| /* This has so very few changes over libgcc2's __udivmoddi4 it isn't funny. */ |
| |
| #include <math-emu/soft-fp.h> |
| |
| #undef count_leading_zeros |
| #define count_leading_zeros __FP_CLZ |
| |
| void |
| _fp_udivmodti4(_FP_W_TYPE q[2], _FP_W_TYPE r[2], |
| _FP_W_TYPE n1, _FP_W_TYPE n0, |
| _FP_W_TYPE d1, _FP_W_TYPE d0) |
| { |
| _FP_W_TYPE q0, q1, r0, r1; |
| _FP_I_TYPE b, bm; |
| |
| if (d1 == 0) |
| { |
| #if !UDIV_NEEDS_NORMALIZATION |
| if (d0 > n1) |
| { |
| /* 0q = nn / 0D */ |
| |
| udiv_qrnnd (q0, n0, n1, n0, d0); |
| q1 = 0; |
| |
| /* Remainder in n0. */ |
| } |
| else |
| { |
| /* qq = NN / 0d */ |
| |
| if (d0 == 0) |
| d0 = 1 / d0; /* Divide intentionally by zero. */ |
| |
| udiv_qrnnd (q1, n1, 0, n1, d0); |
| udiv_qrnnd (q0, n0, n1, n0, d0); |
| |
| /* Remainder in n0. */ |
| } |
| |
| r0 = n0; |
| r1 = 0; |
| |
| #else /* UDIV_NEEDS_NORMALIZATION */ |
| |
| if (d0 > n1) |
| { |
| /* 0q = nn / 0D */ |
| |
| count_leading_zeros (bm, d0); |
| |
| if (bm != 0) |
| { |
| /* Normalize, i.e. make the most significant bit of the |
| denominator set. */ |
| |
| d0 = d0 << bm; |
| n1 = (n1 << bm) | (n0 >> (_FP_W_TYPE_SIZE - bm)); |
| n0 = n0 << bm; |
| } |
| |
| udiv_qrnnd (q0, n0, n1, n0, d0); |
| q1 = 0; |
| |
| /* Remainder in n0 >> bm. */ |
| } |
| else |
| { |
| /* qq = NN / 0d */ |
| |
| if (d0 == 0) |
| d0 = 1 / d0; /* Divide intentionally by zero. */ |
| |
| count_leading_zeros (bm, d0); |
| |
| if (bm == 0) |
| { |
| /* From (n1 >= d0) /\ (the most significant bit of d0 is set), |
| conclude (the most significant bit of n1 is set) /\ (the |
| leading quotient digit q1 = 1). |
| |
| This special case is necessary, not an optimization. |
| (Shifts counts of SI_TYPE_SIZE are undefined.) */ |
| |
| n1 -= d0; |
| q1 = 1; |
| } |
| else |
| { |
| _FP_W_TYPE n2; |
| |
| /* Normalize. */ |
| |
| b = _FP_W_TYPE_SIZE - bm; |
| |
| d0 = d0 << bm; |
| n2 = n1 >> b; |
| n1 = (n1 << bm) | (n0 >> b); |
| n0 = n0 << bm; |
| |
| udiv_qrnnd (q1, n1, n2, n1, d0); |
| } |
| |
| /* n1 != d0... */ |
| |
| udiv_qrnnd (q0, n0, n1, n0, d0); |
| |
| /* Remainder in n0 >> bm. */ |
| } |
| |
| r0 = n0 >> bm; |
| r1 = 0; |
| #endif /* UDIV_NEEDS_NORMALIZATION */ |
| } |
| else |
| { |
| if (d1 > n1) |
| { |
| /* 00 = nn / DD */ |
| |
| q0 = 0; |
| q1 = 0; |
| |
| /* Remainder in n1n0. */ |
| r0 = n0; |
| r1 = n1; |
| } |
| else |
| { |
| /* 0q = NN / dd */ |
| |
| count_leading_zeros (bm, d1); |
| if (bm == 0) |
| { |
| /* From (n1 >= d1) /\ (the most significant bit of d1 is set), |
| conclude (the most significant bit of n1 is set) /\ (the |
| quotient digit q0 = 0 or 1). |
| |
| This special case is necessary, not an optimization. */ |
| |
| /* The condition on the next line takes advantage of that |
| n1 >= d1 (true due to program flow). */ |
| if (n1 > d1 || n0 >= d0) |
| { |
| q0 = 1; |
| sub_ddmmss (n1, n0, n1, n0, d1, d0); |
| } |
| else |
| q0 = 0; |
| |
| q1 = 0; |
| |
| r0 = n0; |
| r1 = n1; |
| } |
| else |
| { |
| _FP_W_TYPE m1, m0, n2; |
| |
| /* Normalize. */ |
| |
| b = _FP_W_TYPE_SIZE - bm; |
| |
| d1 = (d1 << bm) | (d0 >> b); |
| d0 = d0 << bm; |
| n2 = n1 >> b; |
| n1 = (n1 << bm) | (n0 >> b); |
| n0 = n0 << bm; |
| |
| udiv_qrnnd (q0, n1, n2, n1, d1); |
| umul_ppmm (m1, m0, q0, d0); |
| |
| if (m1 > n1 || (m1 == n1 && m0 > n0)) |
| { |
| q0--; |
| sub_ddmmss (m1, m0, m1, m0, d1, d0); |
| } |
| |
| q1 = 0; |
| |
| /* Remainder in (n1n0 - m1m0) >> bm. */ |
| sub_ddmmss (n1, n0, n1, n0, m1, m0); |
| r0 = (n1 << b) | (n0 >> bm); |
| r1 = n1 >> bm; |
| } |
| } |
| } |
| |
| q[0] = q0; q[1] = q1; |
| r[0] = r0, r[1] = r1; |
| } |