reg" into "dst reg"
*/
uint32_t srcreg = ROM32(bios->data[offset + 1]);
uint32_t dstreg = ROM32(bios->data[offset + 5]);
if (!iexec->execute)
return 9;
bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));
return 9;
}
static int
init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
struct init_exec *iexec)
{
/*
* INIT_ZM_REG_GROUP_ADDRESS_LATCHED opcode: 0x91 ('')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): dst reg
* offset + 5 (8 bit): count
* offset + 6 (32 bit): data 1
* ...
*
* For each of "count" values write "data n" to "dst reg"
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint8_t count = bios->data[offset + 5];
int len = 6 + count * 4;
int i;
if (!iexec->execute)
return len;
for (i = 0; i < count; i++) {
uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
bios_wr32(bios, reg, data);
}
return len;
}
static int
init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_RESERVED opcode: 0x92 ('')
*
* offset (8 bit): opcode
*
* Seemingly does nothing
*/
return 1;
}
static int
init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_96 opcode: 0x96 ('')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): sreg
* offset + 5 (8 bit): sshift
* offset + 6 (8 bit): smask
* offset + 7 (8 bit): index
* offset + 8 (32 bit): reg
* offset + 12 (32 bit): mask
* offset + 16 (8 bit): shift
*
*/
uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
uint32_t reg = ROM32(bios->data[offset + 8]);
uint32_t mask = ROM32(bios->data[offset + 12]);
uint32_t val;
val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
if (bios->data[offset + 5] < 0x80)
val >>= bios->data[offset + 5];
else
val <<= (0x100 - bios->data[offset + 5]);
val &= bios->data[offset + 6];
val = bios->data[ROM16(bios->data[xlatptr]) + val];
val <<= bios->data[offset + 16];
if (!iexec->execute)
return 17;
bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
return 17;
}
static int
init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_97 opcode: 0x97 ('')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): register
* offset + 5 (32 bit): mask
* offset + 9 (32 bit): value
*
* Adds "value" to "register" preserving the fields specified
* by "mask"
*/
uint32_t reg = ROM32(bios->data[offset + 1]);
uint32_t mask = ROM32(bios->data[offset + 5]);
uint32_t add = ROM32(bios->data[offset + 9]);
uint32_t val;
val = bios_rd32(bios, reg);
val = (val & mask) | ((val + add) & ~mask);
if (!iexec->execute)
return 13;
bios_wr32(bios, reg, val);
return 13;
}
static int
init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_AUXCH opcode: 0x98 ('')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): address
* offset + 5 (8 bit): count
* offset + 6 (8 bit): mask 0
* offset + 7 (8 bit): data 0
* ...
*
*/
struct drm_device *dev = bios->dev;
struct nouveau_i2c_chan *auxch;
uint32_t addr = ROM32(bios->data[offset + 1]);
uint8_t count = bios->data[offset + 5];
int len = 6 + count * 2;
int ret, i;
if (!bios->display.output) {
NV_ERROR(dev, "INIT_AUXCH: no active output\n");
return len;
}
auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
if (!auxch) {
NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
bios->display.output->i2c_index);
return len;
}
if (!iexec->execute)
return len;
offset += 6;
for (i = 0; i < count; i++, offset += 2) {
uint8_t data;
ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
if (ret) {
NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
return len;
}
data &= bios->data[offset + 0];
data |= bios->data[offset + 1];
ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
if (ret) {
NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
return len;
}
}
return len;
}
static int
init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_ZM_AUXCH opcode: 0x99 ('')
*
* offset (8 bit): opcode
* offset + 1 (32 bit): address
* offset + 5 (8 bit): count
* offset + 6 (8 bit): data 0
* ...
*
*/
struct drm_device *dev = bios->dev;
struct nouveau_i2c_chan *auxch;
uint32_t addr = ROM32(bios->data[offset + 1]);
uint8_t count = bios->data[offset + 5];
int len = 6 + count;
int ret, i;
if (!bios->display.output) {
NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
return len;
}
auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
if (!auxch) {
NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
bios->display.output->i2c_index);
return len;
}
if (!iexec->execute)
return len;
offset += 6;
for (i = 0; i < count; i++, offset++) {
ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
if (ret) {
NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
return len;
}
}
return len;
}
static int
init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* INIT_I2C_LONG_IF opcode: 0x9A ('')
*
* offset (8 bit): opcode
* offset + 1 (8 bit): DCB I2C table entry index
* offset + 2 (8 bit): I2C slave address
* offset + 3 (16 bit): I2C register
* offset + 5 (8 bit): mask
* offset + 6 (8 bit): data
*
* Read the register given by "I2C register" on the device addressed
* by "I2C slave address" on the I2C bus given by "DCB I2C table
* entry index". Compare the result AND "mask" to "data".
* If they're not equal, skip subsequent opcodes until condition is
* inverted (INIT_NOT), or we hit INIT_RESUME
*/
uint8_t i2c_index = bios->data[offset + 1];
uint8_t i2c_address = bios->data[offset + 2] >> 1;
uint8_t reglo = bios->data[offset + 3];
uint8_t reghi = bios->data[offset + 4];
uint8_t mask = bios->data[offset + 5];
uint8_t data = bios->data[offset + 6];
struct nouveau_i2c_chan *chan;
uint8_t buf0[2] = { reghi, reglo };
uint8_t buf1[1];
struct i2c_msg msg[2] = {
{ i2c_address, 0, 1, buf0 },
{ i2c_address, I2C_M_RD, 1, buf1 },
};
int ret;
/* no execute check by design */
BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
offset, i2c_index, i2c_address);
chan = init_i2c_device_find(bios->dev, i2c_index);
if (!chan)
return -ENODEV;
ret = i2c_transfer(&chan->adapter, msg, 2);
if (ret < 0) {
BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], "
"Mask: 0x%02X, Data: 0x%02X\n",
offset, reghi, reglo, mask, data);
iexec->execute = 0;
return 7;
}
BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, "
"Mask: 0x%02X, Data: 0x%02X\n",
offset, reghi, reglo, buf1[0], mask, data);
iexec->execute = ((buf1[0] & mask) == data);
return 7;
}
static struct init_tbl_entry itbl_entry[] = {
/* command name , id , length , offset , mult , command handler */
/* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
{ "INIT_IO_RESTRICT_PROG" , 0x32, init_io_restrict_prog },
{ "INIT_REPEAT" , 0x33, init_repeat },
{ "INIT_IO_RESTRICT_PLL" , 0x34, init_io_restrict_pll },
{ "INIT_END_REPEAT" , 0x36, init_end_repeat },
{ "INIT_COPY" , 0x37, init_copy },
{ "INIT_NOT" , 0x38, init_not },
{ "INIT_IO_FLAG_CONDITION" , 0x39, init_io_flag_condition },
{ "INIT_DP_CONDITION" , 0x3A, init_dp_condition },
{ "INIT_OP_3B" , 0x3B, init_op_3b },
{ "INIT_OP_3C" , 0x3C, init_op_3c },
{ "INIT_INDEX_ADDRESS_LATCHED" , 0x49, init_idx_addr_latched },
{ "INIT_IO_RESTRICT_PLL2" , 0x4A, init_io_restrict_pll2 },
{ "INIT_PLL2" , 0x4B, init_pll2 },
{ "INIT_I2C_BYTE" , 0x4C, init_i2c_byte },
{ "INIT_ZM_I2C_BYTE" , 0x4D, init_zm_i2c_byte },
{ "INIT_ZM_I2C" , 0x4E, init_zm_i2c },
{ "INIT_TMDS" , 0x4F, init_tmds },
{ "INIT_ZM_TMDS_GROUP" , 0x50, init_zm_tmds_group },
{ "INIT_CR_INDEX_ADDRESS_LATCHED" , 0x51, init_cr_idx_adr_latch },
{ "INIT_CR" , 0x52, init_cr },
{ "INIT_ZM_CR" , 0x53, init_zm_cr },
{ "INIT_ZM_CR_GROUP" , 0x54, init_zm_cr_group },
{ "INIT_CONDITION_TIME" , 0x56, init_condition_time },
{ "INIT_LTIME" , 0x57, init_ltime },
{ "INIT_ZM_REG_SEQUENCE" , 0x58, init_zm_reg_sequence },
/* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
{ "INIT_SUB_DIRECT" , 0x5B, init_sub_direct },
{ "INIT_JUMP" , 0x5C, init_jump },
{ "INIT_I2C_IF" , 0x5E, init_i2c_if },
{ "INIT_COPY_NV_REG" , 0x5F, init_copy_nv_reg },
{ "INIT_ZM_INDEX_IO" , 0x62, init_zm_index_io },
{ "INIT_COMPUTE_MEM" , 0x63, init_compute_mem },
{ "INIT_RESET" , 0x65, init_reset },
{ "INIT_CONFIGURE_MEM" , 0x66, init_configure_mem },
{ "INIT_CONFIGURE_CLK" , 0x67, init_configure_clk },
{ "INIT_CONFIGURE_PREINIT" , 0x68, init_configure_preinit },
{ "INIT_IO" , 0x69, init_io },
{ "INIT_SUB" , 0x6B, init_sub },
{ "INIT_RAM_CONDITION" , 0x6D, init_ram_condition },
{ "INIT_NV_REG" , 0x6E, init_nv_reg },
{ "INIT_MACRO" , 0x6F, init_macro },
{ "INIT_DONE" , 0x71, init_done },
{ "INIT_RESUME" , 0x72, init_resume },
/* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
{ "INIT_TIME" , 0x74, init_time },
{ "INIT_CONDITION" , 0x75, init_condition },
{ "INIT_IO_CONDITION" , 0x76, init_io_condition },
{ "INIT_INDEX_IO" , 0x78, init_index_io },
{ "INIT_PLL" , 0x79, init_pll },
{ "INIT_ZM_REG" , 0x7A, init_zm_reg },
{ "INIT_RAM_RESTRICT_PLL" , 0x87, init_ram_restrict_pll },
{ "INIT_8C" , 0x8C, init_8c },
{ "INIT_8D" , 0x8D, init_8d },
{ "INIT_GPIO" , 0x8E, init_gpio },
{ "INIT_RAM_RESTRICT_ZM_REG_GROUP" , 0x8F, init_ram_restrict_zm_reg_group },
{ "INIT_COPY_ZM_REG" , 0x90, init_copy_zm_reg },
{ "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched },
{ "INIT_RESERVED" , 0x92, init_reserved },
{ "INIT_96" , 0x96, init_96 },
{ "INIT_97" , 0x97, init_97 },
{ "INIT_AUXCH" , 0x98, init_auxch },
{ "INIT_ZM_AUXCH" , 0x99, init_zm_auxch },
{ "INIT_I2C_LONG_IF" , 0x9A, init_i2c_long_if },
{ NULL , 0 , NULL }
};
#define MAX_TABLE_OPS 1000
static int
parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
/*
* Parses all commands in an init table.
*
* We start out executing all commands found in the init table. Some
* opcodes may change the status of iexec->execute to SKIP, which will
* cause the following opcodes to perform no operation until the value
* is changed back to EXECUTE.
*/
int count = 0, i, ret;
uint8_t id;
/* catch NULL script pointers */
if (offset == 0)
return 0;
/*
* Loop until INIT_DONE causes us to break out of the loop
* (or until offset > bios length just in case... )
* (and no more than MAX_TABLE_OPS iterations, just in case... )
*/
while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
id = bios->data[offset];
/* Find matching id in itbl_entry */
for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
;
if (!itbl_entry[i].name) {
NV_ERROR(bios->dev,
"0x%04X: Init table command not found: "
"0x%02X\n", offset, id);
return -ENOENT;
}
BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset,
itbl_entry[i].id, itbl_entry[i].name);
/* execute eventual command handler */
ret = (*itbl_entry[i].handler)(bios, offset, iexec);
if (ret < 0) {
NV_ERROR(bios->dev, "0x%04X: Failed parsing init "
"table opcode: %s %d\n", offset,
itbl_entry[i].name, ret);
}
if (ret <= 0)
break;
/*
* Add the offset of the current command including all data
* of that command. The offset will then be pointing on the
* next op code.
*/
offset += ret;
}
if (offset >= bios->length)
NV_WARN(bios->dev,
"Offset 0x%04X greater than known bios image length. "
"Corrupt image?\n", offset);
if (count >= MAX_TABLE_OPS)
NV_WARN(bios->dev,
"More than %d opcodes to a table is unlikely, "
"is the bios image corrupt?\n", MAX_TABLE_OPS);
return 0;
}
static void
parse_init_tables(struct nvbios *bios)
{
/* Loops and calls parse_init_table() for each present table. */
int i = 0;
uint16_t table;
struct init_exec iexec = {true, false};
if (bios->old_style_init) {
if (bios->init_script_tbls_ptr)
parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
if (bios->extra_init_script_tbl_ptr)
parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);
return;
}
while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
NV_INFO(bios->dev,
"Parsing VBIOS init table %d at offset 0x%04X\n",
i / 2, table);
BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);
parse_init_table(bios, table, &iexec);
i += 2;
}
}
static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
{
int compare_record_len, i = 0;
uint16_t compareclk, scriptptr = 0;
if (bios->major_version < 5) /* pre BIT */
compare_record_len = 3;
else
compare_record_len = 4;
do {
compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
if (pxclk >= compareclk * 10) {
if (bios->major_version < 5) {
uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
} else
scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
break;
}
i++;
} while (compareclk);
return scriptptr;
}
static void
run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
struct dcb_entry *dcbent, int head, bool dl)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
struct init_exec iexec = {true, false};
NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
scriptptr);
bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
/* note: if dcb entries have been merged, index may be misleading */
NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
parse_init_table(bios, scriptptr, &iexec);
nv04_dfp_bind_head(dev, dcbent, head, dl);
}
static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);
if (!bios->fp.xlated_entry || !sub || !scriptofs)
return -EINVAL;
run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);
if (script == LVDS_PANEL_OFF) {
/* off-on delay in ms */
mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7]));
}
#ifdef __powerpc__
/* Powerbook specific quirks */
if (script == LVDS_RESET &&
(dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
dev->pci_device == 0x0329))
nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);
#endif
return 0;
}
static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
{
/*
* The BIT LVDS table's header has the information to setup the
* necessary registers. Following the standard 4 byte header are:
* A bitmask byte and a dual-link transition pxclk value for use in
* selecting the init script when not using straps; 4 script pointers
* for panel power, selected by output and on/off; and 8 table pointers
* for panel init, the needed one determined by output, and bits in the
* conf byte. These tables are similar to the TMDS tables, consisting
* of a list of pxclks and script pointers.
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
uint16_t scriptptr = 0, clktable;
/*
* For now we assume version 3.0 table - g80 support will need some
* changes
*/
switch (script) {
case LVDS_INIT:
return -ENOSYS;
case LVDS_BACKLIGHT_ON:
case LVDS_PANEL_ON:
scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
break;
case LVDS_BACKLIGHT_OFF:
case LVDS_PANEL_OFF:
scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
break;
case LVDS_RESET:
clktable = bios->fp.lvdsmanufacturerpointer + 15;
if (dcbent->or == 4)
clktable += 8;
if (dcbent->lvdsconf.use_straps_for_mode) {
if (bios->fp.dual_link)
clktable += 4;
if (bios->fp.if_is_24bit)
clktable += 2;
} else {
/* using EDID */
int cmpval_24bit = (dcbent->or == 4) ? 4 : 1;
if (bios->fp.dual_link) {
clktable += 4;
cmpval_24bit <<= 1;
}
if (bios->fp.strapless_is_24bit & cmpval_24bit)
clktable += 2;
}
clktable = ROM16(bios->data[clktable]);
if (!clktable) {
NV_ERROR(dev, "Pixel clock comparison table not found\n");
return -ENOENT;
}
scriptptr = clkcmptable(bios, clktable, pxclk);
}
if (!scriptptr) {
NV_ERROR(dev, "LVDS output init script not found\n");
return -ENOENT;
}
run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);
return 0;
}
int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
{
/*
* LVDS operations are multiplexed in an effort to present a single API
* which works with two vastly differing underlying structures.
* This acts as the demux
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
uint32_t sel_clk_binding, sel_clk;
int ret;
if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
(lvds_ver >= 0x30 && script == LVDS_INIT))
return 0;
if (!bios->fp.lvds_init_run) {
bios->fp.lvds_init_run = true;
call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
}
if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
if (script == LVDS_RESET && bios->fp.power_off_for_reset)
call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);
NV_TRACE(dev, "Calling LVDS script %d:\n", script);
/* don't let script change pll->head binding */
sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
if (lvds_ver < 0x30)
ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
else
ret = run_lvds_table(dev, dcbent, head, script, pxclk);
bios->fp.last_script_invoc = (script << 1 | head);
sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
/* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
return ret;
}
struct lvdstableheader {
uint8_t lvds_ver, headerlen, recordlen;
};
static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
{
/*
* BMP version (0xa) LVDS table has a simple header of version and
* record length. The BIT LVDS table has the typical BIT table header:
* version byte, header length byte, record length byte, and a byte for
* the maximum number of records that can be held in the table.
*/
uint8_t lvds_ver, headerlen, recordlen;
memset(lth, 0, sizeof(struct lvdstableheader));
if (bios->fp.lvdsmanufacturerpointer == 0x0) {
NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
return -EINVAL;
}
lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
switch (lvds_ver) {
case 0x0a: /* pre NV40 */
headerlen = 2;
recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
break;
case 0x30: /* NV4x */
headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
if (headerlen < 0x1f) {
NV_ERROR(dev, "LVDS table header not understood\n");
return -EINVAL;
}
recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
break;
case 0x40: /* G80/G90 */
headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
if (headerlen < 0x7) {
NV_ERROR(dev, "LVDS table header not understood\n");
return -EINVAL;
}
recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
break;
default:
NV_ERROR(dev,
"LVDS table revision %d.%d not currently supported\n",
lvds_ver >> 4, lvds_ver & 0xf);
return -ENOSYS;
}
lth->lvds_ver = lvds_ver;
lth->headerlen = headerlen;
lth->recordlen = recordlen;
return 0;
}
static int
get_fp_strap(struct drm_device *dev, struct nvbios *bios)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
/*
* The fp strap is normally dictated by the "User Strap" in
* PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
* Internal_Flags struct at 0x48 is set, the user strap gets overriden
* by the PCI subsystem ID during POST, but not before the previous user
* strap has been committed to CR58 for CR57=0xf on head A, which may be
* read and used instead
*/
if (bios->major_version < 5 && bios->data[0x48] & 0x4)
return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;
if (dev_priv->card_type >= NV_50)
return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
else
return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
}
static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
{
uint8_t *fptable;
uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
int ret, ofs, fpstrapping;
struct lvdstableheader lth;
if (bios->fp.fptablepointer == 0x0) {
/* Apple cards don't have the fp table; the laptops use DDC */
/* The table is also missing on some x86 IGPs */
#ifndef __powerpc__
NV_ERROR(dev, "Pointer to flat panel table invalid\n");
#endif
bios->digital_min_front_porch = 0x4b;
return 0;
}
fptable = &bios->data[bios->fp.fptablepointer];
fptable_ver = fptable[0];
switch (fptable_ver) {
/*
* BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
* version field, and miss one of the spread spectrum/PWM bytes.
* This could affect early GF2Go parts (not seen any appropriate ROMs
* though). Here we assume that a version of 0x05 matches this case
* (combining with a BMP version check would be better), as the
* common case for the panel type field is 0x0005, and that is in
* fact what we are reading the first byte of.
*/
case 0x05: /* some NV10, 11, 15, 16 */
recordlen = 42;
ofs = -1;
break;
case 0x10: /* some NV15/16, and NV11+ */
recordlen = 44;
ofs = 0;
break;
case 0x20: /* NV40+ */
headerlen = fptable[1];
recordlen = fptable[2];
fpentries = fptable[3];
/*
* fptable[4] is the minimum
* RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
*/
bios->digital_min_front_porch = fptable[4];
ofs = -7;
break;
default:
NV_ERROR(dev,
"FP table revision %d.%d not currently supported\n",
fptable_ver >> 4, fptable_ver & 0xf);
return -ENOSYS;
}
if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
return 0;
ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
if (ret)
return ret;
if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
lth.headerlen + 1;
bios->fp.xlatwidth = lth.recordlen;
}
if (bios->fp.fpxlatetableptr == 0x0) {
NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
return -EINVAL;
}
fpstrapping = get_fp_strap(dev, bios);
fpindex = bios->data[bios->fp.fpxlatetableptr +
fpstrapping * bios->fp.xlatwidth];
if (fpindex > fpentries) {
NV_ERROR(dev, "Bad flat panel table index\n");
return -ENOENT;
}
/* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
if (lth.lvds_ver > 0x10)
bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
/*
* If either the strap or xlated fpindex value are 0xf there is no
* panel using a strap-derived bios mode present. this condition
* includes, but is different from, the DDC panel indicator above
*/
if (fpstrapping == 0xf || fpindex == 0xf)
return 0;
bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
recordlen * fpindex + ofs;
NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);
return 0;
}
bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];
if (!mode) /* just checking whether we can produce a mode */
return bios->fp.mode_ptr;
memset(mode, 0, sizeof(struct drm_display_mode));
/*
* For version 1.0 (version in byte 0):
* bytes 1-2 are "panel type", including bits on whether Colour/mono,
* single/dual link, and type (TFT etc.)
* bytes 3-6 are bits per colour in RGBX
*/
mode->clock = ROM16(mode_entry[7]) * 10;
/* bytes 9-10 is HActive */
mode->hdisplay = ROM16(mode_entry[11]) + 1;
/*
* bytes 13-14 is HValid Start
* bytes 15-16 is HValid End
*/
mode->hsync_start = ROM16(mode_entry[17]) + 1;
mode->hsync_end = ROM16(mode_entry[19]) + 1;
mode->htotal = ROM16(mode_entry[21]) + 1;
/* bytes 23-24, 27-30 similarly, but vertical */
mode->vdisplay = ROM16(mode_entry[25]) + 1;
mode->vsync_start = ROM16(mode_entry[31]) + 1;
mode->vsync_end = ROM16(mode_entry[33]) + 1;
mode->vtotal = ROM16(mode_entry[35]) + 1;
mode->flags |= (mode_entry[37] & 0x10) ?
DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
mode->flags |= (mode_entry[37] & 0x1) ?
DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
/*
* bytes 38-39 relate to spread spectrum settings
* bytes 40-43 are something to do with PWM
*/
mode->status = MODE_OK;
mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
drm_mode_set_name(mode);
return bios->fp.mode_ptr;
}
int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
{
/*
* The LVDS table header is (mostly) described in
* parse_lvds_manufacturer_table_header(): the BIT header additionally
* contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
* straps are not being used for the panel, this specifies the frequency
* at which modes should be set up in the dual link style.
*
* Following the header, the BMP (ver 0xa) table has several records,
* indexed by a separate xlat table, indexed in turn by the fp strap in
* EXTDEV_BOOT. Each record had a config byte, followed by 6 script
* numbers for use by INIT_SUB which controlled panel init and power,
* and finally a dword of ms to sleep between power off and on
* operations.
*
* In the BIT versions, the table following the header serves as an
* integrated config and xlat table: the records in the table are
* indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
* two bytes - the first as a config byte, the second for indexing the
* fp mode table pointed to by the BIT 'D' table
*
* DDC is not used until after card init, so selecting the correct table
* entry and setting the dual link flag for EDID equipped panels,
* requiring tests against the native-mode pixel clock, cannot be done
* until later, when this function should be called with non-zero pxclk
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
struct lvdstableheader lth;
uint16_t lvdsofs;
int ret, chip_version = bios->chip_version;
ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
if (ret)
return ret;
switch (lth.lvds_ver) {
case 0x0a: /* pre NV40 */
lvdsmanufacturerindex = bios->data[
bios->fp.fpxlatemanufacturertableptr +
fpstrapping];
/* we're done if this isn't the EDID panel case */
if (!pxclk)
break;
if (chip_version < 0x25) {
/* nv17 behaviour
*
* It seems the old style lvds script pointer is reused
* to select 18/24 bit colour depth for EDID panels.
*/
lvdsmanufacturerindex =
(bios->legacy.lvds_single_a_script_ptr & 1) ?
2 : 0;
if (pxclk >= bios->fp.duallink_transition_clk)
lvdsmanufacturerindex++;
} else if (chip_version < 0x30) {
/* nv28 behaviour (off-chip encoder)
*
* nv28 does a complex dance of first using byte 121 of
* the EDID to choose the lvdsmanufacturerindex, then
* later attempting to match the EDID manufacturer and
* product IDs in a table (signature 'pidt' (panel id
* table?)), setting an lvdsmanufacturerindex of 0 and
* an fp strap of the match index (or 0xf if none)
*/
lvdsmanufacturerindex = 0;
} else {
/* nv31, nv34 behaviour */
lvdsmanufacturerindex = 0;
if (pxclk >= bios->fp.duallink_transition_clk)
lvdsmanufacturerindex = 2;
if (pxclk >= 140000)
lvdsmanufacturerindex = 3;
}
/*
* nvidia set the high nibble of (cr57=f, cr58) to
* lvdsmanufacturerindex in this case; we don't
*/
break;
case 0x30: /* NV4x */
case 0x40: /* G80/G90 */
lvdsmanufacturerindex = fpstrapping;
break;
default:
NV_ERROR(dev, "LVDS table revision not currently supported\n");
return -ENOSYS;
}
lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
switch (lth.lvds_ver) {
case 0x0a:
bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
bios->fp.dual_link = bios->data[lvdsofs] & 4;
bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
*if_is_24bit = bios->data[lvdsofs] & 16;
break;
case 0x30:
case 0x40:
/*
* No sign of the "power off for reset" or "reset for panel
* on" bits, but it's safer to assume we should
*/
bios->fp.power_off_for_reset = true;
bios->fp.reset_after_pclk_change = true;
/*
* It's ok lvdsofs is wrong for nv4x edid case; dual_link is
* over-written, and if_is_24bit isn't used
*/
bios->fp.dual_link = bios->data[lvdsofs] & 1;
bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
break;
}
/* Dell Latitude D620 reports a too-high value for the dual-link
* transition freq, causing us to program the panel incorrectly.
*
* It doesn't appear the VBIOS actually uses its transition freq
* (90000kHz), instead it uses the "Number of LVDS channels" field
* out of the panel ID structure (http://www.spwg.org/).
*
* For the moment, a quirk will do :)
*/
if (nv_match_device(dev, 0x01d7, 0x1028, 0x01c2))
bios->fp.duallink_transition_clk = 80000;
/* set dual_link flag for EDID case */
if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);
*dl = bios->fp.dual_link;
return 0;
}
/* BIT 'U'/'d' table encoder subtables have hashes matching them to
* a particular set of encoders.
*
* This function returns true if a particular DCB entry matches.
*/
bool
bios_encoder_match(struct dcb_entry *dcb, u32 hash)
{
if ((hash & 0x000000f0) != (dcb->location << 4))
return false;
if ((hash & 0x0000000f) != dcb->type)
return false;
if (!(hash & (dcb->or << 16)))
return false;
switch (dcb->type) {
case OUTPUT_TMDS:
case OUTPUT_LVDS:
case OUTPUT_DP:
if (hash & 0x00c00000) {
if (!(hash & (dcb->sorconf.link << 22)))
return false;
}
default:
return true;
}
}
int
nouveau_bios_run_display_table(struct drm_device *dev, u16 type, int pclk,
struct dcb_entry *dcbent, int crtc)
{
/*
* The display script table is located by the BIT 'U' table.
*
* It contains an array of pointers to various tables describing
* a particular output type. The first 32-bits of the output
* tables contains similar information to a DCB entry, and is
* used to decide whether that particular table is suitable for
* the output you want to access.
*
* The "record header length" field here seems to indicate the
* offset of the first configuration entry in the output tables.
* This is 10 on most cards I've seen, but 12 has been witnessed
* on DP cards, and there's another script pointer within the
* header.
*
* offset + 0 ( 8 bits): version
* offset + 1 ( 8 bits): header length
* offset + 2 ( 8 bits): record length
* offset + 3 ( 8 bits): number of records
* offset + 4 ( 8 bits): record header length
* offset + 5 (16 bits): pointer to first output script table
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
uint8_t *table = &bios->data[bios->display.script_table_ptr];
uint8_t *otable = NULL;
uint16_t script;
int i;
if (!bios->display.script_table_ptr) {
NV_ERROR(dev, "No pointer to output script table\n");
return 1;
}
/*
* Nothing useful has been in any of the pre-2.0 tables I've seen,
* so until they are, we really don't need to care.
*/
if (table[0] < 0x20)
return 1;
if (table[0] != 0x20 && table[0] != 0x21) {
NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
table[0]);
return 1;
}
/*
* The output script tables describing a particular output type
* look as follows:
*
* offset + 0 (32 bits): output this table matches (hash of DCB)
* offset + 4 ( 8 bits): unknown
* offset + 5 ( 8 bits): number of configurations
* offset + 6 (16 bits): pointer to some script
* offset + 8 (16 bits): pointer to some script
*
* headerlen == 10
* offset + 10 : configuration 0
*
* headerlen == 12
* offset + 10 : pointer to some script
* offset + 12 : configuration 0
*
* Each config entry is as follows:
*
* offset + 0 (16 bits): unknown, assumed to be a match value
* offset + 2 (16 bits): pointer to script table (clock set?)
* offset + 4 (16 bits): pointer to script table (reset?)
*
* There doesn't appear to be a count value to say how many
* entries exist in each script table, instead, a 0 value in
* the first 16-bit word seems to indicate both the end of the
* list and the default entry. The second 16-bit word in the
* script tables is a pointer to the script to execute.
*/
NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
dcbent->type, dcbent->location, dcbent->or);
for (i = 0; i < table[3]; i++) {
otable = ROMPTR(bios, table[table[1] + (i * table[2])]);
if (otable && bios_encoder_match(dcbent, ROM32(otable[0])))
break;
}
if (!otable) {
NV_DEBUG_KMS(dev, "failed to match any output table\n");
return 1;
}
if (pclk < -2 || pclk > 0) {
/* Try to find matching script table entry */
for (i = 0; i < otable[5]; i++) {
if (ROM16(otable[table[4] + i*6]) == type)
break;
}
if (i == otable[5]) {
NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
"using first\n",
type, dcbent->type, dcbent->or);
i = 0;
}
}
if (pclk == 0) {
script = ROM16(otable[6]);
if (!script) {
NV_DEBUG_KMS(dev, "output script 0 not found\n");
return 1;
}
NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script);
nouveau_bios_run_init_table(dev, script, dcbent, crtc);
} else
if (pclk == -1) {
script = ROM16(otable[8]);
if (!script) {
NV_DEBUG_KMS(dev, "output script 1 not found\n");
return 1;
}
NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script);
nouveau_bios_run_init_table(dev, script, dcbent, crtc);
} else
if (pclk == -2) {
if (table[4] >= 12)
script = ROM16(otable[10]);
else
script = 0;
if (!script) {
NV_DEBUG_KMS(dev, "output script 2 not found\n");
return 1;
}
NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script);
nouveau_bios_run_init_table(dev, script, dcbent, crtc);
} else
if (pclk > 0) {
script = ROM16(otable[table[4] + i*6 + 2]);
if (script)
script = clkcmptable(bios, script, pclk);
if (!script) {
NV_DEBUG_KMS(dev, "clock script 0 not found\n");
return 1;
}
NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script);
nouveau_bios_run_init_table(dev, script, dcbent, crtc);
} else
if (pclk < 0) {
script = ROM16(otable[table[4] + i*6 + 4]);
if (script)
script = clkcmptable(bios, script, -pclk);
if (!script) {
NV_DEBUG_KMS(dev, "clock script 1 not found\n");
return 1;
}
NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script);
nouveau_bios_run_init_table(dev, script, dcbent, crtc);
}
return 0;
}
int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
{
/*
* the pxclk parameter is in kHz
*
* This runs the TMDS regs setting code found on BIT bios cards
*
* For ffs(or) == 1 use the first table, for ffs(or) == 2 and
* ffs(or) == 3, use the second.
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
int cv = bios->chip_version;
uint16_t clktable = 0, scriptptr;
uint32_t sel_clk_binding, sel_clk;
/* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
dcbent->location != DCB_LOC_ON_CHIP)
return 0;
switch (ffs(dcbent->or)) {
case 1:
clktable = bios->tmds.output0_script_ptr;
break;
case 2:
case 3:
clktable = bios->tmds.output1_script_ptr;
break;
}
if (!clktable) {
NV_ERROR(dev, "Pixel clock comparison table not found\n");
return -EINVAL;
}
scriptptr = clkcmptable(bios, clktable, pxclk);
if (!scriptptr) {
NV_ERROR(dev, "TMDS output init script not found\n");
return -ENOENT;
}
/* don't let script change pll->head binding */
sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
return 0;
}
struct pll_mapping {
u8 type;
u32 reg;
};
static struct pll_mapping nv04_pll_mapping[] = {
{ PLL_CORE , NV_PRAMDAC_NVPLL_COEFF },
{ PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF },
{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
{}
};
static struct pll_mapping nv40_pll_mapping[] = {
{ PLL_CORE , 0x004000 },
{ PLL_MEMORY, 0x004020 },
{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
{}
};
static struct pll_mapping nv50_pll_mapping[] = {
{ PLL_CORE , 0x004028 },
{ PLL_SHADER, 0x004020 },
{ PLL_UNK03 , 0x004000 },
{ PLL_MEMORY, 0x004008 },
{ PLL_UNK40 , 0x00e810 },
{ PLL_UNK41 , 0x00e818 },
{ PLL_UNK42 , 0x00e824 },
{ PLL_VPLL0 , 0x614100 },
{ PLL_VPLL1 , 0x614900 },
{}
};
static struct pll_mapping nv84_pll_mapping[] = {
{ PLL_CORE , 0x004028 },
{ PLL_SHADER, 0x004020 },
{ PLL_MEMORY, 0x004008 },
{ PLL_UNK05 , 0x004030 },
{ PLL_UNK41 , 0x00e818 },
{ PLL_VPLL0 , 0x614100 },
{ PLL_VPLL1 , 0x614900 },
{}
};
u32
get_pll_register(struct drm_device *dev, enum pll_types type)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
struct pll_mapping *map;
int i;
if (dev_priv->card_type < NV_40)
map = nv04_pll_mapping;
else
if (dev_priv->card_type < NV_50)
map = nv40_pll_mapping;
else {
u8 *plim = &bios->data[bios->pll_limit_tbl_ptr];
if (plim[0] >= 0x30) {
u8 *entry = plim + plim[1];
for (i = 0; i < plim[3]; i++, entry += plim[2]) {
if (entry[0] == type)
return ROM32(entry[3]);
}
return 0;
}
if (dev_priv->chipset == 0x50)
map = nv50_pll_mapping;
else
map = nv84_pll_mapping;
}
while (map->reg) {
if (map->type == type)
return map->reg;
map++;
}
return 0;
}
int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
{
/*
* PLL limits table
*
* Version 0x10: NV30, NV31
* One byte header (version), one record of 24 bytes
* Version 0x11: NV36 - Not implemented
* Seems to have same record style as 0x10, but 3 records rather than 1
* Version 0x20: Found on Geforce 6 cards
* Trivial 4 byte BIT header. 31 (0x1f) byte record length
* Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
* 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
* length in general, some (integrated) have an extra configuration byte
* Version 0x30: Found on Geforce 8, separates the register mapping
* from the limits tables.
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
int cv = bios->chip_version, pllindex = 0;
uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
uint32_t crystal_strap_mask, crystal_straps;
if (!bios->pll_limit_tbl_ptr) {
if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
cv >= 0x40) {
NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
return -EINVAL;
}
} else
pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];
crystal_strap_mask = 1 << 6;
/* open coded dev->twoHeads test */
if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
crystal_strap_mask |= 1 << 22;
crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
crystal_strap_mask;
switch (pll_lim_ver) {
/*
* We use version 0 to indicate a pre limit table bios (single stage
* pll) and load the hard coded limits instead.
*/
case 0:
break;
case 0x10:
case 0x11:
/*
* Strictly v0x11 has 3 entries, but the last two don't seem
* to get used.
*/
headerlen = 1;
recordlen = 0x18;
entries = 1;
pllindex = 0;
break;
case 0x20:
case 0x21:
case 0x30:
case 0x40:
headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
entries = bios->data[bios->pll_limit_tbl_ptr + 3];
break;
default:
NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
"supported\n", pll_lim_ver);
return -ENOSYS;
}
/* initialize all members to zero */
memset(pll_lim, 0, sizeof(struct pll_lims));
/* if we were passed a type rather than a register, figure
* out the register and store it
*/
if (limit_match > PLL_MAX)
pll_lim->reg = limit_match;
else {
pll_lim->reg = get_pll_register(dev, limit_match);
if (!pll_lim->reg)
return -ENOENT;
}
if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];
pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;
/* these values taken from nv30/31/36 */
pll_lim->vco1.min_n = 0x1;
if (cv == 0x36)
pll_lim->vco1.min_n = 0x5;
pll_lim->vco1.max_n = 0xff;
pll_lim->vco1.min_m = 0x1;
pll_lim->vco1.max_m = 0xd;
pll_lim->vco2.min_n = 0x4;
/*
* On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
* table version (apart from nv35)), N2 is compared to
* maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
* save a comparison
*/
pll_lim->vco2.max_n = 0x28;
if (cv == 0x30 || cv == 0x35)
/* only 5 bits available for N2 on nv30/35 */
pll_lim->vco2.max_n = 0x1f;
pll_lim->vco2.min_m = 0x1;
pll_lim->vco2.max_m = 0x4;
pll_lim->max_log2p = 0x7;
pll_lim->max_usable_log2p = 0x6;
} else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
uint8_t *pll_rec;
int i;
/*
* First entry is default match, if nothing better. warn if
* reg field nonzero
*/
if (ROM32(bios->data[plloffs]))
NV_WARN(dev, "Default PLL limit entry has non-zero "
"register field\n");
for (i = 1; i < entries; i++)
if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) {
pllindex = i;
break;
}
if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) {
NV_ERROR(dev, "Register 0x%08x not found in PLL "
"limits table", pll_lim->reg);
return -ENOENT;
}
pll_rec = &bios->data[plloffs + recordlen * pllindex];
BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
pllindex ? pll_lim->reg : 0);
/*
* Frequencies are stored in tables in MHz, kHz are more
* useful, so we convert.
*/
/* What output frequencies can each VCO generate? */
pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;
/* What input frequencies they accept (past the m-divider)? */
pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;
/* What values are accepted as multiplier and divider? */
pll_lim->vco1.min_n = pll_rec[20];
pll_lim->vco1.max_n = pll_rec[21];
pll_lim->vco1.min_m = pll_rec[22];
pll_lim->vco1.max_m = pll_rec[23];
pll_lim->vco2.min_n = pll_rec[24];
pll_lim->vco2.max_n = pll_rec[25];
pll_lim->vco2.min_m = pll_rec[26];
pll_lim->vco2.max_m = pll_rec[27];
pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
if (pll_lim->max_log2p > 0x7)
/* pll decoding in nv_hw.c assumes never > 7 */
NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
pll_lim->max_log2p);
if (cv < 0x60)
pll_lim->max_usable_log2p = 0x6;
pll_lim->log2p_bias = pll_rec[30];
if (recordlen > 0x22)
pll_lim->refclk = ROM32(pll_rec[31]);
if (recordlen > 0x23 && pll_rec[35])
NV_WARN(dev,
"Bits set in PLL configuration byte (%x)\n",
pll_rec[35]);
/* C51 special not seen elsewhere */
if (cv == 0x51 && !pll_lim->refclk) {
uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);
if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) ||
(pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) {
if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
pll_lim->refclk = 200000;
else
pll_lim->refclk = 25000;
}
}
} else if (pll_lim_ver == 0x30) { /* ver 0x30 */
uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
uint8_t *record = NULL;
int i;
BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
pll_lim->reg);
for (i = 0; i < entries; i++, entry += recordlen) {
if (ROM32(entry[3]) == pll_lim->reg) {
record = &bios->data[ROM16(entry[1])];
break;
}
}
if (!record) {
NV_ERROR(dev, "Register 0x%08x not found in PLL "
"limits table", pll_lim->reg);
return -ENOENT;
}
pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
pll_lim->vco1.min_n = record[16];
pll_lim->vco1.max_n = record[17];
pll_lim->vco1.min_m = record[18];
pll_lim->vco1.max_m = record[19];
pll_lim->vco2.min_n = record[20];
pll_lim->vco2.max_n = record[21];
pll_lim->vco2.min_m = record[22];
pll_lim->vco2.max_m = record[23];
pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
pll_lim->log2p_bias = record[27];
pll_lim->refclk = ROM32(record[28]);
} else if (pll_lim_ver) { /* ver 0x40 */
uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
uint8_t *record = NULL;
int i;
BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
pll_lim->reg);
for (i = 0; i < entries; i++, entry += recordlen) {
if (ROM32(entry[3]) == pll_lim->reg) {
record = &bios->data[ROM16(entry[1])];
break;
}
}
if (!record) {
NV_ERROR(dev, "Register 0x%08x not found in PLL "
"limits table", pll_lim->reg);
return -ENOENT;
}
pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
pll_lim->vco1.min_m = record[8];
pll_lim->vco1.max_m = record[9];
pll_lim->vco1.min_n = record[10];
pll_lim->vco1.max_n = record[11];
pll_lim->min_p = record[12];
pll_lim->max_p = record[13];
pll_lim->refclk = ROM16(entry[9]) * 1000;
}
/*
* By now any valid limit table ought to have set a max frequency for
* vco1, so if it's zero it's either a pre limit table bios, or one
* with an empty limit table (seen on nv18)
*/
if (!pll_lim->vco1.maxfreq) {
pll_lim->vco1.minfreq = bios->fminvco;
pll_lim->vco1.maxfreq = bios->fmaxvco;
pll_lim->vco1.min_inputfreq = 0;
pll_lim->vco1.max_inputfreq = INT_MAX;
pll_lim->vco1.min_n = 0x1;
pll_lim->vco1.max_n = 0xff;
pll_lim->vco1.min_m = 0x1;
if (crystal_straps == 0) {
/* nv05 does this, nv11 doesn't, nv10 unknown */
if (cv < 0x11)
pll_lim->vco1.min_m = 0x7;
pll_lim->vco1.max_m = 0xd;
} else {
if (cv < 0x11)
pll_lim->vco1.min_m = 0x8;
pll_lim->vco1.max_m = 0xe;
}
if (cv < 0x17 || cv == 0x1a || cv == 0x20)
pll_lim->max_log2p = 4;
else
pll_lim->max_log2p = 5;
pll_lim->max_usable_log2p = pll_lim->max_log2p;
}
if (!pll_lim->refclk)
switch (crystal_straps) {
case 0:
pll_lim->refclk = 13500;
break;
case (1 << 6):
pll_lim->refclk = 14318;
break;
case (1 << 22):
pll_lim->refclk = 27000;
break;
case (1 << 22 | 1 << 6):
pll_lim->refclk = 25000;
break;
}
NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
if (pll_lim->vco2.maxfreq) {
NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);
NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);
NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);
}
if (!pll_lim->max_p) {
NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p);
NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias);
} else {
NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p);
NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p);
}
NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk);
return 0;
}
static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
{
/*
* offset + 0 (8 bits): Micro version
* offset + 1 (8 bits): Minor version
* offset + 2 (8 bits): Chip version
* offset + 3 (8 bits): Major version
*/
bios->major_version = bios->data[offset + 3];
bios->chip_version = bios->data[offset + 2];
NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
bios->data[offset + 3], bios->data[offset + 2],
bios->data[offset + 1], bios->data[offset]);
}
static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
{
/*
* Parses the init table segment for pointers used in script execution.
*
* offset + 0 (16 bits): init script tables pointer
* offset + 2 (16 bits): macro index table pointer
* offset + 4 (16 bits): macro table pointer
* offset + 6 (16 bits): condition table pointer
* offset + 8 (16 bits): io condition table pointer
* offset + 10 (16 bits): io flag condition table pointer
* offset + 12 (16 bits): init function table pointer
*/
bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
}
static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
/*
* Parses the load detect values for g80 cards.
*
* offset + 0 (16 bits): loadval table pointer
*/
uint16_t load_table_ptr;
uint8_t version, headerlen, entrylen, num_entries;
if (bitentry->length != 3) {
NV_ERROR(dev, "Do not understand BIT A table\n");
return -EINVAL;
}
load_table_ptr = ROM16(bios->data[bitentry->offset]);
if (load_table_ptr == 0x0) {
NV_DEBUG(dev, "Pointer to BIT loadval table invalid\n");
return -EINVAL;
}
version = bios->data[load_table_ptr];
if (version != 0x10) {
NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
version >> 4, version & 0xF);
return -ENOSYS;
}
headerlen = bios->data[load_table_ptr + 1];
entrylen = bios->data[load_table_ptr + 2];
num_entries = bios->data[load_table_ptr + 3];
if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
NV_ERROR(dev, "Do not understand BIT loadval table\n");
return -EINVAL;
}
/* First entry is normal dac, 2nd tv-out perhaps? */
bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
return 0;
}
static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
/*
* offset + 8 (16 bits): PLL limits table pointer
*
* There's more in here, but that's unknown.
*/
if (bitentry->length < 10) {
NV_ERROR(dev, "Do not understand BIT C table\n");
return -EINVAL;
}
bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);
return 0;
}
static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
/*
* Parses the flat panel table segment that the bit entry points to.
* Starting at bitentry->offset:
*
* offset + 0 (16 bits): ??? table pointer - seems to have 18 byte
* records beginning with a freq.
* offset + 2 (16 bits): mode table pointer
*/
if (bitentry->length != 4) {
NV_ERROR(dev, "Do not understand BIT display table\n");
return -EINVAL;
}
bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);
return 0;
}
static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
/*
* Parses the init table segment that the bit entry points to.
*
* See parse_script_table_pointers for layout
*/
if (bitentry->length < 14) {
NV_ERROR(dev, "Do not understand init table\n");
return -EINVAL;
}
parse_script_table_pointers(bios, bitentry->offset);
if (bitentry->length >= 16)
bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
if (bitentry->length >= 18)
bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);
return 0;
}
static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
/*
* BIT 'i' (info?) table
*
* offset + 0 (32 bits): BIOS version dword (as in B table)
* offset + 5 (8 bits): BIOS feature byte (same as for BMP?)
* offset + 13 (16 bits): pointer to table containing DAC load
* detection comparison values
*
* There's other things in the table, purpose unknown
*/
uint16_t daccmpoffset;
uint8_t dacver, dacheaderlen;
if (bitentry->length < 6) {
NV_ERROR(dev, "BIT i table too short for needed information\n");
return -EINVAL;
}
parse_bios_version(dev, bios, bitentry->offset);
/*
* bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
* Quadro identity crisis), other bits possibly as for BMP feature byte
*/
bios->feature_byte = bios->data[bitentry->offset + 5];
bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;
if (bitentry->length < 15) {
NV_WARN(dev, "BIT i table not long enough for DAC load "
"detection comparison table\n");
return -EINVAL;
}
daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);
/* doesn't exist on g80 */
if (!daccmpoffset)
return 0;
/*
* The first value in the table, following the header, is the
* comparison value, the second entry is a comparison value for
* TV load detection.
*/
dacver = bios->data[daccmpoffset];
dacheaderlen = bios->data[daccmpoffset + 1];
if (dacver != 0x00 && dacver != 0x10) {
NV_WARN(dev, "DAC load detection comparison table version "
"%d.%d not known\n", dacver >> 4, dacver & 0xf);
return -ENOSYS;
}
bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
return 0;
}
static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
/*
* Parses the LVDS table segment that the bit entry points to.
* Starting at bitentry->offset:
*
* offset + 0 (16 bits): LVDS strap xlate table pointer
*/
if (bitentry->length != 2) {
NV_ERROR(dev, "Do not understand BIT LVDS table\n");
return -EINVAL;
}
/*
* No idea if it's still called the LVDS manufacturer table, but
* the concept's close enough.
*/
bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);
return 0;
}
static int
parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
struct bit_entry *bitentry)
{
/*
* offset + 2 (8 bits): number of options in an
* INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
* offset + 3 (16 bits): pointer to strap xlate table for RAM
* restrict option selection
*
* There's a bunch of bits in this table other than the RAM restrict
* stuff that we don't use - their use currently unknown
*/
/*
* Older bios versions don't have a sufficiently long table for
* what we want
*/
if (bitentry->length < 0x5)
return 0;
if (bitentry->version < 2) {
bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
} else {
bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
}
return 0;
}
static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
/*
* Parses the pointer to the TMDS table
*
* Starting at bitentry->offset:
*
* offset + 0 (16 bits): TMDS table pointer
*
* The TMDS table is typically found just before the DCB table, with a
* characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
* length?)
*
* At offset +7 is a pointer to a script, which I don't know how to
* run yet.
* At offset +9 is a pointer to another script, likewise
* Offset +11 has a pointer to a table where the first word is a pxclk
* frequency and the second word a pointer to a script, which should be
* run if the comparison pxclk frequency is less than the pxclk desired.
* This repeats for decreasing comparison frequencies
* Offset +13 has a pointer to a similar table
* The selection of table (and possibly +7/+9 script) is dictated by
* "or" from the DCB.
*/
uint16_t tmdstableptr, script1, script2;
if (bitentry->length != 2) {
NV_ERROR(dev, "Do not understand BIT TMDS table\n");
return -EINVAL;
}
tmdstableptr = ROM16(bios->data[bitentry->offset]);
if (!tmdstableptr) {
NV_ERROR(dev, "Pointer to TMDS table invalid\n");
return -EINVAL;
}
NV_INFO(dev, "TMDS table version %d.%d\n",
bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);
/* nv50+ has v2.0, but we don't parse it atm */
if (bios->data[tmdstableptr] != 0x11)
return -ENOSYS;
/*
* These two scripts are odd: they don't seem to get run even when
* they are not stubbed.
*/
script1 = ROM16(bios->data[tmdstableptr + 7]);
script2 = ROM16(bios->data[tmdstableptr + 9]);
if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
NV_WARN(dev, "TMDS table script pointers not stubbed\n");
bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);
return 0;
}
static int
parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
struct bit_entry *bitentry)
{
/*
* Parses the pointer to the G80 output script tables
*
* Starting at bitentry->offset:
*
* offset + 0 (16 bits): output script table pointer
*/
uint16_t outputscripttableptr;
if (bitentry->length != 3) {
NV_ERROR(dev, "Do not understand BIT U table\n");
return -EINVAL;
}
outputscripttableptr = ROM16(bios->data[bitentry->offset]);
bios->display.script_table_ptr = outputscripttableptr;
return 0;
}
struct bit_table {
const char id;
int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
};
#define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })
int
bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
u8 entries, *entry;
entries = bios->data[bios->offset + 10];
entry = &bios->data[bios->offset + 12];
while (entries--) {
if (entry[0] == id) {
bit->id = entry[0];
bit->version = entry[1];
bit->length = ROM16(entry[2]);
bit->offset = ROM16(entry[4]);
bit->data = ROMPTR(bios, entry[4]);
return 0;
}
entry += bios->data[bios->offset + 9];
}
return -ENOENT;
}
static int
parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
struct bit_table *table)
{
struct drm_device *dev = bios->dev;
struct bit_entry bitentry;
if (bit_table(dev, table->id, &bitentry) == 0)
return table->parse_fn(dev, bios, &bitentry);
NV_INFO(dev, "BIT table '%c' not found\n", table->id);
return -ENOSYS;
}
static int
parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
{
int ret;
/*
* The only restriction on parsing order currently is having 'i' first
* for use of bios->*_version or bios->feature_byte while parsing;
* functions shouldn't be actually *doing* anything apart from pulling
* data from the image into the bios struct, thus no interdependencies
*/
ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
if (ret) /* info? */
return ret;
if (bios->major_version >= 0x60) /* g80+ */
parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
if (ret)
return ret;
parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
if (ret)
return ret;
parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));
return 0;
}
static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
{
/*
* Parses the BMP structure for useful things, but does not act on them
*
* offset + 5: BMP major version
* offset + 6: BMP minor version
* offset + 9: BMP feature byte
* offset + 10: BCD encoded BIOS version
*
* offset + 18: init script table pointer (for bios versions < 5.10h)
* offset + 20: extra init script table pointer (for bios
* versions < 5.10h)
*
* offset + 24: memory init table pointer (used on early bios versions)
* offset + 26: SDR memory sequencing setup data table
* offset + 28: DDR memory sequencing setup data table
*
* offset + 54: index of I2C CRTC pair to use for CRT output
* offset + 55: index of I2C CRTC pair to use for TV output
* offset + 56: index of I2C CRTC pair to use for flat panel output
* offset + 58: write CRTC index for I2C pair 0
* offset + 59: read CRTC index for I2C pair 0
* offset + 60: write CRTC index for I2C pair 1
* offset + 61: read CRTC index for I2C pair 1
*
* offset + 67: maximum internal PLL frequency (single stage PLL)
* offset + 71: minimum internal PLL frequency (single stage PLL)
*
* offset + 75: script table pointers, as described in
* parse_script_table_pointers
*
* offset + 89: TMDS single link output A table pointer
* offset + 91: TMDS single link output B table pointer
* offset + 95: LVDS single link output A table pointer
* offset + 105: flat panel timings table pointer
* offset + 107: flat panel strapping translation table pointer
* offset + 117: LVDS manufacturer panel config table pointer
* offset + 119: LVDS manufacturer strapping translation table pointer
*
* offset + 142: PLL limits table pointer
*
* offset + 156: minimum pixel clock for LVDS dual link
*/
uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
uint16_t bmplength;
uint16_t legacy_scripts_offset, legacy_i2c_offset;
/* load needed defaults in case we can't parse this info */
bios->dcb.i2c[0].write = NV_CIO_CRE_DDC_WR__INDEX;
bios->dcb.i2c[0].read = NV_CIO_CRE_DDC_STATUS__INDEX;
bios->dcb.i2c[1].write = NV_CIO_CRE_DDC0_WR__INDEX;
bios->dcb.i2c[1].read = NV_CIO_CRE_DDC0_STATUS__INDEX;
bios->digital_min_front_porch = 0x4b;
bios->fmaxvco = 256000;
bios->fminvco = 128000;
bios->fp.duallink_transition_clk = 90000;
bmp_version_major = bmp[5];
bmp_version_minor = bmp[6];
NV_TRACE(dev, "BMP version %d.%d\n",
bmp_version_major, bmp_version_minor);
/*
* Make sure that 0x36 is blank and can't be mistaken for a DCB
* pointer on early versions
*/
if (bmp_version_major < 5)
*(uint16_t *)&bios->data[0x36] = 0;
/*
* Seems that the minor version was 1 for all major versions prior
* to 5. Version 6 could theoretically exist, but I suspect BIT
* happened instead.
*/
if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
NV_ERROR(dev, "You have an unsupported BMP version. "
"Please send in your bios\n");
return -ENOSYS;
}
if (bmp_version_major == 0)
/* nothing that's currently useful in this version */
return 0;
else if (bmp_version_major == 1)
bmplength = 44; /* exact for 1.01 */
else if (bmp_version_major == 2)
bmplength = 48; /* exact for 2.01 */
else if (bmp_version_major == 3)
bmplength = 54;
/* guessed - mem init tables added in this version */
else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
/* don't know if 5.0 exists... */
bmplength = 62;
/* guessed - BMP I2C indices added in version 4*/
else if (bmp_version_minor < 0x6)
bmplength = 67; /* exact for 5.01 */
else if (bmp_version_minor < 0x10)
bmplength = 75; /* exact for 5.06 */
else if (bmp_version_minor == 0x10)
bmplength = 89; /* exact for 5.10h */
else if (bmp_version_minor < 0x14)
bmplength = 118; /* exact for 5.11h */
else if (bmp_version_minor < 0x24)
/*
* Not sure of version where pll limits came in;
* certainly exist by 0x24 though.
*/
/* length not exact: this is long enough to get lvds members */
bmplength = 123;
else if (bmp_version_minor < 0x27)
/*
* Length not exact: this is long enough to get pll limit
* member
*/
bmplength = 144;
else
/*
* Length not exact: this is long enough to get dual link
* transition clock.
*/
bmplength = 158;
/* checksum */
if (nv_cksum(bmp, 8)) {
NV_ERROR(dev, "Bad BMP checksum\n");
return -EINVAL;
}
/*
* Bit 4 seems to indicate either a mobile bios or a quadro card --
* mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
* (not nv10gl), bit 5 that the flat panel tables are present, and
* bit 6 a tv bios.
*/
bios->feature_byte = bmp[9];
parse_bios_version(dev, bios, offset + 10);
if (bmp_version_major < 5 || bmp_version_minor < 0x10)
bios->old_style_init = true;
legacy_scripts_offset = 18;
if (bmp_version_major < 2)
legacy_scripts_offset -= 4;
bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);
if (bmp_version_major > 2) { /* appears in BMP 3 */
bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
}
legacy_i2c_offset = 0x48; /* BMP version 2 & 3 */
if (bmplength > 61)
legacy_i2c_offset = offset + 54;
bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];
if (bios->data[legacy_i2c_offset + 4])
bios->dcb.i2c[0].write = bios->data[legacy_i2c_offset + 4];
if (bios->data[legacy_i2c_offset + 5])
bios->dcb.i2c[0].read = bios->data[legacy_i2c_offset + 5];
if (bios->data[legacy_i2c_offset + 6])
bios->dcb.i2c[1].write = bios->data[legacy_i2c_offset + 6];
if (bios->data[legacy_i2c_offset + 7])
bios->dcb.i2c[1].read = bios->data[legacy_i2c_offset + 7];
if (bmplength > 74) {
bios->fmaxvco = ROM32(bmp[67]);
bios->fminvco = ROM32(bmp[71]);
}
if (bmplength > 88)
parse_script_table_pointers(bios, offset + 75);
if (bmplength > 94) {
bios->tmds.output0_script_ptr = ROM16(bmp[89]);
bios->tmds.output1_script_ptr = ROM16(bmp[91]);
/*
* Never observed in use with lvds scripts, but is reused for
* 18/24 bit panel interface default for EDID equipped panels
* (if_is_24bit not set directly to avoid any oscillation).
*/
bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
}
if (bmplength > 108) {
bios->fp.fptablepointer = ROM16(bmp[105]);
bios->fp.fpxlatetableptr = ROM16(bmp[107]);
bios->fp.xlatwidth = 1;
}
if (bmplength > 120) {
bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
}
if (bmplength > 143)
bios->pll_limit_tbl_ptr = ROM16(bmp[142]);
if (bmplength > 157)
bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;
return 0;
}
static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
{
int i, j;
for (i = 0; i <= (n - len); i++) {
for (j = 0; j < len; j++)
if (data[i + j] != str[j])
break;
if (j == len)
return i;
}
return 0;
}
static struct dcb_gpio_entry *
new_gpio_entry(struct nvbios *bios)
{
struct drm_device *dev = bios->dev;
struct dcb_gpio_table *gpio = &bios->dcb.gpio;
if (gpio->entries >= DCB_MAX_NUM_GPIO_ENTRIES) {
NV_ERROR(dev, "exceeded maximum number of gpio entries!!\n");
return NULL;
}
return &gpio->entry[gpio->entries++];
}
struct dcb_gpio_entry *
nouveau_bios_gpio_entry(struct drm_device *dev, enum dcb_gpio_tag tag)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
int i;
for (i = 0; i < bios->dcb.gpio.entries; i++) {
if (bios->dcb.gpio.entry[i].tag != tag)
continue;
return &bios->dcb.gpio.entry[i];
}
return NULL;
}
static void
parse_dcb_gpio_table(struct nvbios *bios)
{
struct drm_device *dev = bios->dev;
struct dcb_gpio_entry *e;
u8 headerlen, entries, recordlen;
u8 *dcb, *gpio = NULL, *entry;
int i;
dcb = ROMPTR(bios, bios->data[0x36]);
if (dcb[0] >= 0x30) {
gpio = ROMPTR(bios, dcb[10]);
if (!gpio)
goto no_table;
headerlen = gpio[1];
entries = gpio[2];
recordlen = gpio[3];
} else
if (dcb[0] >= 0x22 && dcb[-1] >= 0x13) {
gpio = ROMPTR(bios, dcb[-15]);
if (!gpio)
goto no_table;
headerlen = 3;
entries = gpio[2];
recordlen = gpio[1];
} else
if (dcb[0] >= 0x22) {
/* No GPIO table present, parse the TVDAC GPIO data. */
uint8_t *tvdac_gpio = &dcb[-5];
if (tvdac_gpio[0] & 1) {
e = new_gpio_entry(bios);
e->tag = DCB_GPIO_TVDAC0;
e->line = tvdac_gpio[1] >> 4;
e->invert = tvdac_gpio[0] & 2;
}
goto no_table;
} else {
NV_DEBUG(dev, "no/unknown gpio table on DCB 0x%02x\n", dcb[0]);
goto no_table;
}
entry = gpio + headerlen;
for (i = 0; i < entries; i++, entry += recordlen) {
e = new_gpio_entry(bios);
if (!e)
break;
if (gpio[0] < 0x40) {
e->entry = ROM16(entry[0]);
e->tag = (e->entry & 0x07e0) >> 5;
if (e->tag == 0x3f) {
bios->dcb.gpio.entries--;
continue;
}
e->line = (e->entry & 0x001f);
e->invert = ((e->entry & 0xf800) >> 11) != 4;
} else {
e->entry = ROM32(entry[0]);
e->tag = (e->entry & 0x0000ff00) >> 8;
if (e->tag == 0xff) {
bios->dcb.gpio.entries--;
continue;
}
e->line = (e->entry & 0x0000001f) >> 0;
if (gpio[0] == 0x40) {
e->state_default = (e->entry & 0x01000000) >> 24;
e->state[0] = (e->entry & 0x18000000) >> 27;
e->state[1] = (e->entry & 0x60000000) >> 29;
} else {
e->state_default = (e->entry & 0x00000080) >> 7;
e->state[0] = (entry[4] >> 4) & 3;
e->state[1] = (entry[4] >> 6) & 3;
}
}
}
no_table:
/* Apple iMac G4 NV18 */
if (nv_match_device(dev, 0x0189, 0x10de, 0x0010)) {
e = new_gpio_entry(bios);
if (e) {
e->tag = DCB_GPIO_TVDAC0;
e->line = 4;
}
}
}
struct dcb_connector_table_entry *
nouveau_bios_connector_entry(struct drm_device *dev, int index)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
struct dcb_connector_table_entry *cte;
if (index >= bios->dcb.connector.entries)
return NULL;
cte = &bios->dcb.connector.entry[index];
if (cte->type == 0xff)
return NULL;
return cte;
}
static enum dcb_connector_type
divine_connector_type(struct nvbios *bios, int index)
{
struct dcb_table *dcb = &bios->dcb;
unsigned encoders = 0, type = DCB_CONNECTOR_NONE;
int i;
for (i = 0; i < dcb->entries; i++) {
if (dcb->entry[i].connector == index)
encoders |= (1 << dcb->entry[i].type);
}
if (encoders & (1 << OUTPUT_DP)) {
if (encoders & (1 << OUTPUT_TMDS))
type = DCB_CONNECTOR_DP;
else
type = DCB_CONNECTOR_eDP;
} else
if (encoders & (1 << OUTPUT_TMDS)) {
if (encoders & (1 << OUTPUT_ANALOG))
type = DCB_CONNECTOR_DVI_I;
else
type = DCB_CONNECTOR_DVI_D;
} else
if (encoders & (1 << OUTPUT_ANALOG)) {
type = DCB_CONNECTOR_VGA;
} else
if (encoders & (1 << OUTPUT_LVDS)) {
type = DCB_CONNECTOR_LVDS;
} else
if (encoders & (1 << OUTPUT_TV)) {
type = DCB_CONNECTOR_TV_0;
}
return type;
}
static void
apply_dcb_connector_quirks(struct nvbios *bios, int idx)
{
struct dcb_connector_table_entry *cte = &bios->dcb.connector.entry[idx];
struct drm_device *dev = bios->dev;
/* Gigabyte NX85T */
if (nv_match_device(dev, 0x0421, 0x1458, 0x344c)) {
if (cte->type == DCB_CONNECTOR_HDMI_1)
cte->type = DCB_CONNECTOR_DVI_I;
}
/* Gigabyte GV-NX86T512H */
if (nv_match_device(dev, 0x0402, 0x1458, 0x3455)) {
if (cte->type == DCB_CONNECTOR_HDMI_1)
cte->type = DCB_CONNECTOR_DVI_I;
}
}
static const u8 hpd_gpio[16] = {
0xff, 0x07, 0x08, 0xff, 0xff, 0x51, 0x52, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0x5e, 0x5f, 0x60,
};
static void
parse_dcb_connector_table(struct nvbios *bios)
{
struct drm_device *dev = bios->dev;
struct dcb_connector_table *ct = &bios->dcb.connector;
struct dcb_connector_table_entry *cte;
uint8_t *conntab = &bios->data[bios->dcb.connector_table_ptr];
uint8_t *entry;
int i;
if (!bios->dcb.connector_table_ptr) {
NV_DEBUG_KMS(dev, "No DCB connector table present\n");
return;
}
NV_INFO(dev, "DCB connector table: VHER 0x%02x %d %d %d\n",
conntab[0], conntab[1], conntab[2], conntab[3]);
if ((conntab[0] != 0x30 && conntab[0] != 0x40) ||
(conntab[3] != 2 && conntab[3] != 4)) {
NV_ERROR(dev, " Unknown! Please report.\n");
return;
}
ct->entries = conntab[2];
entry = conntab + conntab[1];
cte = &ct->entry[0];
for (i = 0; i < conntab[2]; i++, entry += conntab[3], cte++) {
cte->index = i;
if (conntab[3] == 2)
cte->entry = ROM16(entry[0]);
else
cte->entry = ROM32(entry[0]);
cte->type = (cte->entry & 0x000000ff) >> 0;
cte->index2 = (cte->entry & 0x00000f00) >> 8;
cte->gpio_tag = ffs((cte->entry & 0x07033000) >> 12);
cte->gpio_tag = hpd_gpio[cte->gpio_tag];
if (cte->type == 0xff)
continue;
apply_dcb_connector_quirks(bios, i);
NV_INFO(dev, " %d: 0x%08x: type 0x%02x idx %d tag 0x%02x\n",
i, cte->entry, cte->type, cte->index, cte->gpio_tag);
/* check for known types, fallback to guessing the type
* from attached encoders if we hit an unknown.
*/
switch (cte->type) {
case DCB_CONNECTOR_VGA:
case DCB_CONNECTOR_TV_0:
case DCB_CONNECTOR_TV_1:
case DCB_CONNECTOR_TV_3:
case DCB_CONNECTOR_DVI_I:
case DCB_CONNECTOR_DVI_D:
case DCB_CONNECTOR_LVDS:
case DCB_CONNECTOR_LVDS_SPWG:
case DCB_CONNECTOR_DP:
case DCB_CONNECTOR_eDP:
case DCB_CONNECTOR_HDMI_0:
case DCB_CONNECTOR_HDMI_1:
break;
default:
cte->type = divine_connector_type(bios, cte->index);
NV_WARN(dev, "unknown type, using 0x%02x\n", cte->type);
break;
}
if (nouveau_override_conntype) {
int type = divine_connector_type(bios, cte->index);
if (type != cte->type)
NV_WARN(dev, " -> type 0x%02x\n", cte->type);
}
}
}
static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
{
struct dcb_entry *entry = &dcb->entry[dcb->entries];
memset(entry, 0, sizeof(struct dcb_entry));
entry->index = dcb->entries++;
return entry;
}
static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c,
int heads, int or)
{
struct dcb_entry *entry = new_dcb_entry(dcb);
entry->type = type;
entry->i2c_index = i2c;
entry->heads = heads;
if (type != OUTPUT_ANALOG)
entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */
entry->or = or;
}
static bool
parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
uint32_t conn, uint32_t conf, struct dcb_entry *entry)
{
entry->type = conn & 0xf;
entry->i2c_index = (conn >> 4) & 0xf;
entry->heads = (conn >> 8) & 0xf;
if (dcb->version >= 0x40)
entry->connector = (conn >> 12) & 0xf;
entry->bus = (conn >> 16) & 0xf;
entry->location = (conn >> 20) & 0x3;
entry->or = (conn >> 24) & 0xf;
switch (entry->type) {
case OUTPUT_ANALOG:
/*
* Although the rest of a CRT conf dword is usually
* zeros, mac biosen have stuff there so we must mask
*/
entry->crtconf.maxfreq = (dcb->version < 0x30) ?
(conf & 0xffff) * 10 :
(conf & 0xff) * 10000;
break;
case OUTPUT_LVDS:
{
uint32_t mask;
if (conf & 0x1)
entry->lvdsconf.use_straps_for_mode = true;
if (dcb->version < 0x22) {
mask = ~0xd;
/*
* The laptop in bug 14567 lies and claims to not use
* straps when it does, so assume all DCB 2.0 laptops
* use straps, until a broken EDID using one is produced
*/
entry->lvdsconf.use_straps_for_mode = true;
/*
* Both 0x4 and 0x8 show up in v2.0 tables; assume they
* mean the same thing (probably wrong, but might work)
*/
if (conf & 0x4 || conf & 0x8)
entry->lvdsconf.use_power_scripts = true;
} else {
mask = ~0x7;
if (conf & 0x2)
entry->lvdsconf.use_acpi_for_edid = true;
if (conf & 0x4)
entry->lvdsconf.use_power_scripts = true;
entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4;
}
if (conf & mask) {
/*
* Until we even try to use these on G8x, it's
* useless reporting unknown bits. They all are.
*/
if (dcb->version >= 0x40)
break;
NV_ERROR(dev, "Unknown LVDS configuration bits, "
"please report\n");
}
break;
}
case OUTPUT_TV:
{
if (dcb->version >= 0x30)
entry->tvconf.has_component_output = conf & (0x8 << 4);
else
entry->tvconf.has_component_output = false;
break;
}
case OUTPUT_DP:
entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
switch ((conf & 0x00e00000) >> 21) {
case 0:
entry->dpconf.link_bw = 162000;
break;
default:
entry->dpconf.link_bw = 270000;
break;
}
switch ((conf & 0x0f000000) >> 24) {
case 0xf:
entry->dpconf.link_nr = 4;
break;
case 0x3:
entry->dpconf.link_nr = 2;
break;
default:
entry->dpconf.link_nr = 1;
break;
}
break;
case OUTPUT_TMDS:
if (dcb->version >= 0x40)
entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
else if (dcb->version >= 0x30)
entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8;
else if (dcb->version >= 0x22)
entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4;
break;
case OUTPUT_EOL:
/* weird g80 mobile type that "nv" treats as a terminator */
dcb->entries--;
return false;
default:
break;
}
if (dcb->version < 0x40) {
/* Normal entries consist of a single bit, but dual link has
* the next most significant bit set too
*/
entry->duallink_possible =
((1 << (ffs(entry->or) - 1)) * 3 == entry->or);
} else {
entry->duallink_possible = (entry->sorconf.link == 3);
}
/* unsure what DCB version introduces this, 3.0? */
if (conf & 0x100000)
entry->i2c_upper_default = true;
return true;
}
static bool
parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
uint32_t conn, uint32_t conf, struct dcb_entry *entry)
{
switch (conn & 0x0000000f) {
case 0:
entry->type = OUTPUT_ANALOG;
break;
case 1:
entry->type = OUTPUT_TV;
break;
case 2:
case 4:
if (conn & 0x10)
entry->type = OUTPUT_LVDS;
else
entry->type = OUTPUT_TMDS;
break;
case 3:
entry->type = OUTPUT_LVDS;
break;
default:
NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
return false;
}
entry->i2c_index = (conn & 0x0003c000) >> 14;
entry->heads = ((conn & 0x001c0000) >> 18) + 1;
entry->or = entry->heads; /* same as heads, hopefully safe enough */
entry->location = (conn & 0x01e00000) >> 21;
entry->bus = (conn & 0x0e000000) >> 25;
entry->duallink_possible = false;
switch (entry->type) {
case OUTPUT_ANALOG:
entry->crtconf.maxfreq = (conf & 0xffff) * 10;
break;
case OUTPUT_TV:
entry->tvconf.has_component_output = false;
break;
case OUTPUT_LVDS:
if ((conn & 0x00003f00) >> 8 != 0x10)
entry->lvdsconf.use_straps_for_mode = true;
entry->lvdsconf.use_power_scripts = true;
break;
default:
break;
}
return true;
}
static bool parse_dcb_entry(struct drm_device *dev, struct dcb_table *dcb,
uint32_t conn, uint32_t conf)
{
struct dcb_entry *entry = new_dcb_entry(dcb);
bool ret;
if (dcb->version >= 0x20)
ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
else
ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
if (!ret)
return ret;
read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
entry->i2c_index, &dcb->i2c[entry->i2c_index]);
return true;
}
static
void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
{
/*
* DCB v2.0 lists each output combination separately.
* Here we merge compatible entries to have fewer outputs, with
* more options
*/
int i, newentries = 0;
for (i = 0; i < dcb->entries; i++) {
struct dcb_entry *ient = &dcb->entry[i];
int j;
for (j = i + 1; j < dcb->entries; j++) {
struct dcb_entry *jent = &dcb->entry[j];
if (jent->type == 100) /* already merged entry */
continue;
/* merge heads field when all other fields the same */
if (jent->i2c_index == ient->i2c_index &&
jent->type == ient->type &&
jent->location == ient->location &&
jent->or == ient->or) {
NV_TRACE(dev, "Merging DCB entries %d and %d\n",
i, j);
ient->heads |= jent->heads;
jent->type = 100; /* dummy value */
}
}
}
/* Compact entries merged into others out of dcb */
for (i = 0; i < dcb->entries; i++) {
if (dcb->entry[i].type == 100)
continue;
if (newentries != i) {
dcb->entry[newentries] = dcb->entry[i];
dcb->entry[newentries].index = newentries;
}
newentries++;
}
dcb->entries = newentries;
}
static bool
apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct dcb_table *dcb = &dev_priv->vbios.dcb;
/* Dell Precision M6300
* DCB entry 2: 02025312 00000010
* DCB entry 3: 02026312 00000020
*
* Identical, except apparently a different connector on a
* different SOR link. Not a clue how we're supposed to know
* which one is in use if it even shares an i2c line...
*
* Ignore the connector on the second SOR link to prevent
* nasty problems until this is sorted (assuming it's not a
* VBIOS bug).
*/
if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) {
if (*conn == 0x02026312 && *conf == 0x00000020)
return false;
}
/* GeForce3 Ti 200
*
* DCB reports an LVDS output that should be TMDS:
* DCB entry 1: f2005014 ffffffff
*/
if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) {
if (*conn == 0xf2005014 && *conf == 0xffffffff) {
fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1);
return false;
}
}
/* XFX GT-240X-YA
*
* So many things wrong here, replace the entire encoder table..
*/
if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) {
if (idx == 0) {
*conn = 0x02001300; /* VGA, connector 1 */
*conf = 0x00000028;
} else
if (idx == 1) {
*conn = 0x01010312; /* DVI, connector 0 */
*conf = 0x00020030;
} else
if (idx == 2) {
*conn = 0x01010310; /* VGA, connector 0 */
*conf = 0x00000028;
} else
if (idx == 3) {
*conn = 0x02022362; /* HDMI, connector 2 */
*conf = 0x00020010;
} else {
*conn = 0x0000000e; /* EOL */
*conf = 0x00000000;
}
}
/* Some other twisted XFX board (rhbz#694914)
*
* The DVI/VGA encoder combo that's supposed to represent the
* DVI-I connector actually point at two different ones, and
* the HDMI connector ends up paired with the VGA instead.
*
* Connector table is missing anything for VGA at all, pointing it
* an invalid conntab entry 2 so we figure it out ourself.
*/
if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) {
if (idx == 0) {
*conn = 0x02002300; /* VGA, connector 2 */
*conf = 0x00000028;
} else
if (idx == 1) {
*conn = 0x01010312; /* DVI, connector 0 */
*conf = 0x00020030;
} else
if (idx == 2) {
*conn = 0x04020310; /* VGA, connector 0 */
*conf = 0x00000028;
} else
if (idx == 3) {
*conn = 0x02021322; /* HDMI, connector 1 */
*conf = 0x00020010;
} else {
*conn = 0x0000000e; /* EOL */
*conf = 0x00000000;
}
}
return true;
}
static void
fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios)
{
struct dcb_table *dcb = &bios->dcb;
int all_heads = (nv_two_heads(dev) ? 3 : 1);
#ifdef __powerpc__
/* Apple iMac G4 NV17 */
if (of_machine_is_compatible("PowerMac4,5")) {
fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1);
fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2);
return;
}
#endif
/* Make up some sane defaults */
fabricate_dcb_output(dcb, OUTPUT_ANALOG, LEGACY_I2C_CRT, 1, 1);
if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
fabricate_dcb_output(dcb, OUTPUT_TV, LEGACY_I2C_TV,
all_heads, 0);
else if (bios->tmds.output0_script_ptr ||
bios->tmds.output1_script_ptr)
fabricate_dcb_output(dcb, OUTPUT_TMDS, LEGACY_I2C_PANEL,
all_heads, 1);
}
static int
parse_dcb_table(struct drm_device *dev, struct nvbios *bios)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct dcb_table *dcb = &bios->dcb;
uint16_t dcbptr = 0, i2ctabptr = 0;
uint8_t *dcbtable;
uint8_t headerlen = 0x4, entries = DCB_MAX_NUM_ENTRIES;
bool configblock = true;
int recordlength = 8, confofs = 4;
int i;
/* get the offset from 0x36 */
if (dev_priv->card_type > NV_04) {
dcbptr = ROM16(bios->data[0x36]);
if (dcbptr == 0x0000)
NV_WARN(dev, "No output data (DCB) found in BIOS\n");
}
/* this situation likely means a really old card, pre DCB */
if (dcbptr == 0x0) {
fabricate_dcb_encoder_table(dev, bios);
return 0;
}
dcbtable = &bios->data[dcbptr];
/* get DCB version */
dcb->version = dcbtable[0];
NV_TRACE(dev, "Found Display Configuration Block version %d.%d\n",
dcb->version >> 4, dcb->version & 0xf);
if (dcb->version >= 0x20) { /* NV17+ */
uint32_t sig;
if (dcb->version >= 0x30) { /* NV40+ */
headerlen = dcbtable[1];
entries = dcbtable[2];
recordlength = dcbtable[3];
i2ctabptr = ROM16(dcbtable[4]);
sig = ROM32(dcbtable[6]);
dcb->gpio_table_ptr = ROM16(dcbtable[10]);
dcb->connector_table_ptr = ROM16(dcbtable[20]);
} else {
i2ctabptr = ROM16(dcbtable[2]);
sig = ROM32(dcbtable[4]);
headerlen = 8;
}
if (sig != 0x4edcbdcb) {
NV_ERROR(dev, "Bad Display Configuration Block "
"signature (%08X)\n", sig);
return -EINVAL;
}
} else if (dcb->version >= 0x15) { /* some NV11 and NV20 */
char sig[8] = { 0 };
strncpy(sig, (char *)&dcbtable[-7], 7);
i2ctabptr = ROM16(dcbtable[2]);
recordlength = 10;
confofs = 6;
if (strcmp(sig, "DEV_REC")) {
NV_ERROR(dev, "Bad Display Configuration Block "
"signature (%s)\n", sig);
return -EINVAL;
}
} else {
/*
* v1.4 (some NV15/16, NV11+) seems the same as v1.5, but always
* has the same single (crt) entry, even when tv-out present, so
* the conclusion is this version cannot really be used.
* v1.2 tables (some NV6/10, and NV15+) normally have the same
* 5 entries, which are not specific to the card and so no use.
* v1.2 does have an I2C table that read_dcb_i2c_table can
* handle, but cards exist (nv11 in #14821) with a bad i2c table
* pointer, so use the indices parsed in parse_bmp_structure.
* v1.1 (NV5+, maybe some NV4) is entirely unhelpful
*/
NV_TRACEWARN(dev, "No useful information in BIOS output table; "
"adding all possible outputs\n");
fabricate_dcb_encoder_table(dev, bios);
return 0;
}
if (!i2ctabptr)
NV_WARN(dev, "No pointer to DCB I2C port table\n");
else {
dcb->i2c_table = &bios->data[i2ctabptr];
if (dcb->version >= 0x30)
dcb->i2c_default_indices = dcb->i2c_table[4];
/*
* Parse the "management" I2C bus, used for hardware
* monitoring and some external TMDS transmitters.
*/
if (dcb->version >= 0x22) {
int idx = (dcb->version >= 0x40 ?
dcb->i2c_default_indices & 0xf :
2);
read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
idx, &dcb->i2c[idx]);
}
}
if (entries > DCB_MAX_NUM_ENTRIES)
entries = DCB_MAX_NUM_ENTRIES;
for (i = 0; i < entries; i++) {
uint32_t connection, config = 0;
connection = ROM32(dcbtable[headerlen + recordlength * i]);
if (configblock)
config = ROM32(dcbtable[headerlen + confofs + recordlength * i]);
/* seen on an NV11 with DCB v1.5 */
if (connection == 0x00000000)
break;
/* seen on an NV17 with DCB v2.0 */
if (connection == 0xffffffff)
break;
if ((connection & 0x0000000f) == 0x0000000f)
continue;
if (!apply_dcb_encoder_quirks(dev, i, &connection, &config))
continue;
NV_TRACEWARN(dev, "Raw DCB entry %d: %08x %08x\n",
dcb->entries, connection, config);
if (!parse_dcb_entry(dev, dcb, connection, config))
break;
}
/*
* apart for v2.1+ not being known for requiring merging, this
* guarantees dcbent->index is the index of the entry in the rom image
*/
if (dcb->version < 0x21)
merge_like_dcb_entries(dev, dcb);
if (!dcb->entries)
return -ENXIO;
parse_dcb_gpio_table(bios);
parse_dcb_connector_table(bios);
return 0;
}
static void
fixup_legacy_connector(struct nvbios *bios)
{
struct dcb_table *dcb = &bios->dcb;
int i, i2c, i2c_conn[DCB_MAX_NUM_I2C_ENTRIES] = { };
/*
* DCB 3.0 also has the table in most cases, but there are some cards
* where the table is filled with stub entries, and the DCB entriy
* indices are all 0. We don't need the connector indices on pre-G80
* chips (yet?) so limit the use to DCB 4.0 and above.
*/
if (dcb->version >= 0x40)
return;
dcb->connector.entries = 0;
/*
* No known connector info before v3.0, so make it up. the rule here
* is: anything on the same i2c bus is considered to be on the same
* connector. any output without an associated i2c bus is assigned
* its own unique connector index.
*/
for (i = 0; i < dcb->entries; i++) {
/*
* Ignore the I2C index for on-chip TV-out, as there
* are cards with bogus values (nv31m in bug 23212),
* and it's otherwise useless.
*/
if (dcb->entry[i].type == OUTPUT_TV &&
dcb->entry[i].location == DCB_LOC_ON_CHIP)
dcb->entry[i].i2c_index = 0xf;
i2c = dcb->entry[i].i2c_index;
if (i2c_conn[i2c]) {
dcb->entry[i].connector = i2c_conn[i2c] - 1;
continue;
}
dcb->entry[i].connector = dcb->connector.entries++;
if (i2c != 0xf)
i2c_conn[i2c] = dcb->connector.entries;
}
/* Fake the connector table as well as just connector indices */
for (i = 0; i < dcb->connector.entries; i++) {
dcb->connector.entry[i].index = i;
dcb->connector.entry[i].type = divine_connector_type(bios, i);
dcb->connector.entry[i].gpio_tag = 0xff;
}
}
static void
fixup_legacy_i2c(struct nvbios *bios)
{
struct dcb_table *dcb = &bios->dcb;
int i;
for (i = 0; i < dcb->entries; i++) {
if (dcb->entry[i].i2c_index == LEGACY_I2C_CRT)
dcb->entry[i].i2c_index = bios->legacy.i2c_indices.crt;
if (dcb->entry[i].i2c_index == LEGACY_I2C_PANEL)
dcb->entry[i].i2c_index = bios->legacy.i2c_indices.panel;
if (dcb->entry[i].i2c_index == LEGACY_I2C_TV)
dcb->entry[i].i2c_index = bios->legacy.i2c_indices.tv;
}
}
static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
{
/*
* The header following the "HWSQ" signature has the number of entries,
* and the entry size
*
* An entry consists of a dword to write to the sequencer control reg
* (0x00001304), followed by the ucode bytes, written sequentially,
* starting at reg 0x00001400
*/
uint8_t bytes_to_write;
uint16_t hwsq_entry_offset;
int i;
if (bios->data[hwsq_offset] <= entry) {
NV_ERROR(dev, "Too few entries in HW sequencer table for "
"requested entry\n");
return -ENOENT;
}
bytes_to_write = bios->data[hwsq_offset + 1];
if (bytes_to_write != 36) {
NV_ERROR(dev, "Unknown HW sequencer entry size\n");
return -EINVAL;
}
NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");
hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;
/* set sequencer control */
bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
bytes_to_write -= 4;
/* write ucode */
for (i = 0; i < bytes_to_write; i += 4)
bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));
/* twiddle NV_PBUS_DEBUG_4 */
bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);
return 0;
}
static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
struct nvbios *bios)
{
/*
* BMP based cards, from NV17, need a microcode loading to correctly
* control the GPIO etc for LVDS panels
*
* BIT based cards seem to do this directly in the init scripts
*
* The microcode entries are found by the "HWSQ" signature.
*/
const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
const int sz = sizeof(hwsq_signature);
int hwsq_offset;
hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
if (!hwsq_offset)
return 0;
/* always use entry 0? */
return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
}
uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
const uint8_t edid_sig[] = {
0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
uint16_t offset = 0;
uint16_t newoffset;
int searchlen = NV_PROM_SIZE;
if (bios->fp.edid)
return bios->fp.edid;
while (searchlen) {
newoffset = findstr(&bios->data[offset], searchlen,
edid_sig, 8);
if (!newoffset)
return NULL;
offset += newoffset;
if (!nv_cksum(&bios->data[offset], EDID1_LEN))
break;
searchlen -= offset;
offset++;
}
NV_TRACE(dev, "Found EDID in BIOS\n");
return bios->fp.edid = &bios->data[offset];
}
void
nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
struct dcb_entry *dcbent, int crtc)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
struct init_exec iexec = { true, false };
spin_lock_bh(&bios->lock);
bios->display.output = dcbent;
bios->display.crtc = crtc;
parse_init_table(bios, table, &iexec);
bios->display.output = NULL;
spin_unlock_bh(&bios->lock);
}
void
nouveau_bios_init_exec(struct drm_device *dev, uint16_t table)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
struct init_exec iexec = { true, false };
parse_init_table(bios, table, &iexec);
}
static bool NVInitVBIOS(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
memset(bios, 0, sizeof(struct nvbios));
spin_lock_init(&bios->lock);
bios->dev = dev;
if (!NVShadowVBIOS(dev, bios->data))
return false;
bios->length = NV_PROM_SIZE;
return true;
}
static int nouveau_parse_vbios_struct(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
int offset;
offset = findstr(bios->data, bios->length,
bit_signature, sizeof(bit_signature));
if (offset) {
NV_TRACE(dev, "BIT BIOS found\n");
bios->type = NVBIOS_BIT;
bios->offset = offset;
return parse_bit_structure(bios, offset + 6);
}
offset = findstr(bios->data, bios->length,
bmp_signature, sizeof(bmp_signature));
if (offset) {
NV_TRACE(dev, "BMP BIOS found\n");
bios->type = NVBIOS_BMP;
bios->offset = offset;
return parse_bmp_structure(dev, bios, offset);
}
NV_ERROR(dev, "No known BIOS signature found\n");
return -ENODEV;
}
int
nouveau_run_vbios_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
int i, ret = 0;
/* Reset the BIOS head to 0. */
bios->state.crtchead = 0;
if (bios->major_version < 5) /* BMP only */
load_nv17_hw_sequencer_ucode(dev, bios);
if (bios->execute) {
bios->fp.last_script_invoc = 0;
bios->fp.lvds_init_run = false;
}
parse_init_tables(bios);
/*
* Runs some additional script seen on G8x VBIOSen. The VBIOS'
* parser will run this right after the init tables, the binary
* driver appears to run it at some point later.
*/
if (bios->some_script_ptr) {
struct init_exec iexec = {true, false};
NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
bios->some_script_ptr);
parse_init_table(bios, bios->some_script_ptr, &iexec);
}
if (dev_priv->card_type >= NV_50) {
for (i = 0; i < bios->dcb.entries; i++) {
nouveau_bios_run_display_table(dev, 0, 0,
&bios->dcb.entry[i], -1);
}
}
return ret;
}
static void
nouveau_bios_i2c_devices_takedown(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
struct dcb_i2c_entry *entry;
int i;
entry = &bios->dcb.i2c[0];
for (i = 0; i < DCB_MAX_NUM_I2C_ENTRIES; i++, entry++)
nouveau_i2c_fini(dev, entry);
}
static bool
nouveau_bios_posted(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
unsigned htotal;
if (dev_priv->card_type >= NV_50) {
if (NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
NVReadVgaCrtc(dev, 0, 0x1a) == 0)
return false;
return true;
}
htotal = NVReadVgaCrtc(dev, 0, 0x06);
htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8;
htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4;
htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10;
htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11;
return (htotal != 0);
}
int
nouveau_bios_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvbios *bios = &dev_priv->vbios;
int ret;
if (!NVInitVBIOS(dev))
return -ENODEV;
ret = nouveau_parse_vbios_struct(dev);
if (ret)
return ret;
ret = parse_dcb_table(dev, bios);
if (ret)
return ret;
fixup_legacy_i2c(bios);
fixup_legacy_connector(bios);
if (!bios->major_version) /* we don't run version 0 bios */
return 0;
/* init script execution disabled */
bios->execute = false;
/* ... unless card isn't POSTed already */
if (!nouveau_bios_posted(dev)) {
NV_INFO(dev, "Adaptor not initialised, "
"running VBIOS init tables.\n");
bios->execute = true;
}
if (nouveau_force_post)
bios->execute = true;
ret = nouveau_run_vbios_init(dev);
if (ret)
return ret;
/* feature_byte on BMP is poor, but init always sets CR4B */
if (bios->major_version < 5)
bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;
/* all BIT systems need p_f_m_t for digital_min_front_porch */
if (bios->is_mobile || bios->major_version >= 5)
ret = parse_fp_mode_table(dev, bios);
/* allow subsequent scripts to execute */
bios->execute = true;
return 0;
}
void
nouveau_bios_takedown(struct drm_device *dev)
{
nouveau_bios_i2c_devices_takedown(dev);
}