| /* |
| * Copyright (C) ST-Ericsson SA 2007-2010 |
| * Author: Per Friden <per.friden@stericsson.com> for ST-Ericsson |
| * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson |
| * License terms: GNU General Public License (GPL) version 2 |
| */ |
| |
| #include <linux/kernel.h> |
| #include <plat/ste_dma40.h> |
| |
| #include "ste_dma40_ll.h" |
| |
| /* Sets up proper LCSP1 and LCSP3 register for a logical channel */ |
| void d40_log_cfg(struct stedma40_chan_cfg *cfg, |
| u32 *lcsp1, u32 *lcsp3) |
| { |
| u32 l3 = 0; /* dst */ |
| u32 l1 = 0; /* src */ |
| |
| /* src is mem? -> increase address pos */ |
| if (cfg->dir == STEDMA40_MEM_TO_PERIPH || |
| cfg->dir == STEDMA40_MEM_TO_MEM) |
| l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS; |
| |
| /* dst is mem? -> increase address pos */ |
| if (cfg->dir == STEDMA40_PERIPH_TO_MEM || |
| cfg->dir == STEDMA40_MEM_TO_MEM) |
| l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS; |
| |
| /* src is hw? -> master port 1 */ |
| if (cfg->dir == STEDMA40_PERIPH_TO_MEM || |
| cfg->dir == STEDMA40_PERIPH_TO_PERIPH) |
| l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS; |
| |
| /* dst is hw? -> master port 1 */ |
| if (cfg->dir == STEDMA40_MEM_TO_PERIPH || |
| cfg->dir == STEDMA40_PERIPH_TO_PERIPH) |
| l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS; |
| |
| l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS; |
| l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS; |
| l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS; |
| |
| l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS; |
| l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; |
| l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS; |
| |
| *lcsp1 = l1; |
| *lcsp3 = l3; |
| |
| } |
| |
| /* Sets up SRC and DST CFG register for both logical and physical channels */ |
| void d40_phy_cfg(struct stedma40_chan_cfg *cfg, |
| u32 *src_cfg, u32 *dst_cfg, bool is_log) |
| { |
| u32 src = 0; |
| u32 dst = 0; |
| |
| if (!is_log) { |
| /* Physical channel */ |
| if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) || |
| (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) { |
| /* Set master port to 1 */ |
| src |= 1 << D40_SREG_CFG_MST_POS; |
| src |= D40_TYPE_TO_EVENT(cfg->src_dev_type); |
| |
| if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) |
| src |= 1 << D40_SREG_CFG_PHY_TM_POS; |
| else |
| src |= 3 << D40_SREG_CFG_PHY_TM_POS; |
| } |
| if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) || |
| (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) { |
| /* Set master port to 1 */ |
| dst |= 1 << D40_SREG_CFG_MST_POS; |
| dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type); |
| |
| if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) |
| dst |= 1 << D40_SREG_CFG_PHY_TM_POS; |
| else |
| dst |= 3 << D40_SREG_CFG_PHY_TM_POS; |
| } |
| /* Interrupt on end of transfer for destination */ |
| dst |= 1 << D40_SREG_CFG_TIM_POS; |
| |
| /* Generate interrupt on error */ |
| src |= 1 << D40_SREG_CFG_EIM_POS; |
| dst |= 1 << D40_SREG_CFG_EIM_POS; |
| |
| /* PSIZE */ |
| if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) { |
| src |= 1 << D40_SREG_CFG_PHY_PEN_POS; |
| src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS; |
| } |
| if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) { |
| dst |= 1 << D40_SREG_CFG_PHY_PEN_POS; |
| dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS; |
| } |
| |
| /* Element size */ |
| src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS; |
| dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS; |
| |
| } else { |
| /* Logical channel */ |
| dst |= 1 << D40_SREG_CFG_LOG_GIM_POS; |
| src |= 1 << D40_SREG_CFG_LOG_GIM_POS; |
| } |
| |
| if (cfg->high_priority) { |
| src |= 1 << D40_SREG_CFG_PRI_POS; |
| dst |= 1 << D40_SREG_CFG_PRI_POS; |
| } |
| |
| if (cfg->src_info.big_endian) |
| src |= 1 << D40_SREG_CFG_LBE_POS; |
| if (cfg->dst_info.big_endian) |
| dst |= 1 << D40_SREG_CFG_LBE_POS; |
| |
| *src_cfg = src; |
| *dst_cfg = dst; |
| } |
| |
| int d40_phy_fill_lli(struct d40_phy_lli *lli, |
| dma_addr_t data, |
| u32 data_size, |
| int psize, |
| dma_addr_t next_lli, |
| u32 reg_cfg, |
| bool term_int, |
| u32 data_width, |
| bool is_device) |
| { |
| int num_elems; |
| |
| if (psize == STEDMA40_PSIZE_PHY_1) |
| num_elems = 1; |
| else |
| num_elems = 2 << psize; |
| |
| /* |
| * Size is 16bit. data_width is 8, 16, 32 or 64 bit |
| * Block large than 64 KiB must be split. |
| */ |
| if (data_size > (0xffff << data_width)) |
| return -EINVAL; |
| |
| /* Must be aligned */ |
| if (!IS_ALIGNED(data, 0x1 << data_width)) |
| return -EINVAL; |
| |
| /* Transfer size can't be smaller than (num_elms * elem_size) */ |
| if (data_size < num_elems * (0x1 << data_width)) |
| return -EINVAL; |
| |
| /* The number of elements. IE now many chunks */ |
| lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS; |
| |
| /* |
| * Distance to next element sized entry. |
| * Usually the size of the element unless you want gaps. |
| */ |
| if (!is_device) |
| lli->reg_elt |= (0x1 << data_width) << |
| D40_SREG_ELEM_PHY_EIDX_POS; |
| |
| /* Where the data is */ |
| lli->reg_ptr = data; |
| lli->reg_cfg = reg_cfg; |
| |
| /* If this scatter list entry is the last one, no next link */ |
| if (next_lli == 0) |
| lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS; |
| else |
| lli->reg_lnk = next_lli; |
| |
| /* Set/clear interrupt generation on this link item.*/ |
| if (term_int) |
| lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS; |
| else |
| lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS); |
| |
| /* Post link */ |
| lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS; |
| |
| return 0; |
| } |
| |
| int d40_phy_sg_to_lli(struct scatterlist *sg, |
| int sg_len, |
| dma_addr_t target, |
| struct d40_phy_lli *lli, |
| dma_addr_t lli_phys, |
| u32 reg_cfg, |
| u32 data_width, |
| int psize) |
| { |
| int total_size = 0; |
| int i; |
| struct scatterlist *current_sg = sg; |
| dma_addr_t next_lli_phys; |
| dma_addr_t dst; |
| int err = 0; |
| |
| for_each_sg(sg, current_sg, sg_len, i) { |
| |
| total_size += sg_dma_len(current_sg); |
| |
| /* If this scatter list entry is the last one, no next link */ |
| if (sg_len - 1 == i) |
| next_lli_phys = 0; |
| else |
| next_lli_phys = ALIGN(lli_phys + (i + 1) * |
| sizeof(struct d40_phy_lli), |
| D40_LLI_ALIGN); |
| |
| if (target) |
| dst = target; |
| else |
| dst = sg_phys(current_sg); |
| |
| err = d40_phy_fill_lli(&lli[i], |
| dst, |
| sg_dma_len(current_sg), |
| psize, |
| next_lli_phys, |
| reg_cfg, |
| !next_lli_phys, |
| data_width, |
| target == dst); |
| if (err) |
| goto err; |
| } |
| |
| return total_size; |
| err: |
| return err; |
| } |
| |
| |
| void d40_phy_lli_write(void __iomem *virtbase, |
| u32 phy_chan_num, |
| struct d40_phy_lli *lli_dst, |
| struct d40_phy_lli *lli_src) |
| { |
| |
| writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE + |
| phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG); |
| writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE + |
| phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT); |
| writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE + |
| phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR); |
| writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE + |
| phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK); |
| |
| writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE + |
| phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG); |
| writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE + |
| phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT); |
| writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE + |
| phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR); |
| writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE + |
| phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK); |
| |
| } |
| |
| /* DMA logical lli operations */ |
| |
| static void d40_log_lli_link(struct d40_log_lli *lli_dst, |
| struct d40_log_lli *lli_src, |
| int next) |
| { |
| u32 slos = 0; |
| u32 dlos = 0; |
| |
| if (next != -EINVAL) { |
| slos = next * 2; |
| dlos = next * 2 + 1; |
| } else { |
| lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK; |
| lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK; |
| } |
| |
| lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | |
| (slos << D40_MEM_LCSP1_SLOS_POS); |
| |
| lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | |
| (dlos << D40_MEM_LCSP1_SLOS_POS); |
| } |
| |
| void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, |
| struct d40_log_lli *lli_dst, |
| struct d40_log_lli *lli_src, |
| int next) |
| { |
| d40_log_lli_link(lli_dst, lli_src, next); |
| |
| writel(lli_src->lcsp02, &lcpa[0].lcsp0); |
| writel(lli_src->lcsp13, &lcpa[0].lcsp1); |
| writel(lli_dst->lcsp02, &lcpa[0].lcsp2); |
| writel(lli_dst->lcsp13, &lcpa[0].lcsp3); |
| } |
| |
| void d40_log_lli_lcla_write(struct d40_log_lli *lcla, |
| struct d40_log_lli *lli_dst, |
| struct d40_log_lli *lli_src, |
| int next) |
| { |
| d40_log_lli_link(lli_dst, lli_src, next); |
| |
| writel(lli_src->lcsp02, &lcla[0].lcsp02); |
| writel(lli_src->lcsp13, &lcla[0].lcsp13); |
| writel(lli_dst->lcsp02, &lcla[1].lcsp02); |
| writel(lli_dst->lcsp13, &lcla[1].lcsp13); |
| } |
| |
| void d40_log_fill_lli(struct d40_log_lli *lli, |
| dma_addr_t data, u32 data_size, |
| u32 reg_cfg, |
| u32 data_width, |
| bool addr_inc) |
| { |
| lli->lcsp13 = reg_cfg; |
| |
| /* The number of elements to transfer */ |
| lli->lcsp02 = ((data_size >> data_width) << |
| D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK; |
| /* 16 LSBs address of the current element */ |
| lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK; |
| /* 16 MSBs address of the current element */ |
| lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK; |
| |
| if (addr_inc) |
| lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK; |
| |
| } |
| |
| int d40_log_sg_to_dev(struct scatterlist *sg, |
| int sg_len, |
| struct d40_log_lli_bidir *lli, |
| struct d40_def_lcsp *lcsp, |
| u32 src_data_width, |
| u32 dst_data_width, |
| enum dma_data_direction direction, |
| dma_addr_t dev_addr) |
| { |
| int total_size = 0; |
| struct scatterlist *current_sg = sg; |
| int i; |
| |
| for_each_sg(sg, current_sg, sg_len, i) { |
| total_size += sg_dma_len(current_sg); |
| |
| if (direction == DMA_TO_DEVICE) { |
| d40_log_fill_lli(&lli->src[i], |
| sg_phys(current_sg), |
| sg_dma_len(current_sg), |
| lcsp->lcsp1, src_data_width, |
| true); |
| d40_log_fill_lli(&lli->dst[i], |
| dev_addr, |
| sg_dma_len(current_sg), |
| lcsp->lcsp3, dst_data_width, |
| false); |
| } else { |
| d40_log_fill_lli(&lli->dst[i], |
| sg_phys(current_sg), |
| sg_dma_len(current_sg), |
| lcsp->lcsp3, dst_data_width, |
| true); |
| d40_log_fill_lli(&lli->src[i], |
| dev_addr, |
| sg_dma_len(current_sg), |
| lcsp->lcsp1, src_data_width, |
| false); |
| } |
| } |
| return total_size; |
| } |
| |
| int d40_log_sg_to_lli(struct scatterlist *sg, |
| int sg_len, |
| struct d40_log_lli *lli_sg, |
| u32 lcsp13, /* src or dst*/ |
| u32 data_width) |
| { |
| int total_size = 0; |
| struct scatterlist *current_sg = sg; |
| int i; |
| |
| for_each_sg(sg, current_sg, sg_len, i) { |
| total_size += sg_dma_len(current_sg); |
| |
| d40_log_fill_lli(&lli_sg[i], |
| sg_phys(current_sg), |
| sg_dma_len(current_sg), |
| lcsp13, data_width, |
| true); |
| } |
| return total_size; |
| } |