| /* |
| ** IA64 System Bus Adapter (SBA) I/O MMU manager |
| ** |
| ** (c) Copyright 2002-2005 Alex Williamson |
| ** (c) Copyright 2002-2003 Grant Grundler |
| ** (c) Copyright 2002-2005 Hewlett-Packard Company |
| ** |
| ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code) |
| ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code) |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| ** |
| ** |
| ** This module initializes the IOC (I/O Controller) found on HP |
| ** McKinley machines and their successors. |
| ** |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/pci.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/acpi.h> |
| #include <linux/efi.h> |
| #include <linux/nodemask.h> |
| #include <linux/bitops.h> /* hweight64() */ |
| #include <linux/crash_dump.h> |
| #include <linux/iommu-helper.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <asm/delay.h> /* ia64_get_itc() */ |
| #include <asm/io.h> |
| #include <asm/page.h> /* PAGE_OFFSET */ |
| #include <asm/dma.h> |
| #include <asm/system.h> /* wmb() */ |
| |
| #include <asm/acpi-ext.h> |
| |
| extern int swiotlb_late_init_with_default_size (size_t size); |
| |
| #define PFX "IOC: " |
| |
| /* |
| ** Enabling timing search of the pdir resource map. Output in /proc. |
| ** Disabled by default to optimize performance. |
| */ |
| #undef PDIR_SEARCH_TIMING |
| |
| /* |
| ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If |
| ** not defined, all DMA will be 32bit and go through the TLB. |
| ** There's potentially a conflict in the bio merge code with us |
| ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing |
| ** appears to give more performance than bio-level virtual merging, we'll |
| ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to |
| ** completely restrict DMA to the IOMMU. |
| */ |
| #define ALLOW_IOV_BYPASS |
| |
| /* |
| ** This option specifically allows/disallows bypassing scatterlists with |
| ** multiple entries. Coalescing these entries can allow better DMA streaming |
| ** and in some cases shows better performance than entirely bypassing the |
| ** IOMMU. Performance increase on the order of 1-2% sequential output/input |
| ** using bonnie++ on a RAID0 MD device (sym2 & mpt). |
| */ |
| #undef ALLOW_IOV_BYPASS_SG |
| |
| /* |
| ** If a device prefetches beyond the end of a valid pdir entry, it will cause |
| ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should |
| ** disconnect on 4k boundaries and prevent such issues. If the device is |
| ** particularly aggressive, this option will keep the entire pdir valid such |
| ** that prefetching will hit a valid address. This could severely impact |
| ** error containment, and is therefore off by default. The page that is |
| ** used for spill-over is poisoned, so that should help debugging somewhat. |
| */ |
| #undef FULL_VALID_PDIR |
| |
| #define ENABLE_MARK_CLEAN |
| |
| /* |
| ** The number of debug flags is a clue - this code is fragile. NOTE: since |
| ** tightening the use of res_lock the resource bitmap and actual pdir are no |
| ** longer guaranteed to stay in sync. The sanity checking code isn't going to |
| ** like that. |
| */ |
| #undef DEBUG_SBA_INIT |
| #undef DEBUG_SBA_RUN |
| #undef DEBUG_SBA_RUN_SG |
| #undef DEBUG_SBA_RESOURCE |
| #undef ASSERT_PDIR_SANITY |
| #undef DEBUG_LARGE_SG_ENTRIES |
| #undef DEBUG_BYPASS |
| |
| #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY) |
| #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive |
| #endif |
| |
| #define SBA_INLINE __inline__ |
| /* #define SBA_INLINE */ |
| |
| #ifdef DEBUG_SBA_INIT |
| #define DBG_INIT(x...) printk(x) |
| #else |
| #define DBG_INIT(x...) |
| #endif |
| |
| #ifdef DEBUG_SBA_RUN |
| #define DBG_RUN(x...) printk(x) |
| #else |
| #define DBG_RUN(x...) |
| #endif |
| |
| #ifdef DEBUG_SBA_RUN_SG |
| #define DBG_RUN_SG(x...) printk(x) |
| #else |
| #define DBG_RUN_SG(x...) |
| #endif |
| |
| |
| #ifdef DEBUG_SBA_RESOURCE |
| #define DBG_RES(x...) printk(x) |
| #else |
| #define DBG_RES(x...) |
| #endif |
| |
| #ifdef DEBUG_BYPASS |
| #define DBG_BYPASS(x...) printk(x) |
| #else |
| #define DBG_BYPASS(x...) |
| #endif |
| |
| #ifdef ASSERT_PDIR_SANITY |
| #define ASSERT(expr) \ |
| if(!(expr)) { \ |
| printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \ |
| panic(#expr); \ |
| } |
| #else |
| #define ASSERT(expr) |
| #endif |
| |
| /* |
| ** The number of pdir entries to "free" before issuing |
| ** a read to PCOM register to flush out PCOM writes. |
| ** Interacts with allocation granularity (ie 4 or 8 entries |
| ** allocated and free'd/purged at a time might make this |
| ** less interesting). |
| */ |
| #define DELAYED_RESOURCE_CNT 64 |
| |
| #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec |
| |
| #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP) |
| #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP) |
| #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP) |
| #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP) |
| #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP) |
| |
| #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */ |
| |
| #define IOC_FUNC_ID 0x000 |
| #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */ |
| #define IOC_IBASE 0x300 /* IO TLB */ |
| #define IOC_IMASK 0x308 |
| #define IOC_PCOM 0x310 |
| #define IOC_TCNFG 0x318 |
| #define IOC_PDIR_BASE 0x320 |
| |
| #define IOC_ROPE0_CFG 0x500 |
| #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */ |
| |
| |
| /* AGP GART driver looks for this */ |
| #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL |
| |
| /* |
| ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register) |
| ** |
| ** Some IOCs (sx1000) can run at the above pages sizes, but are |
| ** really only supported using the IOC at a 4k page size. |
| ** |
| ** iovp_size could only be greater than PAGE_SIZE if we are |
| ** confident the drivers really only touch the next physical |
| ** page iff that driver instance owns it. |
| */ |
| static unsigned long iovp_size; |
| static unsigned long iovp_shift; |
| static unsigned long iovp_mask; |
| |
| struct ioc { |
| void __iomem *ioc_hpa; /* I/O MMU base address */ |
| char *res_map; /* resource map, bit == pdir entry */ |
| u64 *pdir_base; /* physical base address */ |
| unsigned long ibase; /* pdir IOV Space base */ |
| unsigned long imask; /* pdir IOV Space mask */ |
| |
| unsigned long *res_hint; /* next avail IOVP - circular search */ |
| unsigned long dma_mask; |
| spinlock_t res_lock; /* protects the resource bitmap, but must be held when */ |
| /* clearing pdir to prevent races with allocations. */ |
| unsigned int res_bitshift; /* from the RIGHT! */ |
| unsigned int res_size; /* size of resource map in bytes */ |
| #ifdef CONFIG_NUMA |
| unsigned int node; /* node where this IOC lives */ |
| #endif |
| #if DELAYED_RESOURCE_CNT > 0 |
| spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */ |
| /* than res_lock for bigger systems. */ |
| int saved_cnt; |
| struct sba_dma_pair { |
| dma_addr_t iova; |
| size_t size; |
| } saved[DELAYED_RESOURCE_CNT]; |
| #endif |
| |
| #ifdef PDIR_SEARCH_TIMING |
| #define SBA_SEARCH_SAMPLE 0x100 |
| unsigned long avg_search[SBA_SEARCH_SAMPLE]; |
| unsigned long avg_idx; /* current index into avg_search */ |
| #endif |
| |
| /* Stuff we don't need in performance path */ |
| struct ioc *next; /* list of IOC's in system */ |
| acpi_handle handle; /* for multiple IOC's */ |
| const char *name; |
| unsigned int func_id; |
| unsigned int rev; /* HW revision of chip */ |
| u32 iov_size; |
| unsigned int pdir_size; /* in bytes, determined by IOV Space size */ |
| struct pci_dev *sac_only_dev; |
| }; |
| |
| static struct ioc *ioc_list; |
| static int reserve_sba_gart = 1; |
| |
| static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t); |
| static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t); |
| |
| #define sba_sg_address(sg) sg_virt((sg)) |
| |
| #ifdef FULL_VALID_PDIR |
| static u64 prefetch_spill_page; |
| #endif |
| |
| #ifdef CONFIG_PCI |
| # define GET_IOC(dev) (((dev)->bus == &pci_bus_type) \ |
| ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL) |
| #else |
| # define GET_IOC(dev) NULL |
| #endif |
| |
| /* |
| ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up |
| ** (or rather not merge) DMAs into manageable chunks. |
| ** On parisc, this is more of the software/tuning constraint |
| ** rather than the HW. I/O MMU allocation algorithms can be |
| ** faster with smaller sizes (to some degree). |
| */ |
| #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size) |
| |
| #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1)) |
| |
| /************************************ |
| ** SBA register read and write support |
| ** |
| ** BE WARNED: register writes are posted. |
| ** (ie follow writes which must reach HW with a read) |
| ** |
| */ |
| #define READ_REG(addr) __raw_readq(addr) |
| #define WRITE_REG(val, addr) __raw_writeq(val, addr) |
| |
| #ifdef DEBUG_SBA_INIT |
| |
| /** |
| * sba_dump_tlb - debugging only - print IOMMU operating parameters |
| * @hpa: base address of the IOMMU |
| * |
| * Print the size/location of the IO MMU PDIR. |
| */ |
| static void |
| sba_dump_tlb(char *hpa) |
| { |
| DBG_INIT("IO TLB at 0x%p\n", (void *)hpa); |
| DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE)); |
| DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK)); |
| DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG)); |
| DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE)); |
| DBG_INIT("\n"); |
| } |
| #endif |
| |
| |
| #ifdef ASSERT_PDIR_SANITY |
| |
| /** |
| * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @msg: text to print ont the output line. |
| * @pide: pdir index. |
| * |
| * Print one entry of the IO MMU PDIR in human readable form. |
| */ |
| static void |
| sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide) |
| { |
| /* start printing from lowest pde in rval */ |
| u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)]; |
| unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)]; |
| uint rcnt; |
| |
| printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n", |
| msg, rptr, pide & (BITS_PER_LONG - 1), *rptr); |
| |
| rcnt = 0; |
| while (rcnt < BITS_PER_LONG) { |
| printk(KERN_DEBUG "%s %2d %p %016Lx\n", |
| (rcnt == (pide & (BITS_PER_LONG - 1))) |
| ? " -->" : " ", |
| rcnt, ptr, (unsigned long long) *ptr ); |
| rcnt++; |
| ptr++; |
| } |
| printk(KERN_DEBUG "%s", msg); |
| } |
| |
| |
| /** |
| * sba_check_pdir - debugging only - consistency checker |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @msg: text to print ont the output line. |
| * |
| * Verify the resource map and pdir state is consistent |
| */ |
| static int |
| sba_check_pdir(struct ioc *ioc, char *msg) |
| { |
| u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]); |
| u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */ |
| u64 *pptr = ioc->pdir_base; /* pdir ptr */ |
| uint pide = 0; |
| |
| while (rptr < rptr_end) { |
| u64 rval; |
| int rcnt; /* number of bits we might check */ |
| |
| rval = *rptr; |
| rcnt = 64; |
| |
| while (rcnt) { |
| /* Get last byte and highest bit from that */ |
| u32 pde = ((u32)((*pptr >> (63)) & 0x1)); |
| if ((rval & 0x1) ^ pde) |
| { |
| /* |
| ** BUMMER! -- res_map != pdir -- |
| ** Dump rval and matching pdir entries |
| */ |
| sba_dump_pdir_entry(ioc, msg, pide); |
| return(1); |
| } |
| rcnt--; |
| rval >>= 1; /* try the next bit */ |
| pptr++; |
| pide++; |
| } |
| rptr++; /* look at next word of res_map */ |
| } |
| /* It'd be nice if we always got here :^) */ |
| return 0; |
| } |
| |
| |
| /** |
| * sba_dump_sg - debugging only - print Scatter-Gather list |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @startsg: head of the SG list |
| * @nents: number of entries in SG list |
| * |
| * print the SG list so we can verify it's correct by hand. |
| */ |
| static void |
| sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) |
| { |
| while (nents-- > 0) { |
| printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents, |
| startsg->dma_address, startsg->dma_length, |
| sba_sg_address(startsg)); |
| startsg = sg_next(startsg); |
| } |
| } |
| |
| static void |
| sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) |
| { |
| struct scatterlist *the_sg = startsg; |
| int the_nents = nents; |
| |
| while (the_nents-- > 0) { |
| if (sba_sg_address(the_sg) == 0x0UL) |
| sba_dump_sg(NULL, startsg, nents); |
| the_sg = sg_next(the_sg); |
| } |
| } |
| |
| #endif /* ASSERT_PDIR_SANITY */ |
| |
| |
| |
| |
| /************************************************************** |
| * |
| * I/O Pdir Resource Management |
| * |
| * Bits set in the resource map are in use. |
| * Each bit can represent a number of pages. |
| * LSbs represent lower addresses (IOVA's). |
| * |
| ***************************************************************/ |
| #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */ |
| |
| /* Convert from IOVP to IOVA and vice versa. */ |
| #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset)) |
| #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase)) |
| |
| #define PDIR_ENTRY_SIZE sizeof(u64) |
| |
| #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift) |
| |
| #define RESMAP_MASK(n) ~(~0UL << (n)) |
| #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1) |
| |
| |
| /** |
| * For most cases the normal get_order is sufficient, however it limits us |
| * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity. |
| * It only incurs about 1 clock cycle to use this one with the static variable |
| * and makes the code more intuitive. |
| */ |
| static SBA_INLINE int |
| get_iovp_order (unsigned long size) |
| { |
| long double d = size - 1; |
| long order; |
| |
| order = ia64_getf_exp(d); |
| order = order - iovp_shift - 0xffff + 1; |
| if (order < 0) |
| order = 0; |
| return order; |
| } |
| |
| static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr, |
| unsigned int bitshiftcnt) |
| { |
| return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3) |
| + bitshiftcnt; |
| } |
| |
| /** |
| * sba_search_bitmap - find free space in IO PDIR resource bitmap |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @bits_wanted: number of entries we need. |
| * @use_hint: use res_hint to indicate where to start looking |
| * |
| * Find consecutive free bits in resource bitmap. |
| * Each bit represents one entry in the IO Pdir. |
| * Cool perf optimization: search for log2(size) bits at a time. |
| */ |
| static SBA_INLINE unsigned long |
| sba_search_bitmap(struct ioc *ioc, struct device *dev, |
| unsigned long bits_wanted, int use_hint) |
| { |
| unsigned long *res_ptr; |
| unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]); |
| unsigned long flags, pide = ~0UL, tpide; |
| unsigned long boundary_size; |
| unsigned long shift; |
| int ret; |
| |
| ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0); |
| ASSERT(res_ptr < res_end); |
| |
| boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1; |
| boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift; |
| |
| BUG_ON(ioc->ibase & ~iovp_mask); |
| shift = ioc->ibase >> iovp_shift; |
| |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| |
| /* Allow caller to force a search through the entire resource space */ |
| if (likely(use_hint)) { |
| res_ptr = ioc->res_hint; |
| } else { |
| res_ptr = (ulong *)ioc->res_map; |
| ioc->res_bitshift = 0; |
| } |
| |
| /* |
| * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts |
| * if a TLB entry is purged while in use. sba_mark_invalid() |
| * purges IOTLB entries in power-of-two sizes, so we also |
| * allocate IOVA space in power-of-two sizes. |
| */ |
| bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift); |
| |
| if (likely(bits_wanted == 1)) { |
| unsigned int bitshiftcnt; |
| for(; res_ptr < res_end ; res_ptr++) { |
| if (likely(*res_ptr != ~0UL)) { |
| bitshiftcnt = ffz(*res_ptr); |
| *res_ptr |= (1UL << bitshiftcnt); |
| pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); |
| ioc->res_bitshift = bitshiftcnt + bits_wanted; |
| goto found_it; |
| } |
| } |
| goto not_found; |
| |
| } |
| |
| if (likely(bits_wanted <= BITS_PER_LONG/2)) { |
| /* |
| ** Search the resource bit map on well-aligned values. |
| ** "o" is the alignment. |
| ** We need the alignment to invalidate I/O TLB using |
| ** SBA HW features in the unmap path. |
| */ |
| unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift); |
| uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o); |
| unsigned long mask, base_mask; |
| |
| base_mask = RESMAP_MASK(bits_wanted); |
| mask = base_mask << bitshiftcnt; |
| |
| DBG_RES("%s() o %ld %p", __func__, o, res_ptr); |
| for(; res_ptr < res_end ; res_ptr++) |
| { |
| DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr); |
| ASSERT(0 != mask); |
| for (; mask ; mask <<= o, bitshiftcnt += o) { |
| tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); |
| ret = iommu_is_span_boundary(tpide, bits_wanted, |
| shift, |
| boundary_size); |
| if ((0 == ((*res_ptr) & mask)) && !ret) { |
| *res_ptr |= mask; /* mark resources busy! */ |
| pide = tpide; |
| ioc->res_bitshift = bitshiftcnt + bits_wanted; |
| goto found_it; |
| } |
| } |
| |
| bitshiftcnt = 0; |
| mask = base_mask; |
| |
| } |
| |
| } else { |
| int qwords, bits, i; |
| unsigned long *end; |
| |
| qwords = bits_wanted >> 6; /* /64 */ |
| bits = bits_wanted - (qwords * BITS_PER_LONG); |
| |
| end = res_end - qwords; |
| |
| for (; res_ptr < end; res_ptr++) { |
| tpide = ptr_to_pide(ioc, res_ptr, 0); |
| ret = iommu_is_span_boundary(tpide, bits_wanted, |
| shift, boundary_size); |
| if (ret) |
| goto next_ptr; |
| for (i = 0 ; i < qwords ; i++) { |
| if (res_ptr[i] != 0) |
| goto next_ptr; |
| } |
| if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits)) |
| continue; |
| |
| /* Found it, mark it */ |
| for (i = 0 ; i < qwords ; i++) |
| res_ptr[i] = ~0UL; |
| res_ptr[i] |= RESMAP_MASK(bits); |
| |
| pide = tpide; |
| res_ptr += qwords; |
| ioc->res_bitshift = bits; |
| goto found_it; |
| next_ptr: |
| ; |
| } |
| } |
| |
| not_found: |
| prefetch(ioc->res_map); |
| ioc->res_hint = (unsigned long *) ioc->res_map; |
| ioc->res_bitshift = 0; |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| return (pide); |
| |
| found_it: |
| ioc->res_hint = res_ptr; |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| return (pide); |
| } |
| |
| |
| /** |
| * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @size: number of bytes to create a mapping for |
| * |
| * Given a size, find consecutive unmarked and then mark those bits in the |
| * resource bit map. |
| */ |
| static int |
| sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size) |
| { |
| unsigned int pages_needed = size >> iovp_shift; |
| #ifdef PDIR_SEARCH_TIMING |
| unsigned long itc_start; |
| #endif |
| unsigned long pide; |
| |
| ASSERT(pages_needed); |
| ASSERT(0 == (size & ~iovp_mask)); |
| |
| #ifdef PDIR_SEARCH_TIMING |
| itc_start = ia64_get_itc(); |
| #endif |
| /* |
| ** "seek and ye shall find"...praying never hurts either... |
| */ |
| pide = sba_search_bitmap(ioc, dev, pages_needed, 1); |
| if (unlikely(pide >= (ioc->res_size << 3))) { |
| pide = sba_search_bitmap(ioc, dev, pages_needed, 0); |
| if (unlikely(pide >= (ioc->res_size << 3))) { |
| #if DELAYED_RESOURCE_CNT > 0 |
| unsigned long flags; |
| |
| /* |
| ** With delayed resource freeing, we can give this one more shot. We're |
| ** getting close to being in trouble here, so do what we can to make this |
| ** one count. |
| */ |
| spin_lock_irqsave(&ioc->saved_lock, flags); |
| if (ioc->saved_cnt > 0) { |
| struct sba_dma_pair *d; |
| int cnt = ioc->saved_cnt; |
| |
| d = &(ioc->saved[ioc->saved_cnt - 1]); |
| |
| spin_lock(&ioc->res_lock); |
| while (cnt--) { |
| sba_mark_invalid(ioc, d->iova, d->size); |
| sba_free_range(ioc, d->iova, d->size); |
| d--; |
| } |
| ioc->saved_cnt = 0; |
| READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ |
| spin_unlock(&ioc->res_lock); |
| } |
| spin_unlock_irqrestore(&ioc->saved_lock, flags); |
| |
| pide = sba_search_bitmap(ioc, dev, pages_needed, 0); |
| if (unlikely(pide >= (ioc->res_size << 3))) |
| panic(__FILE__ ": I/O MMU @ %p is out of mapping resources\n", |
| ioc->ioc_hpa); |
| #else |
| panic(__FILE__ ": I/O MMU @ %p is out of mapping resources\n", |
| ioc->ioc_hpa); |
| #endif |
| } |
| } |
| |
| #ifdef PDIR_SEARCH_TIMING |
| ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed; |
| ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1; |
| #endif |
| |
| prefetchw(&(ioc->pdir_base[pide])); |
| |
| #ifdef ASSERT_PDIR_SANITY |
| /* verify the first enable bit is clear */ |
| if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) { |
| sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide); |
| } |
| #endif |
| |
| DBG_RES("%s(%x) %d -> %lx hint %x/%x\n", |
| __func__, size, pages_needed, pide, |
| (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map), |
| ioc->res_bitshift ); |
| |
| return (pide); |
| } |
| |
| |
| /** |
| * sba_free_range - unmark bits in IO PDIR resource bitmap |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @iova: IO virtual address which was previously allocated. |
| * @size: number of bytes to create a mapping for |
| * |
| * clear bits in the ioc's resource map |
| */ |
| static SBA_INLINE void |
| sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size) |
| { |
| unsigned long iovp = SBA_IOVP(ioc, iova); |
| unsigned int pide = PDIR_INDEX(iovp); |
| unsigned int ridx = pide >> 3; /* convert bit to byte address */ |
| unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]); |
| int bits_not_wanted = size >> iovp_shift; |
| unsigned long m; |
| |
| /* Round up to power-of-two size: see AR2305 note above */ |
| bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift); |
| for (; bits_not_wanted > 0 ; res_ptr++) { |
| |
| if (unlikely(bits_not_wanted > BITS_PER_LONG)) { |
| |
| /* these mappings start 64bit aligned */ |
| *res_ptr = 0UL; |
| bits_not_wanted -= BITS_PER_LONG; |
| pide += BITS_PER_LONG; |
| |
| } else { |
| |
| /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */ |
| m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1)); |
| bits_not_wanted = 0; |
| |
| DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size, |
| bits_not_wanted, m, pide, res_ptr, *res_ptr); |
| |
| ASSERT(m != 0); |
| ASSERT(bits_not_wanted); |
| ASSERT((*res_ptr & m) == m); /* verify same bits are set */ |
| *res_ptr &= ~m; |
| } |
| } |
| } |
| |
| |
| /************************************************************** |
| * |
| * "Dynamic DMA Mapping" support (aka "Coherent I/O") |
| * |
| ***************************************************************/ |
| |
| /** |
| * sba_io_pdir_entry - fill in one IO PDIR entry |
| * @pdir_ptr: pointer to IO PDIR entry |
| * @vba: Virtual CPU address of buffer to map |
| * |
| * SBA Mapping Routine |
| * |
| * Given a virtual address (vba, arg1) sba_io_pdir_entry() |
| * loads the I/O PDIR entry pointed to by pdir_ptr (arg0). |
| * Each IO Pdir entry consists of 8 bytes as shown below |
| * (LSB == bit 0): |
| * |
| * 63 40 11 7 0 |
| * +-+---------------------+----------------------------------+----+--------+ |
| * |V| U | PPN[39:12] | U | FF | |
| * +-+---------------------+----------------------------------+----+--------+ |
| * |
| * V == Valid Bit |
| * U == Unused |
| * PPN == Physical Page Number |
| * |
| * The physical address fields are filled with the results of virt_to_phys() |
| * on the vba. |
| */ |
| |
| #if 1 |
| #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \ |
| | 0x8000000000000000ULL) |
| #else |
| void SBA_INLINE |
| sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba) |
| { |
| *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL); |
| } |
| #endif |
| |
| #ifdef ENABLE_MARK_CLEAN |
| /** |
| * Since DMA is i-cache coherent, any (complete) pages that were written via |
| * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to |
| * flush them when they get mapped into an executable vm-area. |
| */ |
| static void |
| mark_clean (void *addr, size_t size) |
| { |
| unsigned long pg_addr, end; |
| |
| pg_addr = PAGE_ALIGN((unsigned long) addr); |
| end = (unsigned long) addr + size; |
| while (pg_addr + PAGE_SIZE <= end) { |
| struct page *page = virt_to_page((void *)pg_addr); |
| set_bit(PG_arch_1, &page->flags); |
| pg_addr += PAGE_SIZE; |
| } |
| } |
| #endif |
| |
| /** |
| * sba_mark_invalid - invalidate one or more IO PDIR entries |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @iova: IO Virtual Address mapped earlier |
| * @byte_cnt: number of bytes this mapping covers. |
| * |
| * Marking the IO PDIR entry(ies) as Invalid and invalidate |
| * corresponding IO TLB entry. The PCOM (Purge Command Register) |
| * is to purge stale entries in the IO TLB when unmapping entries. |
| * |
| * The PCOM register supports purging of multiple pages, with a minium |
| * of 1 page and a maximum of 2GB. Hardware requires the address be |
| * aligned to the size of the range being purged. The size of the range |
| * must be a power of 2. The "Cool perf optimization" in the |
| * allocation routine helps keep that true. |
| */ |
| static SBA_INLINE void |
| sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) |
| { |
| u32 iovp = (u32) SBA_IOVP(ioc,iova); |
| |
| int off = PDIR_INDEX(iovp); |
| |
| /* Must be non-zero and rounded up */ |
| ASSERT(byte_cnt > 0); |
| ASSERT(0 == (byte_cnt & ~iovp_mask)); |
| |
| #ifdef ASSERT_PDIR_SANITY |
| /* Assert first pdir entry is set */ |
| if (!(ioc->pdir_base[off] >> 60)) { |
| sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp)); |
| } |
| #endif |
| |
| if (byte_cnt <= iovp_size) |
| { |
| ASSERT(off < ioc->pdir_size); |
| |
| iovp |= iovp_shift; /* set "size" field for PCOM */ |
| |
| #ifndef FULL_VALID_PDIR |
| /* |
| ** clear I/O PDIR entry "valid" bit |
| ** Do NOT clear the rest - save it for debugging. |
| ** We should only clear bits that have previously |
| ** been enabled. |
| */ |
| ioc->pdir_base[off] &= ~(0x80000000000000FFULL); |
| #else |
| /* |
| ** If we want to maintain the PDIR as valid, put in |
| ** the spill page so devices prefetching won't |
| ** cause a hard fail. |
| */ |
| ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page); |
| #endif |
| } else { |
| u32 t = get_iovp_order(byte_cnt) + iovp_shift; |
| |
| iovp |= t; |
| ASSERT(t <= 31); /* 2GB! Max value of "size" field */ |
| |
| do { |
| /* verify this pdir entry is enabled */ |
| ASSERT(ioc->pdir_base[off] >> 63); |
| #ifndef FULL_VALID_PDIR |
| /* clear I/O Pdir entry "valid" bit first */ |
| ioc->pdir_base[off] &= ~(0x80000000000000FFULL); |
| #else |
| ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page); |
| #endif |
| off++; |
| byte_cnt -= iovp_size; |
| } while (byte_cnt > 0); |
| } |
| |
| WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM); |
| } |
| |
| /** |
| * sba_map_single_attrs - map one buffer and return IOVA for DMA |
| * @dev: instance of PCI owned by the driver that's asking. |
| * @addr: driver buffer to map. |
| * @size: number of bytes to map in driver buffer. |
| * @dir: R/W or both. |
| * @attrs: optional dma attributes |
| * |
| * See Documentation/DMA-mapping.txt |
| */ |
| static dma_addr_t sba_map_page(struct device *dev, struct page *page, |
| unsigned long poff, size_t size, |
| enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| struct ioc *ioc; |
| void *addr = page_address(page) + poff; |
| dma_addr_t iovp; |
| dma_addr_t offset; |
| u64 *pdir_start; |
| int pide; |
| #ifdef ASSERT_PDIR_SANITY |
| unsigned long flags; |
| #endif |
| #ifdef ALLOW_IOV_BYPASS |
| unsigned long pci_addr = virt_to_phys(addr); |
| #endif |
| |
| #ifdef ALLOW_IOV_BYPASS |
| ASSERT(to_pci_dev(dev)->dma_mask); |
| /* |
| ** Check if the PCI device can DMA to ptr... if so, just return ptr |
| */ |
| if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) { |
| /* |
| ** Device is bit capable of DMA'ing to the buffer... |
| ** just return the PCI address of ptr |
| */ |
| DBG_BYPASS("sba_map_single_attrs() bypass mask/addr: " |
| "0x%lx/0x%lx\n", |
| to_pci_dev(dev)->dma_mask, pci_addr); |
| return pci_addr; |
| } |
| #endif |
| ioc = GET_IOC(dev); |
| ASSERT(ioc); |
| |
| prefetch(ioc->res_hint); |
| |
| ASSERT(size > 0); |
| ASSERT(size <= DMA_CHUNK_SIZE); |
| |
| /* save offset bits */ |
| offset = ((dma_addr_t) (long) addr) & ~iovp_mask; |
| |
| /* round up to nearest iovp_size */ |
| size = (size + offset + ~iovp_mask) & iovp_mask; |
| |
| #ifdef ASSERT_PDIR_SANITY |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| if (sba_check_pdir(ioc,"Check before sba_map_single_attrs()")) |
| panic("Sanity check failed"); |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| #endif |
| |
| pide = sba_alloc_range(ioc, dev, size); |
| |
| iovp = (dma_addr_t) pide << iovp_shift; |
| |
| DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset); |
| |
| pdir_start = &(ioc->pdir_base[pide]); |
| |
| while (size > 0) { |
| ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */ |
| sba_io_pdir_entry(pdir_start, (unsigned long) addr); |
| |
| DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start); |
| |
| addr += iovp_size; |
| size -= iovp_size; |
| pdir_start++; |
| } |
| /* force pdir update */ |
| wmb(); |
| |
| /* form complete address */ |
| #ifdef ASSERT_PDIR_SANITY |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| sba_check_pdir(ioc,"Check after sba_map_single_attrs()"); |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| #endif |
| return SBA_IOVA(ioc, iovp, offset); |
| } |
| |
| static dma_addr_t sba_map_single_attrs(struct device *dev, void *addr, |
| size_t size, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| return sba_map_page(dev, virt_to_page(addr), |
| (unsigned long)addr & ~PAGE_MASK, size, dir, attrs); |
| } |
| |
| #ifdef ENABLE_MARK_CLEAN |
| static SBA_INLINE void |
| sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size) |
| { |
| u32 iovp = (u32) SBA_IOVP(ioc,iova); |
| int off = PDIR_INDEX(iovp); |
| void *addr; |
| |
| if (size <= iovp_size) { |
| addr = phys_to_virt(ioc->pdir_base[off] & |
| ~0xE000000000000FFFULL); |
| mark_clean(addr, size); |
| } else { |
| do { |
| addr = phys_to_virt(ioc->pdir_base[off] & |
| ~0xE000000000000FFFULL); |
| mark_clean(addr, min(size, iovp_size)); |
| off++; |
| size -= iovp_size; |
| } while (size > 0); |
| } |
| } |
| #endif |
| |
| /** |
| * sba_unmap_single_attrs - unmap one IOVA and free resources |
| * @dev: instance of PCI owned by the driver that's asking. |
| * @iova: IOVA of driver buffer previously mapped. |
| * @size: number of bytes mapped in driver buffer. |
| * @dir: R/W or both. |
| * @attrs: optional dma attributes |
| * |
| * See Documentation/DMA-mapping.txt |
| */ |
| static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| struct ioc *ioc; |
| #if DELAYED_RESOURCE_CNT > 0 |
| struct sba_dma_pair *d; |
| #endif |
| unsigned long flags; |
| dma_addr_t offset; |
| |
| ioc = GET_IOC(dev); |
| ASSERT(ioc); |
| |
| #ifdef ALLOW_IOV_BYPASS |
| if (likely((iova & ioc->imask) != ioc->ibase)) { |
| /* |
| ** Address does not fall w/in IOVA, must be bypassing |
| */ |
| DBG_BYPASS("sba_unmap_single_atttrs() bypass addr: 0x%lx\n", |
| iova); |
| |
| #ifdef ENABLE_MARK_CLEAN |
| if (dir == DMA_FROM_DEVICE) { |
| mark_clean(phys_to_virt(iova), size); |
| } |
| #endif |
| return; |
| } |
| #endif |
| offset = iova & ~iovp_mask; |
| |
| DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size); |
| |
| iova ^= offset; /* clear offset bits */ |
| size += offset; |
| size = ROUNDUP(size, iovp_size); |
| |
| #ifdef ENABLE_MARK_CLEAN |
| if (dir == DMA_FROM_DEVICE) |
| sba_mark_clean(ioc, iova, size); |
| #endif |
| |
| #if DELAYED_RESOURCE_CNT > 0 |
| spin_lock_irqsave(&ioc->saved_lock, flags); |
| d = &(ioc->saved[ioc->saved_cnt]); |
| d->iova = iova; |
| d->size = size; |
| if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) { |
| int cnt = ioc->saved_cnt; |
| spin_lock(&ioc->res_lock); |
| while (cnt--) { |
| sba_mark_invalid(ioc, d->iova, d->size); |
| sba_free_range(ioc, d->iova, d->size); |
| d--; |
| } |
| ioc->saved_cnt = 0; |
| READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ |
| spin_unlock(&ioc->res_lock); |
| } |
| spin_unlock_irqrestore(&ioc->saved_lock, flags); |
| #else /* DELAYED_RESOURCE_CNT == 0 */ |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| sba_mark_invalid(ioc, iova, size); |
| sba_free_range(ioc, iova, size); |
| READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| #endif /* DELAYED_RESOURCE_CNT == 0 */ |
| } |
| |
| void sba_unmap_single_attrs(struct device *dev, dma_addr_t iova, size_t size, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| sba_unmap_page(dev, iova, size, dir, attrs); |
| } |
| |
| /** |
| * sba_alloc_coherent - allocate/map shared mem for DMA |
| * @dev: instance of PCI owned by the driver that's asking. |
| * @size: number of bytes mapped in driver buffer. |
| * @dma_handle: IOVA of new buffer. |
| * |
| * See Documentation/DMA-mapping.txt |
| */ |
| static void * |
| sba_alloc_coherent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags) |
| { |
| struct ioc *ioc; |
| void *addr; |
| |
| ioc = GET_IOC(dev); |
| ASSERT(ioc); |
| |
| #ifdef CONFIG_NUMA |
| { |
| struct page *page; |
| page = alloc_pages_node(ioc->node == MAX_NUMNODES ? |
| numa_node_id() : ioc->node, flags, |
| get_order(size)); |
| |
| if (unlikely(!page)) |
| return NULL; |
| |
| addr = page_address(page); |
| } |
| #else |
| addr = (void *) __get_free_pages(flags, get_order(size)); |
| #endif |
| if (unlikely(!addr)) |
| return NULL; |
| |
| memset(addr, 0, size); |
| *dma_handle = virt_to_phys(addr); |
| |
| #ifdef ALLOW_IOV_BYPASS |
| ASSERT(dev->coherent_dma_mask); |
| /* |
| ** Check if the PCI device can DMA to ptr... if so, just return ptr |
| */ |
| if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) { |
| DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n", |
| dev->coherent_dma_mask, *dma_handle); |
| |
| return addr; |
| } |
| #endif |
| |
| /* |
| * If device can't bypass or bypass is disabled, pass the 32bit fake |
| * device to map single to get an iova mapping. |
| */ |
| *dma_handle = sba_map_single_attrs(&ioc->sac_only_dev->dev, addr, |
| size, 0, NULL); |
| |
| return addr; |
| } |
| |
| |
| /** |
| * sba_free_coherent - free/unmap shared mem for DMA |
| * @dev: instance of PCI owned by the driver that's asking. |
| * @size: number of bytes mapped in driver buffer. |
| * @vaddr: virtual address IOVA of "consistent" buffer. |
| * @dma_handler: IO virtual address of "consistent" buffer. |
| * |
| * See Documentation/DMA-mapping.txt |
| */ |
| static void sba_free_coherent (struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_handle) |
| { |
| sba_unmap_single_attrs(dev, dma_handle, size, 0, NULL); |
| free_pages((unsigned long) vaddr, get_order(size)); |
| } |
| |
| |
| /* |
| ** Since 0 is a valid pdir_base index value, can't use that |
| ** to determine if a value is valid or not. Use a flag to indicate |
| ** the SG list entry contains a valid pdir index. |
| */ |
| #define PIDE_FLAG 0x1UL |
| |
| #ifdef DEBUG_LARGE_SG_ENTRIES |
| int dump_run_sg = 0; |
| #endif |
| |
| |
| /** |
| * sba_fill_pdir - write allocated SG entries into IO PDIR |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @startsg: list of IOVA/size pairs |
| * @nents: number of entries in startsg list |
| * |
| * Take preprocessed SG list and write corresponding entries |
| * in the IO PDIR. |
| */ |
| |
| static SBA_INLINE int |
| sba_fill_pdir( |
| struct ioc *ioc, |
| struct scatterlist *startsg, |
| int nents) |
| { |
| struct scatterlist *dma_sg = startsg; /* pointer to current DMA */ |
| int n_mappings = 0; |
| u64 *pdirp = NULL; |
| unsigned long dma_offset = 0; |
| |
| while (nents-- > 0) { |
| int cnt = startsg->dma_length; |
| startsg->dma_length = 0; |
| |
| #ifdef DEBUG_LARGE_SG_ENTRIES |
| if (dump_run_sg) |
| printk(" %2d : %08lx/%05x %p\n", |
| nents, startsg->dma_address, cnt, |
| sba_sg_address(startsg)); |
| #else |
| DBG_RUN_SG(" %d : %08lx/%05x %p\n", |
| nents, startsg->dma_address, cnt, |
| sba_sg_address(startsg)); |
| #endif |
| /* |
| ** Look for the start of a new DMA stream |
| */ |
| if (startsg->dma_address & PIDE_FLAG) { |
| u32 pide = startsg->dma_address & ~PIDE_FLAG; |
| dma_offset = (unsigned long) pide & ~iovp_mask; |
| startsg->dma_address = 0; |
| if (n_mappings) |
| dma_sg = sg_next(dma_sg); |
| dma_sg->dma_address = pide | ioc->ibase; |
| pdirp = &(ioc->pdir_base[pide >> iovp_shift]); |
| n_mappings++; |
| } |
| |
| /* |
| ** Look for a VCONTIG chunk |
| */ |
| if (cnt) { |
| unsigned long vaddr = (unsigned long) sba_sg_address(startsg); |
| ASSERT(pdirp); |
| |
| /* Since multiple Vcontig blocks could make up |
| ** one DMA stream, *add* cnt to dma_len. |
| */ |
| dma_sg->dma_length += cnt; |
| cnt += dma_offset; |
| dma_offset=0; /* only want offset on first chunk */ |
| cnt = ROUNDUP(cnt, iovp_size); |
| do { |
| sba_io_pdir_entry(pdirp, vaddr); |
| vaddr += iovp_size; |
| cnt -= iovp_size; |
| pdirp++; |
| } while (cnt > 0); |
| } |
| startsg = sg_next(startsg); |
| } |
| /* force pdir update */ |
| wmb(); |
| |
| #ifdef DEBUG_LARGE_SG_ENTRIES |
| dump_run_sg = 0; |
| #endif |
| return(n_mappings); |
| } |
| |
| |
| /* |
| ** Two address ranges are DMA contiguous *iff* "end of prev" and |
| ** "start of next" are both on an IOV page boundary. |
| ** |
| ** (shift left is a quick trick to mask off upper bits) |
| */ |
| #define DMA_CONTIG(__X, __Y) \ |
| (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL) |
| |
| |
| /** |
| * sba_coalesce_chunks - preprocess the SG list |
| * @ioc: IO MMU structure which owns the pdir we are interested in. |
| * @startsg: list of IOVA/size pairs |
| * @nents: number of entries in startsg list |
| * |
| * First pass is to walk the SG list and determine where the breaks are |
| * in the DMA stream. Allocates PDIR entries but does not fill them. |
| * Returns the number of DMA chunks. |
| * |
| * Doing the fill separate from the coalescing/allocation keeps the |
| * code simpler. Future enhancement could make one pass through |
| * the sglist do both. |
| */ |
| static SBA_INLINE int |
| sba_coalesce_chunks(struct ioc *ioc, struct device *dev, |
| struct scatterlist *startsg, |
| int nents) |
| { |
| struct scatterlist *vcontig_sg; /* VCONTIG chunk head */ |
| unsigned long vcontig_len; /* len of VCONTIG chunk */ |
| unsigned long vcontig_end; |
| struct scatterlist *dma_sg; /* next DMA stream head */ |
| unsigned long dma_offset, dma_len; /* start/len of DMA stream */ |
| int n_mappings = 0; |
| unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| |
| while (nents > 0) { |
| unsigned long vaddr = (unsigned long) sba_sg_address(startsg); |
| |
| /* |
| ** Prepare for first/next DMA stream |
| */ |
| dma_sg = vcontig_sg = startsg; |
| dma_len = vcontig_len = vcontig_end = startsg->length; |
| vcontig_end += vaddr; |
| dma_offset = vaddr & ~iovp_mask; |
| |
| /* PARANOID: clear entries */ |
| startsg->dma_address = startsg->dma_length = 0; |
| |
| /* |
| ** This loop terminates one iteration "early" since |
| ** it's always looking one "ahead". |
| */ |
| while (--nents > 0) { |
| unsigned long vaddr; /* tmp */ |
| |
| startsg = sg_next(startsg); |
| |
| /* PARANOID */ |
| startsg->dma_address = startsg->dma_length = 0; |
| |
| /* catch brokenness in SCSI layer */ |
| ASSERT(startsg->length <= DMA_CHUNK_SIZE); |
| |
| /* |
| ** First make sure current dma stream won't |
| ** exceed DMA_CHUNK_SIZE if we coalesce the |
| ** next entry. |
| */ |
| if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask) |
| > DMA_CHUNK_SIZE) |
| break; |
| |
| if (dma_len + startsg->length > max_seg_size) |
| break; |
| |
| /* |
| ** Then look for virtually contiguous blocks. |
| ** |
| ** append the next transaction? |
| */ |
| vaddr = (unsigned long) sba_sg_address(startsg); |
| if (vcontig_end == vaddr) |
| { |
| vcontig_len += startsg->length; |
| vcontig_end += startsg->length; |
| dma_len += startsg->length; |
| continue; |
| } |
| |
| #ifdef DEBUG_LARGE_SG_ENTRIES |
| dump_run_sg = (vcontig_len > iovp_size); |
| #endif |
| |
| /* |
| ** Not virtually contigous. |
| ** Terminate prev chunk. |
| ** Start a new chunk. |
| ** |
| ** Once we start a new VCONTIG chunk, dma_offset |
| ** can't change. And we need the offset from the first |
| ** chunk - not the last one. Ergo Successive chunks |
| ** must start on page boundaries and dove tail |
| ** with it's predecessor. |
| */ |
| vcontig_sg->dma_length = vcontig_len; |
| |
| vcontig_sg = startsg; |
| vcontig_len = startsg->length; |
| |
| /* |
| ** 3) do the entries end/start on page boundaries? |
| ** Don't update vcontig_end until we've checked. |
| */ |
| if (DMA_CONTIG(vcontig_end, vaddr)) |
| { |
| vcontig_end = vcontig_len + vaddr; |
| dma_len += vcontig_len; |
| continue; |
| } else { |
| break; |
| } |
| } |
| |
| /* |
| ** End of DMA Stream |
| ** Terminate last VCONTIG block. |
| ** Allocate space for DMA stream. |
| */ |
| vcontig_sg->dma_length = vcontig_len; |
| dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask; |
| ASSERT(dma_len <= DMA_CHUNK_SIZE); |
| dma_sg->dma_address = (dma_addr_t) (PIDE_FLAG |
| | (sba_alloc_range(ioc, dev, dma_len) << iovp_shift) |
| | dma_offset); |
| n_mappings++; |
| } |
| |
| return n_mappings; |
| } |
| |
| |
| /** |
| * sba_map_sg - map Scatter/Gather list |
| * @dev: instance of PCI owned by the driver that's asking. |
| * @sglist: array of buffer/length pairs |
| * @nents: number of entries in list |
| * @dir: R/W or both. |
| * @attrs: optional dma attributes |
| * |
| * See Documentation/DMA-mapping.txt |
| */ |
| static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist, |
| int nents, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| struct ioc *ioc; |
| int coalesced, filled = 0; |
| #ifdef ASSERT_PDIR_SANITY |
| unsigned long flags; |
| #endif |
| #ifdef ALLOW_IOV_BYPASS_SG |
| struct scatterlist *sg; |
| #endif |
| |
| DBG_RUN_SG("%s() START %d entries\n", __func__, nents); |
| ioc = GET_IOC(dev); |
| ASSERT(ioc); |
| |
| #ifdef ALLOW_IOV_BYPASS_SG |
| ASSERT(to_pci_dev(dev)->dma_mask); |
| if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) { |
| for_each_sg(sglist, sg, nents, filled) { |
| sg->dma_length = sg->length; |
| sg->dma_address = virt_to_phys(sba_sg_address(sg)); |
| } |
| return filled; |
| } |
| #endif |
| /* Fast path single entry scatterlists. */ |
| if (nents == 1) { |
| sglist->dma_length = sglist->length; |
| sglist->dma_address = sba_map_single_attrs(dev, sba_sg_address(sglist), sglist->length, dir, attrs); |
| return 1; |
| } |
| |
| #ifdef ASSERT_PDIR_SANITY |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()")) |
| { |
| sba_dump_sg(ioc, sglist, nents); |
| panic("Check before sba_map_sg_attrs()"); |
| } |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| #endif |
| |
| prefetch(ioc->res_hint); |
| |
| /* |
| ** First coalesce the chunks and allocate I/O pdir space |
| ** |
| ** If this is one DMA stream, we can properly map using the |
| ** correct virtual address associated with each DMA page. |
| ** w/o this association, we wouldn't have coherent DMA! |
| ** Access to the virtual address is what forces a two pass algorithm. |
| */ |
| coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents); |
| |
| /* |
| ** Program the I/O Pdir |
| ** |
| ** map the virtual addresses to the I/O Pdir |
| ** o dma_address will contain the pdir index |
| ** o dma_len will contain the number of bytes to map |
| ** o address contains the virtual address. |
| */ |
| filled = sba_fill_pdir(ioc, sglist, nents); |
| |
| #ifdef ASSERT_PDIR_SANITY |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()")) |
| { |
| sba_dump_sg(ioc, sglist, nents); |
| panic("Check after sba_map_sg_attrs()\n"); |
| } |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| #endif |
| |
| ASSERT(coalesced == filled); |
| DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); |
| |
| return filled; |
| } |
| |
| /** |
| * sba_unmap_sg_attrs - unmap Scatter/Gather list |
| * @dev: instance of PCI owned by the driver that's asking. |
| * @sglist: array of buffer/length pairs |
| * @nents: number of entries in list |
| * @dir: R/W or both. |
| * @attrs: optional dma attributes |
| * |
| * See Documentation/DMA-mapping.txt |
| */ |
| static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist, |
| int nents, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| #ifdef ASSERT_PDIR_SANITY |
| struct ioc *ioc; |
| unsigned long flags; |
| #endif |
| |
| DBG_RUN_SG("%s() START %d entries, %p,%x\n", |
| __func__, nents, sba_sg_address(sglist), sglist->length); |
| |
| #ifdef ASSERT_PDIR_SANITY |
| ioc = GET_IOC(dev); |
| ASSERT(ioc); |
| |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()"); |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| #endif |
| |
| while (nents && sglist->dma_length) { |
| |
| sba_unmap_single_attrs(dev, sglist->dma_address, |
| sglist->dma_length, dir, attrs); |
| sglist = sg_next(sglist); |
| nents--; |
| } |
| |
| DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); |
| |
| #ifdef ASSERT_PDIR_SANITY |
| spin_lock_irqsave(&ioc->res_lock, flags); |
| sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()"); |
| spin_unlock_irqrestore(&ioc->res_lock, flags); |
| #endif |
| |
| } |
| |
| /************************************************************** |
| * |
| * Initialization and claim |
| * |
| ***************************************************************/ |
| |
| static void __init |
| ioc_iova_init(struct ioc *ioc) |
| { |
| int tcnfg; |
| int agp_found = 0; |
| struct pci_dev *device = NULL; |
| #ifdef FULL_VALID_PDIR |
| unsigned long index; |
| #endif |
| |
| /* |
| ** Firmware programs the base and size of a "safe IOVA space" |
| ** (one that doesn't overlap memory or LMMIO space) in the |
| ** IBASE and IMASK registers. |
| */ |
| ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL; |
| ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL; |
| |
| ioc->iov_size = ~ioc->imask + 1; |
| |
| DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n", |
| __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask, |
| ioc->iov_size >> 20); |
| |
| switch (iovp_size) { |
| case 4*1024: tcnfg = 0; break; |
| case 8*1024: tcnfg = 1; break; |
| case 16*1024: tcnfg = 2; break; |
| case 64*1024: tcnfg = 3; break; |
| default: |
| panic(PFX "Unsupported IOTLB page size %ldK", |
| iovp_size >> 10); |
| break; |
| } |
| WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG); |
| |
| ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE; |
| ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL, |
| get_order(ioc->pdir_size)); |
| if (!ioc->pdir_base) |
| panic(PFX "Couldn't allocate I/O Page Table\n"); |
| |
| memset(ioc->pdir_base, 0, ioc->pdir_size); |
| |
| DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__, |
| iovp_size >> 10, ioc->pdir_base, ioc->pdir_size); |
| |
| ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base); |
| WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE); |
| |
| /* |
| ** If an AGP device is present, only use half of the IOV space |
| ** for PCI DMA. Unfortunately we can't know ahead of time |
| ** whether GART support will actually be used, for now we |
| ** can just key on an AGP device found in the system. |
| ** We program the next pdir index after we stop w/ a key for |
| ** the GART code to handshake on. |
| */ |
| for_each_pci_dev(device) |
| agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP); |
| |
| if (agp_found && reserve_sba_gart) { |
| printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n", |
| ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2); |
| ioc->pdir_size /= 2; |
| ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE; |
| } |
| #ifdef FULL_VALID_PDIR |
| /* |
| ** Check to see if the spill page has been allocated, we don't need more than |
| ** one across multiple SBAs. |
| */ |
| if (!prefetch_spill_page) { |
| char *spill_poison = "SBAIOMMU POISON"; |
| int poison_size = 16; |
| void *poison_addr, *addr; |
| |
| addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size)); |
| if (!addr) |
| panic(PFX "Couldn't allocate PDIR spill page\n"); |
| |
| poison_addr = addr; |
| for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size) |
| memcpy(poison_addr, spill_poison, poison_size); |
| |
| prefetch_spill_page = virt_to_phys(addr); |
| |
| DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page); |
| } |
| /* |
| ** Set all the PDIR entries valid w/ the spill page as the target |
| */ |
| for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++) |
| ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page); |
| #endif |
| |
| /* Clear I/O TLB of any possible entries */ |
| WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM); |
| READ_REG(ioc->ioc_hpa + IOC_PCOM); |
| |
| /* Enable IOVA translation */ |
| WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE); |
| READ_REG(ioc->ioc_hpa + IOC_IBASE); |
| } |
| |
| static void __init |
| ioc_resource_init(struct ioc *ioc) |
| { |
| spin_lock_init(&ioc->res_lock); |
| #if DELAYED_RESOURCE_CNT > 0 |
| spin_lock_init(&ioc->saved_lock); |
| #endif |
| |
| /* resource map size dictated by pdir_size */ |
| ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */ |
| ioc->res_size >>= 3; /* convert bit count to byte count */ |
| DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); |
| |
| ioc->res_map = (char *) __get_free_pages(GFP_KERNEL, |
| get_order(ioc->res_size)); |
| if (!ioc->res_map) |
| panic(PFX "Couldn't allocate resource map\n"); |
| |
| memset(ioc->res_map, 0, ioc->res_size); |
| /* next available IOVP - circular search */ |
| ioc->res_hint = (unsigned long *) ioc->res_map; |
| |
| #ifdef ASSERT_PDIR_SANITY |
| /* Mark first bit busy - ie no IOVA 0 */ |
| ioc->res_map[0] = 0x1; |
| ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE; |
| #endif |
| #ifdef FULL_VALID_PDIR |
| /* Mark the last resource used so we don't prefetch beyond IOVA space */ |
| ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */ |
| ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF |
| | prefetch_spill_page); |
| #endif |
| |
| DBG_INIT("%s() res_map %x %p\n", __func__, |
| ioc->res_size, (void *) ioc->res_map); |
| } |
| |
| static void __init |
| ioc_sac_init(struct ioc *ioc) |
| { |
| struct pci_dev *sac = NULL; |
| struct pci_controller *controller = NULL; |
| |
| /* |
| * pci_alloc_coherent() must return a DMA address which is |
| * SAC (single address cycle) addressable, so allocate a |
| * pseudo-device to enforce that. |
| */ |
| sac = kzalloc(sizeof(*sac), GFP_KERNEL); |
| if (!sac) |
| panic(PFX "Couldn't allocate struct pci_dev"); |
| |
| controller = kzalloc(sizeof(*controller), GFP_KERNEL); |
| if (!controller) |
| panic(PFX "Couldn't allocate struct pci_controller"); |
| |
| controller->iommu = ioc; |
| sac->sysdata = controller; |
| sac->dma_mask = 0xFFFFFFFFUL; |
| #ifdef CONFIG_PCI |
| sac->dev.bus = &pci_bus_type; |
| #endif |
| ioc->sac_only_dev = sac; |
| } |
| |
| static void __init |
| ioc_zx1_init(struct ioc *ioc) |
| { |
| unsigned long rope_config; |
| unsigned int i; |
| |
| if (ioc->rev < 0x20) |
| panic(PFX "IOC 2.0 or later required for IOMMU support\n"); |
| |
| /* 38 bit memory controller + extra bit for range displaced by MMIO */ |
| ioc->dma_mask = (0x1UL << 39) - 1; |
| |
| /* |
| ** Clear ROPE(N)_CONFIG AO bit. |
| ** Disables "NT Ordering" (~= !"Relaxed Ordering") |
| ** Overrides bit 1 in DMA Hint Sets. |
| ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701. |
| */ |
| for (i=0; i<(8*8); i+=8) { |
| rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i); |
| rope_config &= ~IOC_ROPE_AO; |
| WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i); |
| } |
| } |
| |
| typedef void (initfunc)(struct ioc *); |
| |
| struct ioc_iommu { |
| u32 func_id; |
| char *name; |
| initfunc *init; |
| }; |
| |
| static struct ioc_iommu ioc_iommu_info[] __initdata = { |
| { ZX1_IOC_ID, "zx1", ioc_zx1_init }, |
| { ZX2_IOC_ID, "zx2", NULL }, |
| { SX1000_IOC_ID, "sx1000", NULL }, |
| { SX2000_IOC_ID, "sx2000", NULL }, |
| }; |
| |
| static struct ioc * __init |
| ioc_init(u64 hpa, void *handle) |
| { |
| struct ioc *ioc; |
| struct ioc_iommu *info; |
| |
| ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); |
| if (!ioc) |
| return NULL; |
| |
| ioc->next = ioc_list; |
| ioc_list = ioc; |
| |
| ioc->handle = handle; |
| ioc->ioc_hpa = ioremap(hpa, 0x1000); |
| |
| ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID); |
| ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL; |
| ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */ |
| |
| for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) { |
| if (ioc->func_id == info->func_id) { |
| ioc->name = info->name; |
| if (info->init) |
| (info->init)(ioc); |
| } |
| } |
| |
| iovp_size = (1 << iovp_shift); |
| iovp_mask = ~(iovp_size - 1); |
| |
| DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__, |
| PAGE_SIZE >> 10, iovp_size >> 10); |
| |
| if (!ioc->name) { |
| ioc->name = kmalloc(24, GFP_KERNEL); |
| if (ioc->name) |
| sprintf((char *) ioc->name, "Unknown (%04x:%04x)", |
| ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF); |
| else |
| ioc->name = "Unknown"; |
| } |
| |
| ioc_iova_init(ioc); |
| ioc_resource_init(ioc); |
| ioc_sac_init(ioc); |
| |
| if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask) |
| ia64_max_iommu_merge_mask = ~iovp_mask; |
| |
| printk(KERN_INFO PFX |
| "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n", |
| ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF, |
| hpa, ioc->iov_size >> 20, ioc->ibase); |
| |
| return ioc; |
| } |
| |
| |
| |
| /************************************************************************** |
| ** |
| ** SBA initialization code (HW and SW) |
| ** |
| ** o identify SBA chip itself |
| ** o FIXME: initialize DMA hints for reasonable defaults |
| ** |
| **************************************************************************/ |
| |
| #ifdef CONFIG_PROC_FS |
| static void * |
| ioc_start(struct seq_file *s, loff_t *pos) |
| { |
| struct ioc *ioc; |
| loff_t n = *pos; |
| |
| for (ioc = ioc_list; ioc; ioc = ioc->next) |
| if (!n--) |
| return ioc; |
| |
| return NULL; |
| } |
| |
| static void * |
| ioc_next(struct seq_file *s, void *v, loff_t *pos) |
| { |
| struct ioc *ioc = v; |
| |
| ++*pos; |
| return ioc->next; |
| } |
| |
| static void |
| ioc_stop(struct seq_file *s, void *v) |
| { |
| } |
| |
| static int |
| ioc_show(struct seq_file *s, void *v) |
| { |
| struct ioc *ioc = v; |
| unsigned long *res_ptr = (unsigned long *)ioc->res_map; |
| int i, used = 0; |
| |
| seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n", |
| ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF)); |
| #ifdef CONFIG_NUMA |
| if (ioc->node != MAX_NUMNODES) |
| seq_printf(s, "NUMA node : %d\n", ioc->node); |
| #endif |
| seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024)); |
| seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024); |
| |
| for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr) |
| used += hweight64(*res_ptr); |
| |
| seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3); |
| seq_printf(s, "PDIR used : %d entries\n", used); |
| |
| #ifdef PDIR_SEARCH_TIMING |
| { |
| unsigned long i = 0, avg = 0, min, max; |
| min = max = ioc->avg_search[0]; |
| for (i = 0; i < SBA_SEARCH_SAMPLE; i++) { |
| avg += ioc->avg_search[i]; |
| if (ioc->avg_search[i] > max) max = ioc->avg_search[i]; |
| if (ioc->avg_search[i] < min) min = ioc->avg_search[i]; |
| } |
| avg /= SBA_SEARCH_SAMPLE; |
| seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n", |
| min, avg, max); |
| } |
| #endif |
| #ifndef ALLOW_IOV_BYPASS |
| seq_printf(s, "IOVA bypass disabled\n"); |
| #endif |
| return 0; |
| } |
| |
| static const struct seq_operations ioc_seq_ops = { |
| .start = ioc_start, |
| .next = ioc_next, |
| .stop = ioc_stop, |
| .show = ioc_show |
| }; |
| |
| static int |
| ioc_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &ioc_seq_ops); |
| } |
| |
| static const struct file_operations ioc_fops = { |
| .open = ioc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release |
| }; |
| |
| static void __init |
| ioc_proc_init(void) |
| { |
| struct proc_dir_entry *dir; |
| |
| dir = proc_mkdir("bus/mckinley", NULL); |
| if (!dir) |
| return; |
| |
| proc_create(ioc_list->name, 0, dir, &ioc_fops); |
| } |
| #endif |
| |
| static void |
| sba_connect_bus(struct pci_bus *bus) |
| { |
| acpi_handle handle, parent; |
| acpi_status status; |
| struct ioc *ioc; |
| |
| if (!PCI_CONTROLLER(bus)) |
| panic(PFX "no sysdata on bus %d!\n", bus->number); |
| |
| if (PCI_CONTROLLER(bus)->iommu) |
| return; |
| |
| handle = PCI_CONTROLLER(bus)->acpi_handle; |
| if (!handle) |
| return; |
| |
| /* |
| * The IOC scope encloses PCI root bridges in the ACPI |
| * namespace, so work our way out until we find an IOC we |
| * claimed previously. |
| */ |
| do { |
| for (ioc = ioc_list; ioc; ioc = ioc->next) |
| if (ioc->handle == handle) { |
| PCI_CONTROLLER(bus)->iommu = ioc; |
| return; |
| } |
| |
| status = acpi_get_parent(handle, &parent); |
| handle = parent; |
| } while (ACPI_SUCCESS(status)); |
| |
| printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number); |
| } |
| |
| #ifdef CONFIG_NUMA |
| static void __init |
| sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle) |
| { |
| unsigned int node; |
| int pxm; |
| |
| ioc->node = MAX_NUMNODES; |
| |
| pxm = acpi_get_pxm(handle); |
| |
| if (pxm < 0) |
| return; |
| |
| node = pxm_to_node(pxm); |
| |
| if (node >= MAX_NUMNODES || !node_online(node)) |
| return; |
| |
| ioc->node = node; |
| return; |
| } |
| #else |
| #define sba_map_ioc_to_node(ioc, handle) |
| #endif |
| |
| static int __init |
| acpi_sba_ioc_add(struct acpi_device *device) |
| { |
| struct ioc *ioc; |
| acpi_status status; |
| u64 hpa, length; |
| struct acpi_buffer buffer; |
| struct acpi_device_info *dev_info; |
| |
| status = hp_acpi_csr_space(device->handle, &hpa, &length); |
| if (ACPI_FAILURE(status)) |
| return 1; |
| |
| buffer.length = ACPI_ALLOCATE_LOCAL_BUFFER; |
| status = acpi_get_object_info(device->handle, &buffer); |
| if (ACPI_FAILURE(status)) |
| return 1; |
| dev_info = buffer.pointer; |
| |
| /* |
| * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI |
| * root bridges, and its CSR space includes the IOC function. |
| */ |
| if (strncmp("HWP0001", dev_info->hardware_id.value, 7) == 0) { |
| hpa += ZX1_IOC_OFFSET; |
| /* zx1 based systems default to kernel page size iommu pages */ |
| if (!iovp_shift) |
| iovp_shift = min(PAGE_SHIFT, 16); |
| } |
| kfree(dev_info); |
| |
| /* |
| * default anything not caught above or specified on cmdline to 4k |
| * iommu page size |
| */ |
| if (!iovp_shift) |
| iovp_shift = 12; |
| |
| ioc = ioc_init(hpa, device->handle); |
| if (!ioc) |
| return 1; |
| |
| /* setup NUMA node association */ |
| sba_map_ioc_to_node(ioc, device->handle); |
| return 0; |
| } |
| |
| static const struct acpi_device_id hp_ioc_iommu_device_ids[] = { |
| {"HWP0001", 0}, |
| {"HWP0004", 0}, |
| {"", 0}, |
| }; |
| static struct acpi_driver acpi_sba_ioc_driver = { |
| .name = "IOC IOMMU Driver", |
| .ids = hp_ioc_iommu_device_ids, |
| .ops = { |
| .add = acpi_sba_ioc_add, |
| }, |
| }; |
| |
| extern struct dma_map_ops swiotlb_dma_ops; |
| |
| static int __init |
| sba_init(void) |
| { |
| if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb")) |
| return 0; |
| |
| #if defined(CONFIG_IA64_GENERIC) |
| /* If we are booting a kdump kernel, the sba_iommu will |
| * cause devices that were not shutdown properly to MCA |
| * as soon as they are turned back on. Our only option for |
| * a successful kdump kernel boot is to use the swiotlb. |
| */ |
| if (is_kdump_kernel()) { |
| dma_ops = &swiotlb_dma_ops; |
| if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0) |
| panic("Unable to initialize software I/O TLB:" |
| " Try machvec=dig boot option"); |
| machvec_init("dig"); |
| return 0; |
| } |
| #endif |
| |
| acpi_bus_register_driver(&acpi_sba_ioc_driver); |
| if (!ioc_list) { |
| #ifdef CONFIG_IA64_GENERIC |
| /* |
| * If we didn't find something sba_iommu can claim, we |
| * need to setup the swiotlb and switch to the dig machvec. |
| */ |
| dma_ops = &swiotlb_dma_ops; |
| if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0) |
| panic("Unable to find SBA IOMMU or initialize " |
| "software I/O TLB: Try machvec=dig boot option"); |
| machvec_init("dig"); |
| #else |
| panic("Unable to find SBA IOMMU: Try a generic or DIG kernel"); |
| #endif |
| return 0; |
| } |
| |
| #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB) |
| /* |
| * hpzx1_swiotlb needs to have a fairly small swiotlb bounce |
| * buffer setup to support devices with smaller DMA masks than |
| * sba_iommu can handle. |
| */ |
| if (ia64_platform_is("hpzx1_swiotlb")) { |
| extern void hwsw_init(void); |
| |
| hwsw_init(); |
| } |
| #endif |
| |
| #ifdef CONFIG_PCI |
| { |
| struct pci_bus *b = NULL; |
| while ((b = pci_find_next_bus(b)) != NULL) |
| sba_connect_bus(b); |
| } |
| #endif |
| |
| #ifdef CONFIG_PROC_FS |
| ioc_proc_init(); |
| #endif |
| return 0; |
| } |
| |
| subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */ |
| |
| static int __init |
| nosbagart(char *str) |
| { |
| reserve_sba_gart = 0; |
| return 1; |
| } |
| |
| static int sba_dma_supported (struct device *dev, u64 mask) |
| { |
| /* make sure it's at least 32bit capable */ |
| return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL); |
| } |
| |
| static int sba_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| return 0; |
| } |
| |
| __setup("nosbagart", nosbagart); |
| |
| static int __init |
| sba_page_override(char *str) |
| { |
| unsigned long page_size; |
| |
| page_size = memparse(str, &str); |
| switch (page_size) { |
| case 4096: |
| case 8192: |
| case 16384: |
| case 65536: |
| iovp_shift = ffs(page_size) - 1; |
| break; |
| default: |
| printk("%s: unknown/unsupported iommu page size %ld\n", |
| __func__, page_size); |
| } |
| |
| return 1; |
| } |
| |
| __setup("sbapagesize=",sba_page_override); |
| |
| struct dma_map_ops sba_dma_ops = { |
| .alloc_coherent = sba_alloc_coherent, |
| .free_coherent = sba_free_coherent, |
| .map_page = sba_map_page, |
| .unmap_page = sba_unmap_page, |
| .map_sg = sba_map_sg_attrs, |
| .unmap_sg = sba_unmap_sg_attrs, |
| .sync_single_for_cpu = machvec_dma_sync_single, |
| .sync_sg_for_cpu = machvec_dma_sync_sg, |
| .sync_single_for_device = machvec_dma_sync_single, |
| .sync_sg_for_device = machvec_dma_sync_sg, |
| .dma_supported = sba_dma_supported, |
| .mapping_error = sba_dma_mapping_error, |
| }; |
| |
| void sba_dma_init(void) |
| { |
| dma_ops = &sba_dma_ops; |
| } |