| /* |
| * |
| * Common boot and setup code. |
| * |
| * Copyright (C) 2001 PPC64 Team, IBM Corp |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/reboot.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/seq_file.h> |
| #include <linux/ioport.h> |
| #include <linux/console.h> |
| #include <linux/utsname.h> |
| #include <linux/tty.h> |
| #include <linux/root_dev.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/unistd.h> |
| #include <linux/serial.h> |
| #include <linux/serial_8250.h> |
| #include <linux/bootmem.h> |
| #include <linux/pci.h> |
| #include <linux/lockdep.h> |
| #include <linux/memblock.h> |
| #include <asm/io.h> |
| #include <asm/kdump.h> |
| #include <asm/prom.h> |
| #include <asm/processor.h> |
| #include <asm/pgtable.h> |
| #include <asm/smp.h> |
| #include <asm/elf.h> |
| #include <asm/machdep.h> |
| #include <asm/paca.h> |
| #include <asm/time.h> |
| #include <asm/cputable.h> |
| #include <asm/sections.h> |
| #include <asm/btext.h> |
| #include <asm/nvram.h> |
| #include <asm/setup.h> |
| #include <asm/system.h> |
| #include <asm/rtas.h> |
| #include <asm/iommu.h> |
| #include <asm/serial.h> |
| #include <asm/cache.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <asm/firmware.h> |
| #include <asm/xmon.h> |
| #include <asm/udbg.h> |
| #include <asm/kexec.h> |
| #include <asm/mmu_context.h> |
| |
| #include "setup.h" |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| int boot_cpuid = 0; |
| int __initdata boot_cpu_count; |
| u64 ppc64_pft_size; |
| |
| /* Pick defaults since we might want to patch instructions |
| * before we've read this from the device tree. |
| */ |
| struct ppc64_caches ppc64_caches = { |
| .dline_size = 0x40, |
| .log_dline_size = 6, |
| .iline_size = 0x40, |
| .log_iline_size = 6 |
| }; |
| EXPORT_SYMBOL_GPL(ppc64_caches); |
| |
| /* |
| * These are used in binfmt_elf.c to put aux entries on the stack |
| * for each elf executable being started. |
| */ |
| int dcache_bsize; |
| int icache_bsize; |
| int ucache_bsize; |
| |
| #ifdef CONFIG_SMP |
| |
| static char *smt_enabled_cmdline; |
| |
| /* Look for ibm,smt-enabled OF option */ |
| static void check_smt_enabled(void) |
| { |
| struct device_node *dn; |
| const char *smt_option; |
| |
| /* Default to enabling all threads */ |
| smt_enabled_at_boot = threads_per_core; |
| |
| /* Allow the command line to overrule the OF option */ |
| if (smt_enabled_cmdline) { |
| if (!strcmp(smt_enabled_cmdline, "on")) |
| smt_enabled_at_boot = threads_per_core; |
| else if (!strcmp(smt_enabled_cmdline, "off")) |
| smt_enabled_at_boot = 0; |
| else { |
| long smt; |
| int rc; |
| |
| rc = strict_strtol(smt_enabled_cmdline, 10, &smt); |
| if (!rc) |
| smt_enabled_at_boot = |
| min(threads_per_core, (int)smt); |
| } |
| } else { |
| dn = of_find_node_by_path("/options"); |
| if (dn) { |
| smt_option = of_get_property(dn, "ibm,smt-enabled", |
| NULL); |
| |
| if (smt_option) { |
| if (!strcmp(smt_option, "on")) |
| smt_enabled_at_boot = threads_per_core; |
| else if (!strcmp(smt_option, "off")) |
| smt_enabled_at_boot = 0; |
| } |
| |
| of_node_put(dn); |
| } |
| } |
| } |
| |
| /* Look for smt-enabled= cmdline option */ |
| static int __init early_smt_enabled(char *p) |
| { |
| smt_enabled_cmdline = p; |
| return 0; |
| } |
| early_param("smt-enabled", early_smt_enabled); |
| |
| #else |
| #define check_smt_enabled() |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * Early initialization entry point. This is called by head.S |
| * with MMU translation disabled. We rely on the "feature" of |
| * the CPU that ignores the top 2 bits of the address in real |
| * mode so we can access kernel globals normally provided we |
| * only toy with things in the RMO region. From here, we do |
| * some early parsing of the device-tree to setup out MEMBLOCK |
| * data structures, and allocate & initialize the hash table |
| * and segment tables so we can start running with translation |
| * enabled. |
| * |
| * It is this function which will call the probe() callback of |
| * the various platform types and copy the matching one to the |
| * global ppc_md structure. Your platform can eventually do |
| * some very early initializations from the probe() routine, but |
| * this is not recommended, be very careful as, for example, the |
| * device-tree is not accessible via normal means at this point. |
| */ |
| |
| void __init early_setup(unsigned long dt_ptr) |
| { |
| /* -------- printk is _NOT_ safe to use here ! ------- */ |
| |
| /* Identify CPU type */ |
| identify_cpu(0, mfspr(SPRN_PVR)); |
| |
| /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ |
| initialise_paca(&boot_paca, 0); |
| setup_paca(&boot_paca); |
| |
| /* Initialize lockdep early or else spinlocks will blow */ |
| lockdep_init(); |
| |
| /* -------- printk is now safe to use ------- */ |
| |
| /* Enable early debugging if any specified (see udbg.h) */ |
| udbg_early_init(); |
| |
| DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); |
| |
| /* |
| * Do early initialization using the flattened device |
| * tree, such as retrieving the physical memory map or |
| * calculating/retrieving the hash table size. |
| */ |
| early_init_devtree(__va(dt_ptr)); |
| |
| /* Now we know the logical id of our boot cpu, setup the paca. */ |
| setup_paca(&paca[boot_cpuid]); |
| |
| /* Fix up paca fields required for the boot cpu */ |
| get_paca()->cpu_start = 1; |
| |
| /* Probe the machine type */ |
| probe_machine(); |
| |
| setup_kdump_trampoline(); |
| |
| DBG("Found, Initializing memory management...\n"); |
| |
| /* Initialize the hash table or TLB handling */ |
| early_init_mmu(); |
| |
| DBG(" <- early_setup()\n"); |
| } |
| |
| #ifdef CONFIG_SMP |
| void early_setup_secondary(void) |
| { |
| /* Mark interrupts enabled in PACA */ |
| get_paca()->soft_enabled = 0; |
| |
| /* Initialize the hash table or TLB handling */ |
| early_init_mmu_secondary(); |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC) |
| void smp_release_cpus(void) |
| { |
| unsigned long *ptr; |
| int i; |
| |
| DBG(" -> smp_release_cpus()\n"); |
| |
| /* All secondary cpus are spinning on a common spinloop, release them |
| * all now so they can start to spin on their individual paca |
| * spinloops. For non SMP kernels, the secondary cpus never get out |
| * of the common spinloop. |
| */ |
| |
| ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop |
| - PHYSICAL_START); |
| *ptr = __pa(generic_secondary_smp_init); |
| |
| /* And wait a bit for them to catch up */ |
| for (i = 0; i < 100000; i++) { |
| mb(); |
| HMT_low(); |
| if (boot_cpu_count == 0) |
| break; |
| udelay(1); |
| } |
| DBG("boot_cpu_count = %d\n", boot_cpu_count); |
| |
| DBG(" <- smp_release_cpus()\n"); |
| } |
| #endif /* CONFIG_SMP || CONFIG_KEXEC */ |
| |
| /* |
| * Initialize some remaining members of the ppc64_caches and systemcfg |
| * structures |
| * (at least until we get rid of them completely). This is mostly some |
| * cache informations about the CPU that will be used by cache flush |
| * routines and/or provided to userland |
| */ |
| static void __init initialize_cache_info(void) |
| { |
| struct device_node *np; |
| unsigned long num_cpus = 0; |
| |
| DBG(" -> initialize_cache_info()\n"); |
| |
| for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) { |
| num_cpus += 1; |
| |
| /* We're assuming *all* of the CPUs have the same |
| * d-cache and i-cache sizes... -Peter |
| */ |
| |
| if ( num_cpus == 1 ) { |
| const u32 *sizep, *lsizep; |
| u32 size, lsize; |
| |
| size = 0; |
| lsize = cur_cpu_spec->dcache_bsize; |
| sizep = of_get_property(np, "d-cache-size", NULL); |
| if (sizep != NULL) |
| size = *sizep; |
| lsizep = of_get_property(np, "d-cache-block-size", NULL); |
| /* fallback if block size missing */ |
| if (lsizep == NULL) |
| lsizep = of_get_property(np, "d-cache-line-size", NULL); |
| if (lsizep != NULL) |
| lsize = *lsizep; |
| if (sizep == 0 || lsizep == 0) |
| DBG("Argh, can't find dcache properties ! " |
| "sizep: %p, lsizep: %p\n", sizep, lsizep); |
| |
| ppc64_caches.dsize = size; |
| ppc64_caches.dline_size = lsize; |
| ppc64_caches.log_dline_size = __ilog2(lsize); |
| ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; |
| |
| size = 0; |
| lsize = cur_cpu_spec->icache_bsize; |
| sizep = of_get_property(np, "i-cache-size", NULL); |
| if (sizep != NULL) |
| size = *sizep; |
| lsizep = of_get_property(np, "i-cache-block-size", NULL); |
| if (lsizep == NULL) |
| lsizep = of_get_property(np, "i-cache-line-size", NULL); |
| if (lsizep != NULL) |
| lsize = *lsizep; |
| if (sizep == 0 || lsizep == 0) |
| DBG("Argh, can't find icache properties ! " |
| "sizep: %p, lsizep: %p\n", sizep, lsizep); |
| |
| ppc64_caches.isize = size; |
| ppc64_caches.iline_size = lsize; |
| ppc64_caches.log_iline_size = __ilog2(lsize); |
| ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; |
| } |
| } |
| |
| DBG(" <- initialize_cache_info()\n"); |
| } |
| |
| |
| /* |
| * Do some initial setup of the system. The parameters are those which |
| * were passed in from the bootloader. |
| */ |
| void __init setup_system(void) |
| { |
| DBG(" -> setup_system()\n"); |
| |
| /* Apply the CPUs-specific and firmware specific fixups to kernel |
| * text (nop out sections not relevant to this CPU or this firmware) |
| */ |
| do_feature_fixups(cur_cpu_spec->cpu_features, |
| &__start___ftr_fixup, &__stop___ftr_fixup); |
| do_feature_fixups(cur_cpu_spec->mmu_features, |
| &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup); |
| do_feature_fixups(powerpc_firmware_features, |
| &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup); |
| do_lwsync_fixups(cur_cpu_spec->cpu_features, |
| &__start___lwsync_fixup, &__stop___lwsync_fixup); |
| |
| /* |
| * Unflatten the device-tree passed by prom_init or kexec |
| */ |
| unflatten_device_tree(); |
| |
| /* |
| * Fill the ppc64_caches & systemcfg structures with informations |
| * retrieved from the device-tree. |
| */ |
| initialize_cache_info(); |
| |
| #ifdef CONFIG_PPC_RTAS |
| /* |
| * Initialize RTAS if available |
| */ |
| rtas_initialize(); |
| #endif /* CONFIG_PPC_RTAS */ |
| |
| /* |
| * Check if we have an initrd provided via the device-tree |
| */ |
| check_for_initrd(); |
| |
| /* |
| * Do some platform specific early initializations, that includes |
| * setting up the hash table pointers. It also sets up some interrupt-mapping |
| * related options that will be used by finish_device_tree() |
| */ |
| if (ppc_md.init_early) |
| ppc_md.init_early(); |
| |
| /* |
| * We can discover serial ports now since the above did setup the |
| * hash table management for us, thus ioremap works. We do that early |
| * so that further code can be debugged |
| */ |
| find_legacy_serial_ports(); |
| |
| /* |
| * Register early console |
| */ |
| register_early_udbg_console(); |
| |
| /* |
| * Initialize xmon |
| */ |
| xmon_setup(); |
| |
| smp_setup_cpu_maps(); |
| check_smt_enabled(); |
| |
| #ifdef CONFIG_SMP |
| /* Release secondary cpus out of their spinloops at 0x60 now that |
| * we can map physical -> logical CPU ids |
| */ |
| smp_release_cpus(); |
| #endif |
| |
| printk("Starting Linux PPC64 %s\n", init_utsname()->version); |
| |
| printk("-----------------------------------------------------\n"); |
| printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); |
| printk("physicalMemorySize = 0x%llx\n", memblock_phys_mem_size()); |
| if (ppc64_caches.dline_size != 0x80) |
| printk("ppc64_caches.dcache_line_size = 0x%x\n", |
| ppc64_caches.dline_size); |
| if (ppc64_caches.iline_size != 0x80) |
| printk("ppc64_caches.icache_line_size = 0x%x\n", |
| ppc64_caches.iline_size); |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| if (htab_address) |
| printk("htab_address = 0x%p\n", htab_address); |
| printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); |
| #endif /* CONFIG_PPC_STD_MMU_64 */ |
| if (PHYSICAL_START > 0) |
| printk("physical_start = 0x%llx\n", |
| (unsigned long long)PHYSICAL_START); |
| printk("-----------------------------------------------------\n"); |
| |
| DBG(" <- setup_system()\n"); |
| } |
| |
| static u64 slb0_limit(void) |
| { |
| if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) { |
| return 1UL << SID_SHIFT_1T; |
| } |
| return 1UL << SID_SHIFT; |
| } |
| |
| static void __init irqstack_early_init(void) |
| { |
| u64 limit = slb0_limit(); |
| unsigned int i; |
| |
| /* |
| * Interrupt stacks must be in the first segment since we |
| * cannot afford to take SLB misses on them. |
| */ |
| for_each_possible_cpu(i) { |
| softirq_ctx[i] = (struct thread_info *) |
| __va(memblock_alloc_base(THREAD_SIZE, |
| THREAD_SIZE, limit)); |
| hardirq_ctx[i] = (struct thread_info *) |
| __va(memblock_alloc_base(THREAD_SIZE, |
| THREAD_SIZE, limit)); |
| } |
| } |
| |
| #ifdef CONFIG_PPC_BOOK3E |
| static void __init exc_lvl_early_init(void) |
| { |
| unsigned int i; |
| |
| for_each_possible_cpu(i) { |
| critirq_ctx[i] = (struct thread_info *) |
| __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE)); |
| dbgirq_ctx[i] = (struct thread_info *) |
| __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE)); |
| mcheckirq_ctx[i] = (struct thread_info *) |
| __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE)); |
| } |
| } |
| #else |
| #define exc_lvl_early_init() |
| #endif |
| |
| /* |
| * Stack space used when we detect a bad kernel stack pointer, and |
| * early in SMP boots before relocation is enabled. |
| */ |
| static void __init emergency_stack_init(void) |
| { |
| u64 limit; |
| unsigned int i; |
| |
| /* |
| * Emergency stacks must be under 256MB, we cannot afford to take |
| * SLB misses on them. The ABI also requires them to be 128-byte |
| * aligned. |
| * |
| * Since we use these as temporary stacks during secondary CPU |
| * bringup, we need to get at them in real mode. This means they |
| * must also be within the RMO region. |
| */ |
| limit = min(slb0_limit(), ppc64_rma_size); |
| |
| for_each_possible_cpu(i) { |
| unsigned long sp; |
| sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); |
| sp += THREAD_SIZE; |
| paca[i].emergency_sp = __va(sp); |
| } |
| } |
| |
| /* |
| * Called into from start_kernel this initializes bootmem, which is used |
| * to manage page allocation until mem_init is called. |
| */ |
| void __init setup_arch(char **cmdline_p) |
| { |
| ppc64_boot_msg(0x12, "Setup Arch"); |
| |
| *cmdline_p = cmd_line; |
| |
| /* |
| * Set cache line size based on type of cpu as a default. |
| * Systems with OF can look in the properties on the cpu node(s) |
| * for a possibly more accurate value. |
| */ |
| dcache_bsize = ppc64_caches.dline_size; |
| icache_bsize = ppc64_caches.iline_size; |
| |
| /* reboot on panic */ |
| panic_timeout = 180; |
| |
| if (ppc_md.panic) |
| setup_panic(); |
| |
| init_mm.start_code = (unsigned long)_stext; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = klimit; |
| |
| irqstack_early_init(); |
| exc_lvl_early_init(); |
| emergency_stack_init(); |
| |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| stabs_alloc(); |
| #endif |
| /* set up the bootmem stuff with available memory */ |
| do_init_bootmem(); |
| sparse_init(); |
| |
| #ifdef CONFIG_DUMMY_CONSOLE |
| conswitchp = &dummy_con; |
| #endif |
| |
| if (ppc_md.setup_arch) |
| ppc_md.setup_arch(); |
| |
| paging_init(); |
| |
| /* Initialize the MMU context management stuff */ |
| mmu_context_init(); |
| |
| ppc64_boot_msg(0x15, "Setup Done"); |
| } |
| |
| |
| /* ToDo: do something useful if ppc_md is not yet setup. */ |
| #define PPC64_LINUX_FUNCTION 0x0f000000 |
| #define PPC64_IPL_MESSAGE 0xc0000000 |
| #define PPC64_TERM_MESSAGE 0xb0000000 |
| |
| static void ppc64_do_msg(unsigned int src, const char *msg) |
| { |
| if (ppc_md.progress) { |
| char buf[128]; |
| |
| sprintf(buf, "%08X\n", src); |
| ppc_md.progress(buf, 0); |
| snprintf(buf, 128, "%s", msg); |
| ppc_md.progress(buf, 0); |
| } |
| } |
| |
| /* Print a boot progress message. */ |
| void ppc64_boot_msg(unsigned int src, const char *msg) |
| { |
| ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); |
| printk("[boot]%04x %s\n", src, msg); |
| } |
| |
| #ifdef CONFIG_SMP |
| #define PCPU_DYN_SIZE () |
| |
| static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) |
| { |
| return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align, |
| __pa(MAX_DMA_ADDRESS)); |
| } |
| |
| static void __init pcpu_fc_free(void *ptr, size_t size) |
| { |
| free_bootmem(__pa(ptr), size); |
| } |
| |
| static int pcpu_cpu_distance(unsigned int from, unsigned int to) |
| { |
| if (cpu_to_node(from) == cpu_to_node(to)) |
| return LOCAL_DISTANCE; |
| else |
| return REMOTE_DISTANCE; |
| } |
| |
| unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(__per_cpu_offset); |
| |
| void __init setup_per_cpu_areas(void) |
| { |
| const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; |
| size_t atom_size; |
| unsigned long delta; |
| unsigned int cpu; |
| int rc; |
| |
| /* |
| * Linear mapping is one of 4K, 1M and 16M. For 4K, no need |
| * to group units. For larger mappings, use 1M atom which |
| * should be large enough to contain a number of units. |
| */ |
| if (mmu_linear_psize == MMU_PAGE_4K) |
| atom_size = PAGE_SIZE; |
| else |
| atom_size = 1 << 20; |
| |
| rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, |
| pcpu_fc_alloc, pcpu_fc_free); |
| if (rc < 0) |
| panic("cannot initialize percpu area (err=%d)", rc); |
| |
| delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| for_each_possible_cpu(cpu) { |
| __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
| paca[cpu].data_offset = __per_cpu_offset[cpu]; |
| } |
| } |
| #endif |
| |
| |
| #ifdef CONFIG_PPC_INDIRECT_IO |
| struct ppc_pci_io ppc_pci_io; |
| EXPORT_SYMBOL(ppc_pci_io); |
| #endif /* CONFIG_PPC_INDIRECT_IO */ |
| |