| /*---------------------------------------------------------------------------+ |
| | reg_ld_str.c | |
| | | |
| | All of the functions which transfer data between user memory and FPU_REGs.| |
| | | |
| | Copyright (C) 1992,1993,1994,1996,1997 | |
| | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | |
| | E-mail billm@suburbia.net | |
| | | |
| | | |
| +---------------------------------------------------------------------------*/ |
| |
| /*---------------------------------------------------------------------------+ |
| | Note: | |
| | The file contains code which accesses user memory. | |
| | Emulator static data may change when user memory is accessed, due to | |
| | other processes using the emulator while swapping is in progress. | |
| +---------------------------------------------------------------------------*/ |
| |
| #include "fpu_emu.h" |
| |
| #include <asm/uaccess.h> |
| |
| #include "fpu_system.h" |
| #include "exception.h" |
| #include "reg_constant.h" |
| #include "control_w.h" |
| #include "status_w.h" |
| |
| #define DOUBLE_Emax 1023 /* largest valid exponent */ |
| #define DOUBLE_Ebias 1023 |
| #define DOUBLE_Emin (-1022) /* smallest valid exponent */ |
| |
| #define SINGLE_Emax 127 /* largest valid exponent */ |
| #define SINGLE_Ebias 127 |
| #define SINGLE_Emin (-126) /* smallest valid exponent */ |
| |
| static u_char normalize_no_excep(FPU_REG *r, int exp, int sign) |
| { |
| u_char tag; |
| |
| setexponent16(r, exp); |
| |
| tag = FPU_normalize_nuo(r); |
| stdexp(r); |
| if (sign) |
| setnegative(r); |
| |
| return tag; |
| } |
| |
| int FPU_tagof(FPU_REG *ptr) |
| { |
| int exp; |
| |
| exp = exponent16(ptr) & 0x7fff; |
| if (exp == 0) { |
| if (!(ptr->sigh | ptr->sigl)) { |
| return TAG_Zero; |
| } |
| /* The number is a de-normal or pseudodenormal. */ |
| return TAG_Special; |
| } |
| |
| if (exp == 0x7fff) { |
| /* Is an Infinity, a NaN, or an unsupported data type. */ |
| return TAG_Special; |
| } |
| |
| if (!(ptr->sigh & 0x80000000)) { |
| /* Unsupported data type. */ |
| /* Valid numbers have the ms bit set to 1. */ |
| /* Unnormal. */ |
| return TAG_Special; |
| } |
| |
| return TAG_Valid; |
| } |
| |
| /* Get a long double from user memory */ |
| int FPU_load_extended(long double __user *s, int stnr) |
| { |
| FPU_REG *sti_ptr = &st(stnr); |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, s, 10); |
| __copy_from_user(sti_ptr, s, 10); |
| RE_ENTRANT_CHECK_ON; |
| |
| return FPU_tagof(sti_ptr); |
| } |
| |
| /* Get a double from user memory */ |
| int FPU_load_double(double __user *dfloat, FPU_REG *loaded_data) |
| { |
| int exp, tag, negative; |
| unsigned m64, l64; |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, dfloat, 8); |
| FPU_get_user(m64, 1 + (unsigned long __user *)dfloat); |
| FPU_get_user(l64, (unsigned long __user *)dfloat); |
| RE_ENTRANT_CHECK_ON; |
| |
| negative = (m64 & 0x80000000) ? SIGN_Negative : SIGN_Positive; |
| exp = ((m64 & 0x7ff00000) >> 20) - DOUBLE_Ebias + EXTENDED_Ebias; |
| m64 &= 0xfffff; |
| if (exp > DOUBLE_Emax + EXTENDED_Ebias) { |
| /* Infinity or NaN */ |
| if ((m64 == 0) && (l64 == 0)) { |
| /* +- infinity */ |
| loaded_data->sigh = 0x80000000; |
| loaded_data->sigl = 0x00000000; |
| exp = EXP_Infinity + EXTENDED_Ebias; |
| tag = TAG_Special; |
| } else { |
| /* Must be a signaling or quiet NaN */ |
| exp = EXP_NaN + EXTENDED_Ebias; |
| loaded_data->sigh = (m64 << 11) | 0x80000000; |
| loaded_data->sigh |= l64 >> 21; |
| loaded_data->sigl = l64 << 11; |
| tag = TAG_Special; /* The calling function must look for NaNs */ |
| } |
| } else if (exp < DOUBLE_Emin + EXTENDED_Ebias) { |
| /* Zero or de-normal */ |
| if ((m64 == 0) && (l64 == 0)) { |
| /* Zero */ |
| reg_copy(&CONST_Z, loaded_data); |
| exp = 0; |
| tag = TAG_Zero; |
| } else { |
| /* De-normal */ |
| loaded_data->sigh = m64 << 11; |
| loaded_data->sigh |= l64 >> 21; |
| loaded_data->sigl = l64 << 11; |
| |
| return normalize_no_excep(loaded_data, DOUBLE_Emin, |
| negative) |
| | (denormal_operand() < 0 ? FPU_Exception : 0); |
| } |
| } else { |
| loaded_data->sigh = (m64 << 11) | 0x80000000; |
| loaded_data->sigh |= l64 >> 21; |
| loaded_data->sigl = l64 << 11; |
| |
| tag = TAG_Valid; |
| } |
| |
| setexponent16(loaded_data, exp | negative); |
| |
| return tag; |
| } |
| |
| /* Get a float from user memory */ |
| int FPU_load_single(float __user *single, FPU_REG *loaded_data) |
| { |
| unsigned m32; |
| int exp, tag, negative; |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, single, 4); |
| FPU_get_user(m32, (unsigned long __user *)single); |
| RE_ENTRANT_CHECK_ON; |
| |
| negative = (m32 & 0x80000000) ? SIGN_Negative : SIGN_Positive; |
| |
| if (!(m32 & 0x7fffffff)) { |
| /* Zero */ |
| reg_copy(&CONST_Z, loaded_data); |
| addexponent(loaded_data, negative); |
| return TAG_Zero; |
| } |
| exp = ((m32 & 0x7f800000) >> 23) - SINGLE_Ebias + EXTENDED_Ebias; |
| m32 = (m32 & 0x7fffff) << 8; |
| if (exp < SINGLE_Emin + EXTENDED_Ebias) { |
| /* De-normals */ |
| loaded_data->sigh = m32; |
| loaded_data->sigl = 0; |
| |
| return normalize_no_excep(loaded_data, SINGLE_Emin, negative) |
| | (denormal_operand() < 0 ? FPU_Exception : 0); |
| } else if (exp > SINGLE_Emax + EXTENDED_Ebias) { |
| /* Infinity or NaN */ |
| if (m32 == 0) { |
| /* +- infinity */ |
| loaded_data->sigh = 0x80000000; |
| loaded_data->sigl = 0x00000000; |
| exp = EXP_Infinity + EXTENDED_Ebias; |
| tag = TAG_Special; |
| } else { |
| /* Must be a signaling or quiet NaN */ |
| exp = EXP_NaN + EXTENDED_Ebias; |
| loaded_data->sigh = m32 | 0x80000000; |
| loaded_data->sigl = 0; |
| tag = TAG_Special; /* The calling function must look for NaNs */ |
| } |
| } else { |
| loaded_data->sigh = m32 | 0x80000000; |
| loaded_data->sigl = 0; |
| tag = TAG_Valid; |
| } |
| |
| setexponent16(loaded_data, exp | negative); /* Set the sign. */ |
| |
| return tag; |
| } |
| |
| /* Get a long long from user memory */ |
| int FPU_load_int64(long long __user *_s) |
| { |
| long long s; |
| int sign; |
| FPU_REG *st0_ptr = &st(0); |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, _s, 8); |
| if (copy_from_user(&s, _s, 8)) |
| FPU_abort; |
| RE_ENTRANT_CHECK_ON; |
| |
| if (s == 0) { |
| reg_copy(&CONST_Z, st0_ptr); |
| return TAG_Zero; |
| } |
| |
| if (s > 0) |
| sign = SIGN_Positive; |
| else { |
| s = -s; |
| sign = SIGN_Negative; |
| } |
| |
| significand(st0_ptr) = s; |
| |
| return normalize_no_excep(st0_ptr, 63, sign); |
| } |
| |
| /* Get a long from user memory */ |
| int FPU_load_int32(long __user *_s, FPU_REG *loaded_data) |
| { |
| long s; |
| int negative; |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, _s, 4); |
| FPU_get_user(s, _s); |
| RE_ENTRANT_CHECK_ON; |
| |
| if (s == 0) { |
| reg_copy(&CONST_Z, loaded_data); |
| return TAG_Zero; |
| } |
| |
| if (s > 0) |
| negative = SIGN_Positive; |
| else { |
| s = -s; |
| negative = SIGN_Negative; |
| } |
| |
| loaded_data->sigh = s; |
| loaded_data->sigl = 0; |
| |
| return normalize_no_excep(loaded_data, 31, negative); |
| } |
| |
| /* Get a short from user memory */ |
| int FPU_load_int16(short __user *_s, FPU_REG *loaded_data) |
| { |
| int s, negative; |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, _s, 2); |
| /* Cast as short to get the sign extended. */ |
| FPU_get_user(s, _s); |
| RE_ENTRANT_CHECK_ON; |
| |
| if (s == 0) { |
| reg_copy(&CONST_Z, loaded_data); |
| return TAG_Zero; |
| } |
| |
| if (s > 0) |
| negative = SIGN_Positive; |
| else { |
| s = -s; |
| negative = SIGN_Negative; |
| } |
| |
| loaded_data->sigh = s << 16; |
| loaded_data->sigl = 0; |
| |
| return normalize_no_excep(loaded_data, 15, negative); |
| } |
| |
| /* Get a packed bcd array from user memory */ |
| int FPU_load_bcd(u_char __user *s) |
| { |
| FPU_REG *st0_ptr = &st(0); |
| int pos; |
| u_char bcd; |
| long long l = 0; |
| int sign; |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, s, 10); |
| RE_ENTRANT_CHECK_ON; |
| for (pos = 8; pos >= 0; pos--) { |
| l *= 10; |
| RE_ENTRANT_CHECK_OFF; |
| FPU_get_user(bcd, s + pos); |
| RE_ENTRANT_CHECK_ON; |
| l += bcd >> 4; |
| l *= 10; |
| l += bcd & 0x0f; |
| } |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_get_user(sign, s + 9); |
| sign = sign & 0x80 ? SIGN_Negative : SIGN_Positive; |
| RE_ENTRANT_CHECK_ON; |
| |
| if (l == 0) { |
| reg_copy(&CONST_Z, st0_ptr); |
| addexponent(st0_ptr, sign); /* Set the sign. */ |
| return TAG_Zero; |
| } else { |
| significand(st0_ptr) = l; |
| return normalize_no_excep(st0_ptr, 63, sign); |
| } |
| } |
| |
| /*===========================================================================*/ |
| |
| /* Put a long double into user memory */ |
| int FPU_store_extended(FPU_REG *st0_ptr, u_char st0_tag, |
| long double __user * d) |
| { |
| /* |
| The only exception raised by an attempt to store to an |
| extended format is the Invalid Stack exception, i.e. |
| attempting to store from an empty register. |
| */ |
| |
| if (st0_tag != TAG_Empty) { |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 10); |
| |
| FPU_put_user(st0_ptr->sigl, (unsigned long __user *)d); |
| FPU_put_user(st0_ptr->sigh, |
| (unsigned long __user *)((u_char __user *) d + 4)); |
| FPU_put_user(exponent16(st0_ptr), |
| (unsigned short __user *)((u_char __user *) d + |
| 8)); |
| RE_ENTRANT_CHECK_ON; |
| |
| return 1; |
| } |
| |
| /* Empty register (stack underflow) */ |
| EXCEPTION(EX_StackUnder); |
| if (control_word & CW_Invalid) { |
| /* The masked response */ |
| /* Put out the QNaN indefinite */ |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 10); |
| FPU_put_user(0, (unsigned long __user *)d); |
| FPU_put_user(0xc0000000, 1 + (unsigned long __user *)d); |
| FPU_put_user(0xffff, 4 + (short __user *)d); |
| RE_ENTRANT_CHECK_ON; |
| return 1; |
| } else |
| return 0; |
| |
| } |
| |
| /* Put a double into user memory */ |
| int FPU_store_double(FPU_REG *st0_ptr, u_char st0_tag, double __user *dfloat) |
| { |
| unsigned long l[2]; |
| unsigned long increment = 0; /* avoid gcc warnings */ |
| int precision_loss; |
| int exp; |
| FPU_REG tmp; |
| |
| l[0] = 0; |
| l[1] = 0; |
| if (st0_tag == TAG_Valid) { |
| reg_copy(st0_ptr, &tmp); |
| exp = exponent(&tmp); |
| |
| if (exp < DOUBLE_Emin) { /* It may be a denormal */ |
| addexponent(&tmp, -DOUBLE_Emin + 52); /* largest exp to be 51 */ |
| denormal_arg: |
| if ((precision_loss = FPU_round_to_int(&tmp, st0_tag))) { |
| #ifdef PECULIAR_486 |
| /* Did it round to a non-denormal ? */ |
| /* This behaviour might be regarded as peculiar, it appears |
| that the 80486 rounds to the dest precision, then |
| converts to decide underflow. */ |
| if (! |
| ((tmp.sigh == 0x00100000) && (tmp.sigl == 0) |
| && (st0_ptr->sigl & 0x000007ff))) |
| #endif /* PECULIAR_486 */ |
| { |
| EXCEPTION(EX_Underflow); |
| /* This is a special case: see sec 16.2.5.1 of |
| the 80486 book */ |
| if (!(control_word & CW_Underflow)) |
| return 0; |
| } |
| EXCEPTION(precision_loss); |
| if (!(control_word & CW_Precision)) |
| return 0; |
| } |
| l[0] = tmp.sigl; |
| l[1] = tmp.sigh; |
| } else { |
| if (tmp.sigl & 0x000007ff) { |
| precision_loss = 1; |
| switch (control_word & CW_RC) { |
| case RC_RND: |
| /* Rounding can get a little messy.. */ |
| increment = ((tmp.sigl & 0x7ff) > 0x400) | /* nearest */ |
| ((tmp.sigl & 0xc00) == 0xc00); /* odd -> even */ |
| break; |
| case RC_DOWN: /* towards -infinity */ |
| increment = |
| signpositive(&tmp) ? 0 : tmp. |
| sigl & 0x7ff; |
| break; |
| case RC_UP: /* towards +infinity */ |
| increment = |
| signpositive(&tmp) ? tmp. |
| sigl & 0x7ff : 0; |
| break; |
| case RC_CHOP: |
| increment = 0; |
| break; |
| } |
| |
| /* Truncate the mantissa */ |
| tmp.sigl &= 0xfffff800; |
| |
| if (increment) { |
| if (tmp.sigl >= 0xfffff800) { |
| /* the sigl part overflows */ |
| if (tmp.sigh == 0xffffffff) { |
| /* The sigh part overflows */ |
| tmp.sigh = 0x80000000; |
| exp++; |
| if (exp >= EXP_OVER) |
| goto overflow; |
| } else { |
| tmp.sigh++; |
| } |
| tmp.sigl = 0x00000000; |
| } else { |
| /* We only need to increment sigl */ |
| tmp.sigl += 0x00000800; |
| } |
| } |
| } else |
| precision_loss = 0; |
| |
| l[0] = (tmp.sigl >> 11) | (tmp.sigh << 21); |
| l[1] = ((tmp.sigh >> 11) & 0xfffff); |
| |
| if (exp > DOUBLE_Emax) { |
| overflow: |
| EXCEPTION(EX_Overflow); |
| if (!(control_word & CW_Overflow)) |
| return 0; |
| set_precision_flag_up(); |
| if (!(control_word & CW_Precision)) |
| return 0; |
| |
| /* This is a special case: see sec 16.2.5.1 of the 80486 book */ |
| /* Overflow to infinity */ |
| l[1] = 0x7ff00000; /* Set to + INF */ |
| } else { |
| if (precision_loss) { |
| if (increment) |
| set_precision_flag_up(); |
| else |
| set_precision_flag_down(); |
| } |
| /* Add the exponent */ |
| l[1] |= (((exp + DOUBLE_Ebias) & 0x7ff) << 20); |
| } |
| } |
| } else if (st0_tag == TAG_Zero) { |
| /* Number is zero */ |
| } else if (st0_tag == TAG_Special) { |
| st0_tag = FPU_Special(st0_ptr); |
| if (st0_tag == TW_Denormal) { |
| /* A denormal will always underflow. */ |
| #ifndef PECULIAR_486 |
| /* An 80486 is supposed to be able to generate |
| a denormal exception here, but... */ |
| /* Underflow has priority. */ |
| if (control_word & CW_Underflow) |
| denormal_operand(); |
| #endif /* PECULIAR_486 */ |
| reg_copy(st0_ptr, &tmp); |
| goto denormal_arg; |
| } else if (st0_tag == TW_Infinity) { |
| l[1] = 0x7ff00000; |
| } else if (st0_tag == TW_NaN) { |
| /* Is it really a NaN ? */ |
| if ((exponent(st0_ptr) == EXP_OVER) |
| && (st0_ptr->sigh & 0x80000000)) { |
| /* See if we can get a valid NaN from the FPU_REG */ |
| l[0] = |
| (st0_ptr->sigl >> 11) | (st0_ptr-> |
| sigh << 21); |
| l[1] = ((st0_ptr->sigh >> 11) & 0xfffff); |
| if (!(st0_ptr->sigh & 0x40000000)) { |
| /* It is a signalling NaN */ |
| EXCEPTION(EX_Invalid); |
| if (!(control_word & CW_Invalid)) |
| return 0; |
| l[1] |= (0x40000000 >> 11); |
| } |
| l[1] |= 0x7ff00000; |
| } else { |
| /* It is an unsupported data type */ |
| EXCEPTION(EX_Invalid); |
| if (!(control_word & CW_Invalid)) |
| return 0; |
| l[1] = 0xfff80000; |
| } |
| } |
| } else if (st0_tag == TAG_Empty) { |
| /* Empty register (stack underflow) */ |
| EXCEPTION(EX_StackUnder); |
| if (control_word & CW_Invalid) { |
| /* The masked response */ |
| /* Put out the QNaN indefinite */ |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, dfloat, 8); |
| FPU_put_user(0, (unsigned long __user *)dfloat); |
| FPU_put_user(0xfff80000, |
| 1 + (unsigned long __user *)dfloat); |
| RE_ENTRANT_CHECK_ON; |
| return 1; |
| } else |
| return 0; |
| } |
| if (getsign(st0_ptr)) |
| l[1] |= 0x80000000; |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, dfloat, 8); |
| FPU_put_user(l[0], (unsigned long __user *)dfloat); |
| FPU_put_user(l[1], 1 + (unsigned long __user *)dfloat); |
| RE_ENTRANT_CHECK_ON; |
| |
| return 1; |
| } |
| |
| /* Put a float into user memory */ |
| int FPU_store_single(FPU_REG *st0_ptr, u_char st0_tag, float __user *single) |
| { |
| long templ = 0; |
| unsigned long increment = 0; /* avoid gcc warnings */ |
| int precision_loss; |
| int exp; |
| FPU_REG tmp; |
| |
| if (st0_tag == TAG_Valid) { |
| |
| reg_copy(st0_ptr, &tmp); |
| exp = exponent(&tmp); |
| |
| if (exp < SINGLE_Emin) { |
| addexponent(&tmp, -SINGLE_Emin + 23); /* largest exp to be 22 */ |
| |
| denormal_arg: |
| |
| if ((precision_loss = FPU_round_to_int(&tmp, st0_tag))) { |
| #ifdef PECULIAR_486 |
| /* Did it round to a non-denormal ? */ |
| /* This behaviour might be regarded as peculiar, it appears |
| that the 80486 rounds to the dest precision, then |
| converts to decide underflow. */ |
| if (!((tmp.sigl == 0x00800000) && |
| ((st0_ptr->sigh & 0x000000ff) |
| || st0_ptr->sigl))) |
| #endif /* PECULIAR_486 */ |
| { |
| EXCEPTION(EX_Underflow); |
| /* This is a special case: see sec 16.2.5.1 of |
| the 80486 book */ |
| if (!(control_word & CW_Underflow)) |
| return 0; |
| } |
| EXCEPTION(precision_loss); |
| if (!(control_word & CW_Precision)) |
| return 0; |
| } |
| templ = tmp.sigl; |
| } else { |
| if (tmp.sigl | (tmp.sigh & 0x000000ff)) { |
| unsigned long sigh = tmp.sigh; |
| unsigned long sigl = tmp.sigl; |
| |
| precision_loss = 1; |
| switch (control_word & CW_RC) { |
| case RC_RND: |
| increment = ((sigh & 0xff) > 0x80) /* more than half */ |
| ||(((sigh & 0xff) == 0x80) && sigl) /* more than half */ |
| ||((sigh & 0x180) == 0x180); /* round to even */ |
| break; |
| case RC_DOWN: /* towards -infinity */ |
| increment = signpositive(&tmp) |
| ? 0 : (sigl | (sigh & 0xff)); |
| break; |
| case RC_UP: /* towards +infinity */ |
| increment = signpositive(&tmp) |
| ? (sigl | (sigh & 0xff)) : 0; |
| break; |
| case RC_CHOP: |
| increment = 0; |
| break; |
| } |
| |
| /* Truncate part of the mantissa */ |
| tmp.sigl = 0; |
| |
| if (increment) { |
| if (sigh >= 0xffffff00) { |
| /* The sigh part overflows */ |
| tmp.sigh = 0x80000000; |
| exp++; |
| if (exp >= EXP_OVER) |
| goto overflow; |
| } else { |
| tmp.sigh &= 0xffffff00; |
| tmp.sigh += 0x100; |
| } |
| } else { |
| tmp.sigh &= 0xffffff00; /* Finish the truncation */ |
| } |
| } else |
| precision_loss = 0; |
| |
| templ = (tmp.sigh >> 8) & 0x007fffff; |
| |
| if (exp > SINGLE_Emax) { |
| overflow: |
| EXCEPTION(EX_Overflow); |
| if (!(control_word & CW_Overflow)) |
| return 0; |
| set_precision_flag_up(); |
| if (!(control_word & CW_Precision)) |
| return 0; |
| |
| /* This is a special case: see sec 16.2.5.1 of the 80486 book. */ |
| /* Masked response is overflow to infinity. */ |
| templ = 0x7f800000; |
| } else { |
| if (precision_loss) { |
| if (increment) |
| set_precision_flag_up(); |
| else |
| set_precision_flag_down(); |
| } |
| /* Add the exponent */ |
| templ |= ((exp + SINGLE_Ebias) & 0xff) << 23; |
| } |
| } |
| } else if (st0_tag == TAG_Zero) { |
| templ = 0; |
| } else if (st0_tag == TAG_Special) { |
| st0_tag = FPU_Special(st0_ptr); |
| if (st0_tag == TW_Denormal) { |
| reg_copy(st0_ptr, &tmp); |
| |
| /* A denormal will always underflow. */ |
| #ifndef PECULIAR_486 |
| /* An 80486 is supposed to be able to generate |
| a denormal exception here, but... */ |
| /* Underflow has priority. */ |
| if (control_word & CW_Underflow) |
| denormal_operand(); |
| #endif /* PECULIAR_486 */ |
| goto denormal_arg; |
| } else if (st0_tag == TW_Infinity) { |
| templ = 0x7f800000; |
| } else if (st0_tag == TW_NaN) { |
| /* Is it really a NaN ? */ |
| if ((exponent(st0_ptr) == EXP_OVER) |
| && (st0_ptr->sigh & 0x80000000)) { |
| /* See if we can get a valid NaN from the FPU_REG */ |
| templ = st0_ptr->sigh >> 8; |
| if (!(st0_ptr->sigh & 0x40000000)) { |
| /* It is a signalling NaN */ |
| EXCEPTION(EX_Invalid); |
| if (!(control_word & CW_Invalid)) |
| return 0; |
| templ |= (0x40000000 >> 8); |
| } |
| templ |= 0x7f800000; |
| } else { |
| /* It is an unsupported data type */ |
| EXCEPTION(EX_Invalid); |
| if (!(control_word & CW_Invalid)) |
| return 0; |
| templ = 0xffc00000; |
| } |
| } |
| #ifdef PARANOID |
| else { |
| EXCEPTION(EX_INTERNAL | 0x164); |
| return 0; |
| } |
| #endif |
| } else if (st0_tag == TAG_Empty) { |
| /* Empty register (stack underflow) */ |
| EXCEPTION(EX_StackUnder); |
| if (control_word & EX_Invalid) { |
| /* The masked response */ |
| /* Put out the QNaN indefinite */ |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, single, 4); |
| FPU_put_user(0xffc00000, |
| (unsigned long __user *)single); |
| RE_ENTRANT_CHECK_ON; |
| return 1; |
| } else |
| return 0; |
| } |
| #ifdef PARANOID |
| else { |
| EXCEPTION(EX_INTERNAL | 0x163); |
| return 0; |
| } |
| #endif |
| if (getsign(st0_ptr)) |
| templ |= 0x80000000; |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, single, 4); |
| FPU_put_user(templ, (unsigned long __user *)single); |
| RE_ENTRANT_CHECK_ON; |
| |
| return 1; |
| } |
| |
| /* Put a long long into user memory */ |
| int FPU_store_int64(FPU_REG *st0_ptr, u_char st0_tag, long long __user *d) |
| { |
| FPU_REG t; |
| long long tll; |
| int precision_loss; |
| |
| if (st0_tag == TAG_Empty) { |
| /* Empty register (stack underflow) */ |
| EXCEPTION(EX_StackUnder); |
| goto invalid_operand; |
| } else if (st0_tag == TAG_Special) { |
| st0_tag = FPU_Special(st0_ptr); |
| if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) { |
| EXCEPTION(EX_Invalid); |
| goto invalid_operand; |
| } |
| } |
| |
| reg_copy(st0_ptr, &t); |
| precision_loss = FPU_round_to_int(&t, st0_tag); |
| ((long *)&tll)[0] = t.sigl; |
| ((long *)&tll)[1] = t.sigh; |
| if ((precision_loss == 1) || |
| ((t.sigh & 0x80000000) && |
| !((t.sigh == 0x80000000) && (t.sigl == 0) && signnegative(&t)))) { |
| EXCEPTION(EX_Invalid); |
| /* This is a special case: see sec 16.2.5.1 of the 80486 book */ |
| invalid_operand: |
| if (control_word & EX_Invalid) { |
| /* Produce something like QNaN "indefinite" */ |
| tll = 0x8000000000000000LL; |
| } else |
| return 0; |
| } else { |
| if (precision_loss) |
| set_precision_flag(precision_loss); |
| if (signnegative(&t)) |
| tll = -tll; |
| } |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 8); |
| if (copy_to_user(d, &tll, 8)) |
| FPU_abort; |
| RE_ENTRANT_CHECK_ON; |
| |
| return 1; |
| } |
| |
| /* Put a long into user memory */ |
| int FPU_store_int32(FPU_REG *st0_ptr, u_char st0_tag, long __user *d) |
| { |
| FPU_REG t; |
| int precision_loss; |
| |
| if (st0_tag == TAG_Empty) { |
| /* Empty register (stack underflow) */ |
| EXCEPTION(EX_StackUnder); |
| goto invalid_operand; |
| } else if (st0_tag == TAG_Special) { |
| st0_tag = FPU_Special(st0_ptr); |
| if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) { |
| EXCEPTION(EX_Invalid); |
| goto invalid_operand; |
| } |
| } |
| |
| reg_copy(st0_ptr, &t); |
| precision_loss = FPU_round_to_int(&t, st0_tag); |
| if (t.sigh || |
| ((t.sigl & 0x80000000) && |
| !((t.sigl == 0x80000000) && signnegative(&t)))) { |
| EXCEPTION(EX_Invalid); |
| /* This is a special case: see sec 16.2.5.1 of the 80486 book */ |
| invalid_operand: |
| if (control_word & EX_Invalid) { |
| /* Produce something like QNaN "indefinite" */ |
| t.sigl = 0x80000000; |
| } else |
| return 0; |
| } else { |
| if (precision_loss) |
| set_precision_flag(precision_loss); |
| if (signnegative(&t)) |
| t.sigl = -(long)t.sigl; |
| } |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 4); |
| FPU_put_user(t.sigl, (unsigned long __user *)d); |
| RE_ENTRANT_CHECK_ON; |
| |
| return 1; |
| } |
| |
| /* Put a short into user memory */ |
| int FPU_store_int16(FPU_REG *st0_ptr, u_char st0_tag, short __user *d) |
| { |
| FPU_REG t; |
| int precision_loss; |
| |
| if (st0_tag == TAG_Empty) { |
| /* Empty register (stack underflow) */ |
| EXCEPTION(EX_StackUnder); |
| goto invalid_operand; |
| } else if (st0_tag == TAG_Special) { |
| st0_tag = FPU_Special(st0_ptr); |
| if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) { |
| EXCEPTION(EX_Invalid); |
| goto invalid_operand; |
| } |
| } |
| |
| reg_copy(st0_ptr, &t); |
| precision_loss = FPU_round_to_int(&t, st0_tag); |
| if (t.sigh || |
| ((t.sigl & 0xffff8000) && |
| !((t.sigl == 0x8000) && signnegative(&t)))) { |
| EXCEPTION(EX_Invalid); |
| /* This is a special case: see sec 16.2.5.1 of the 80486 book */ |
| invalid_operand: |
| if (control_word & EX_Invalid) { |
| /* Produce something like QNaN "indefinite" */ |
| t.sigl = 0x8000; |
| } else |
| return 0; |
| } else { |
| if (precision_loss) |
| set_precision_flag(precision_loss); |
| if (signnegative(&t)) |
| t.sigl = -t.sigl; |
| } |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 2); |
| FPU_put_user((short)t.sigl, d); |
| RE_ENTRANT_CHECK_ON; |
| |
| return 1; |
| } |
| |
| /* Put a packed bcd array into user memory */ |
| int FPU_store_bcd(FPU_REG *st0_ptr, u_char st0_tag, u_char __user *d) |
| { |
| FPU_REG t; |
| unsigned long long ll; |
| u_char b; |
| int i, precision_loss; |
| u_char sign = (getsign(st0_ptr) == SIGN_NEG) ? 0x80 : 0; |
| |
| if (st0_tag == TAG_Empty) { |
| /* Empty register (stack underflow) */ |
| EXCEPTION(EX_StackUnder); |
| goto invalid_operand; |
| } else if (st0_tag == TAG_Special) { |
| st0_tag = FPU_Special(st0_ptr); |
| if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) { |
| EXCEPTION(EX_Invalid); |
| goto invalid_operand; |
| } |
| } |
| |
| reg_copy(st0_ptr, &t); |
| precision_loss = FPU_round_to_int(&t, st0_tag); |
| ll = significand(&t); |
| |
| /* Check for overflow, by comparing with 999999999999999999 decimal. */ |
| if ((t.sigh > 0x0de0b6b3) || |
| ((t.sigh == 0x0de0b6b3) && (t.sigl > 0xa763ffff))) { |
| EXCEPTION(EX_Invalid); |
| /* This is a special case: see sec 16.2.5.1 of the 80486 book */ |
| invalid_operand: |
| if (control_word & CW_Invalid) { |
| /* Produce the QNaN "indefinite" */ |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 10); |
| for (i = 0; i < 7; i++) |
| FPU_put_user(0, d + i); /* These bytes "undefined" */ |
| FPU_put_user(0xc0, d + 7); /* This byte "undefined" */ |
| FPU_put_user(0xff, d + 8); |
| FPU_put_user(0xff, d + 9); |
| RE_ENTRANT_CHECK_ON; |
| return 1; |
| } else |
| return 0; |
| } else if (precision_loss) { |
| /* Precision loss doesn't stop the data transfer */ |
| set_precision_flag(precision_loss); |
| } |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 10); |
| RE_ENTRANT_CHECK_ON; |
| for (i = 0; i < 9; i++) { |
| b = FPU_div_small(&ll, 10); |
| b |= (FPU_div_small(&ll, 10)) << 4; |
| RE_ENTRANT_CHECK_OFF; |
| FPU_put_user(b, d + i); |
| RE_ENTRANT_CHECK_ON; |
| } |
| RE_ENTRANT_CHECK_OFF; |
| FPU_put_user(sign, d + 9); |
| RE_ENTRANT_CHECK_ON; |
| |
| return 1; |
| } |
| |
| /*===========================================================================*/ |
| |
| /* r gets mangled such that sig is int, sign: |
| it is NOT normalized */ |
| /* The return value (in eax) is zero if the result is exact, |
| if bits are changed due to rounding, truncation, etc, then |
| a non-zero value is returned */ |
| /* Overflow is signalled by a non-zero return value (in eax). |
| In the case of overflow, the returned significand always has the |
| largest possible value */ |
| int FPU_round_to_int(FPU_REG *r, u_char tag) |
| { |
| u_char very_big; |
| unsigned eax; |
| |
| if (tag == TAG_Zero) { |
| /* Make sure that zero is returned */ |
| significand(r) = 0; |
| return 0; /* o.k. */ |
| } |
| |
| if (exponent(r) > 63) { |
| r->sigl = r->sigh = ~0; /* The largest representable number */ |
| return 1; /* overflow */ |
| } |
| |
| eax = FPU_shrxs(&r->sigl, 63 - exponent(r)); |
| very_big = !(~(r->sigh) | ~(r->sigl)); /* test for 0xfff...fff */ |
| #define half_or_more (eax & 0x80000000) |
| #define frac_part (eax) |
| #define more_than_half ((eax & 0x80000001) == 0x80000001) |
| switch (control_word & CW_RC) { |
| case RC_RND: |
| if (more_than_half /* nearest */ |
| || (half_or_more && (r->sigl & 1))) { /* odd -> even */ |
| if (very_big) |
| return 1; /* overflow */ |
| significand(r)++; |
| return PRECISION_LOST_UP; |
| } |
| break; |
| case RC_DOWN: |
| if (frac_part && getsign(r)) { |
| if (very_big) |
| return 1; /* overflow */ |
| significand(r)++; |
| return PRECISION_LOST_UP; |
| } |
| break; |
| case RC_UP: |
| if (frac_part && !getsign(r)) { |
| if (very_big) |
| return 1; /* overflow */ |
| significand(r)++; |
| return PRECISION_LOST_UP; |
| } |
| break; |
| case RC_CHOP: |
| break; |
| } |
| |
| return eax ? PRECISION_LOST_DOWN : 0; |
| |
| } |
| |
| /*===========================================================================*/ |
| |
| u_char __user *fldenv(fpu_addr_modes addr_modes, u_char __user *s) |
| { |
| unsigned short tag_word = 0; |
| u_char tag; |
| int i; |
| |
| if ((addr_modes.default_mode == VM86) || |
| ((addr_modes.default_mode == PM16) |
| ^ (addr_modes.override.operand_size == OP_SIZE_PREFIX))) { |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, s, 0x0e); |
| FPU_get_user(control_word, (unsigned short __user *)s); |
| FPU_get_user(partial_status, (unsigned short __user *)(s + 2)); |
| FPU_get_user(tag_word, (unsigned short __user *)(s + 4)); |
| FPU_get_user(instruction_address.offset, |
| (unsigned short __user *)(s + 6)); |
| FPU_get_user(instruction_address.selector, |
| (unsigned short __user *)(s + 8)); |
| FPU_get_user(operand_address.offset, |
| (unsigned short __user *)(s + 0x0a)); |
| FPU_get_user(operand_address.selector, |
| (unsigned short __user *)(s + 0x0c)); |
| RE_ENTRANT_CHECK_ON; |
| s += 0x0e; |
| if (addr_modes.default_mode == VM86) { |
| instruction_address.offset |
| += (instruction_address.selector & 0xf000) << 4; |
| operand_address.offset += |
| (operand_address.selector & 0xf000) << 4; |
| } |
| } else { |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, s, 0x1c); |
| FPU_get_user(control_word, (unsigned short __user *)s); |
| FPU_get_user(partial_status, (unsigned short __user *)(s + 4)); |
| FPU_get_user(tag_word, (unsigned short __user *)(s + 8)); |
| FPU_get_user(instruction_address.offset, |
| (unsigned long __user *)(s + 0x0c)); |
| FPU_get_user(instruction_address.selector, |
| (unsigned short __user *)(s + 0x10)); |
| FPU_get_user(instruction_address.opcode, |
| (unsigned short __user *)(s + 0x12)); |
| FPU_get_user(operand_address.offset, |
| (unsigned long __user *)(s + 0x14)); |
| FPU_get_user(operand_address.selector, |
| (unsigned long __user *)(s + 0x18)); |
| RE_ENTRANT_CHECK_ON; |
| s += 0x1c; |
| } |
| |
| #ifdef PECULIAR_486 |
| control_word &= ~0xe080; |
| #endif /* PECULIAR_486 */ |
| |
| top = (partial_status >> SW_Top_Shift) & 7; |
| |
| if (partial_status & ~control_word & CW_Exceptions) |
| partial_status |= (SW_Summary | SW_Backward); |
| else |
| partial_status &= ~(SW_Summary | SW_Backward); |
| |
| for (i = 0; i < 8; i++) { |
| tag = tag_word & 3; |
| tag_word >>= 2; |
| |
| if (tag == TAG_Empty) |
| /* New tag is empty. Accept it */ |
| FPU_settag(i, TAG_Empty); |
| else if (FPU_gettag(i) == TAG_Empty) { |
| /* Old tag is empty and new tag is not empty. New tag is determined |
| by old reg contents */ |
| if (exponent(&fpu_register(i)) == -EXTENDED_Ebias) { |
| if (! |
| (fpu_register(i).sigl | fpu_register(i). |
| sigh)) |
| FPU_settag(i, TAG_Zero); |
| else |
| FPU_settag(i, TAG_Special); |
| } else if (exponent(&fpu_register(i)) == |
| 0x7fff - EXTENDED_Ebias) { |
| FPU_settag(i, TAG_Special); |
| } else if (fpu_register(i).sigh & 0x80000000) |
| FPU_settag(i, TAG_Valid); |
| else |
| FPU_settag(i, TAG_Special); /* An Un-normal */ |
| } |
| /* Else old tag is not empty and new tag is not empty. Old tag |
| remains correct */ |
| } |
| |
| return s; |
| } |
| |
| void frstor(fpu_addr_modes addr_modes, u_char __user *data_address) |
| { |
| int i, regnr; |
| u_char __user *s = fldenv(addr_modes, data_address); |
| int offset = (top & 7) * 10, other = 80 - offset; |
| |
| /* Copy all registers in stack order. */ |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_READ, s, 80); |
| __copy_from_user(register_base + offset, s, other); |
| if (offset) |
| __copy_from_user(register_base, s + other, offset); |
| RE_ENTRANT_CHECK_ON; |
| |
| for (i = 0; i < 8; i++) { |
| regnr = (i + top) & 7; |
| if (FPU_gettag(regnr) != TAG_Empty) |
| /* The loaded data over-rides all other cases. */ |
| FPU_settag(regnr, FPU_tagof(&st(i))); |
| } |
| |
| } |
| |
| u_char __user *fstenv(fpu_addr_modes addr_modes, u_char __user *d) |
| { |
| if ((addr_modes.default_mode == VM86) || |
| ((addr_modes.default_mode == PM16) |
| ^ (addr_modes.override.operand_size == OP_SIZE_PREFIX))) { |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 14); |
| #ifdef PECULIAR_486 |
| FPU_put_user(control_word & ~0xe080, (unsigned long __user *)d); |
| #else |
| FPU_put_user(control_word, (unsigned short __user *)d); |
| #endif /* PECULIAR_486 */ |
| FPU_put_user(status_word(), (unsigned short __user *)(d + 2)); |
| FPU_put_user(fpu_tag_word, (unsigned short __user *)(d + 4)); |
| FPU_put_user(instruction_address.offset, |
| (unsigned short __user *)(d + 6)); |
| FPU_put_user(operand_address.offset, |
| (unsigned short __user *)(d + 0x0a)); |
| if (addr_modes.default_mode == VM86) { |
| FPU_put_user((instruction_address. |
| offset & 0xf0000) >> 4, |
| (unsigned short __user *)(d + 8)); |
| FPU_put_user((operand_address.offset & 0xf0000) >> 4, |
| (unsigned short __user *)(d + 0x0c)); |
| } else { |
| FPU_put_user(instruction_address.selector, |
| (unsigned short __user *)(d + 8)); |
| FPU_put_user(operand_address.selector, |
| (unsigned short __user *)(d + 0x0c)); |
| } |
| RE_ENTRANT_CHECK_ON; |
| d += 0x0e; |
| } else { |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 7 * 4); |
| #ifdef PECULIAR_486 |
| control_word &= ~0xe080; |
| /* An 80486 sets nearly all of the reserved bits to 1. */ |
| control_word |= 0xffff0040; |
| partial_status = status_word() | 0xffff0000; |
| fpu_tag_word |= 0xffff0000; |
| I387->soft.fcs &= ~0xf8000000; |
| I387->soft.fos |= 0xffff0000; |
| #endif /* PECULIAR_486 */ |
| if (__copy_to_user(d, &control_word, 7 * 4)) |
| FPU_abort; |
| RE_ENTRANT_CHECK_ON; |
| d += 0x1c; |
| } |
| |
| control_word |= CW_Exceptions; |
| partial_status &= ~(SW_Summary | SW_Backward); |
| |
| return d; |
| } |
| |
| void fsave(fpu_addr_modes addr_modes, u_char __user *data_address) |
| { |
| u_char __user *d; |
| int offset = (top & 7) * 10, other = 80 - offset; |
| |
| d = fstenv(addr_modes, data_address); |
| |
| RE_ENTRANT_CHECK_OFF; |
| FPU_access_ok(VERIFY_WRITE, d, 80); |
| |
| /* Copy all registers in stack order. */ |
| if (__copy_to_user(d, register_base + offset, other)) |
| FPU_abort; |
| if (offset) |
| if (__copy_to_user(d + other, register_base, offset)) |
| FPU_abort; |
| RE_ENTRANT_CHECK_ON; |
| |
| finit(); |
| } |
| |
| /*===========================================================================*/ |