| /* |
| * Functions to handle I2O memory |
| * |
| * Pulled from the inlines in i2o headers and uninlined |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/i2o.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include "core.h" |
| |
| /* Protects our 32/64bit mask switching */ |
| static DEFINE_MUTEX(mem_lock); |
| |
| /** |
| * i2o_sg_tablesize - Calculate the maximum number of elements in a SGL |
| * @c: I2O controller for which the calculation should be done |
| * @body_size: maximum body size used for message in 32-bit words. |
| * |
| * Return the maximum number of SG elements in a SG list. |
| */ |
| u16 i2o_sg_tablesize(struct i2o_controller *c, u16 body_size) |
| { |
| i2o_status_block *sb = c->status_block.virt; |
| u16 sg_count = |
| (sb->inbound_frame_size - sizeof(struct i2o_message) / 4) - |
| body_size; |
| |
| if (c->pae_support) { |
| /* |
| * for 64-bit a SG attribute element must be added and each |
| * SG element needs 12 bytes instead of 8. |
| */ |
| sg_count -= 2; |
| sg_count /= 3; |
| } else |
| sg_count /= 2; |
| |
| if (c->short_req && (sg_count > 8)) |
| sg_count = 8; |
| |
| return sg_count; |
| } |
| EXPORT_SYMBOL_GPL(i2o_sg_tablesize); |
| |
| |
| /** |
| * i2o_dma_map_single - Map pointer to controller and fill in I2O message. |
| * @c: I2O controller |
| * @ptr: pointer to the data which should be mapped |
| * @size: size of data in bytes |
| * @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE |
| * @sg_ptr: pointer to the SG list inside the I2O message |
| * |
| * This function does all necessary DMA handling and also writes the I2O |
| * SGL elements into the I2O message. For details on DMA handling see also |
| * dma_map_single(). The pointer sg_ptr will only be set to the end of the |
| * SG list if the allocation was successful. |
| * |
| * Returns DMA address which must be checked for failures using |
| * dma_mapping_error(). |
| */ |
| dma_addr_t i2o_dma_map_single(struct i2o_controller *c, void *ptr, |
| size_t size, |
| enum dma_data_direction direction, |
| u32 ** sg_ptr) |
| { |
| u32 sg_flags; |
| u32 *mptr = *sg_ptr; |
| dma_addr_t dma_addr; |
| |
| switch (direction) { |
| case DMA_TO_DEVICE: |
| sg_flags = 0xd4000000; |
| break; |
| case DMA_FROM_DEVICE: |
| sg_flags = 0xd0000000; |
| break; |
| default: |
| return 0; |
| } |
| |
| dma_addr = dma_map_single(&c->pdev->dev, ptr, size, direction); |
| if (!dma_mapping_error(&c->pdev->dev, dma_addr)) { |
| #ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64 |
| if ((sizeof(dma_addr_t) > 4) && c->pae_support) { |
| *mptr++ = cpu_to_le32(0x7C020002); |
| *mptr++ = cpu_to_le32(PAGE_SIZE); |
| } |
| #endif |
| |
| *mptr++ = cpu_to_le32(sg_flags | size); |
| *mptr++ = cpu_to_le32(i2o_dma_low(dma_addr)); |
| #ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64 |
| if ((sizeof(dma_addr_t) > 4) && c->pae_support) |
| *mptr++ = cpu_to_le32(i2o_dma_high(dma_addr)); |
| #endif |
| *sg_ptr = mptr; |
| } |
| return dma_addr; |
| } |
| EXPORT_SYMBOL_GPL(i2o_dma_map_single); |
| |
| /** |
| * i2o_dma_map_sg - Map a SG List to controller and fill in I2O message. |
| * @c: I2O controller |
| * @sg: SG list to be mapped |
| * @sg_count: number of elements in the SG list |
| * @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE |
| * @sg_ptr: pointer to the SG list inside the I2O message |
| * |
| * This function does all necessary DMA handling and also writes the I2O |
| * SGL elements into the I2O message. For details on DMA handling see also |
| * dma_map_sg(). The pointer sg_ptr will only be set to the end of the SG |
| * list if the allocation was successful. |
| * |
| * Returns 0 on failure or 1 on success. |
| */ |
| int i2o_dma_map_sg(struct i2o_controller *c, struct scatterlist *sg, |
| int sg_count, enum dma_data_direction direction, u32 ** sg_ptr) |
| { |
| u32 sg_flags; |
| u32 *mptr = *sg_ptr; |
| |
| switch (direction) { |
| case DMA_TO_DEVICE: |
| sg_flags = 0x14000000; |
| break; |
| case DMA_FROM_DEVICE: |
| sg_flags = 0x10000000; |
| break; |
| default: |
| return 0; |
| } |
| |
| sg_count = dma_map_sg(&c->pdev->dev, sg, sg_count, direction); |
| if (!sg_count) |
| return 0; |
| |
| #ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64 |
| if ((sizeof(dma_addr_t) > 4) && c->pae_support) { |
| *mptr++ = cpu_to_le32(0x7C020002); |
| *mptr++ = cpu_to_le32(PAGE_SIZE); |
| } |
| #endif |
| |
| while (sg_count-- > 0) { |
| if (!sg_count) |
| sg_flags |= 0xC0000000; |
| *mptr++ = cpu_to_le32(sg_flags | sg_dma_len(sg)); |
| *mptr++ = cpu_to_le32(i2o_dma_low(sg_dma_address(sg))); |
| #ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64 |
| if ((sizeof(dma_addr_t) > 4) && c->pae_support) |
| *mptr++ = cpu_to_le32(i2o_dma_high(sg_dma_address(sg))); |
| #endif |
| sg = sg_next(sg); |
| } |
| *sg_ptr = mptr; |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(i2o_dma_map_sg); |
| |
| /** |
| * i2o_dma_alloc - Allocate DMA memory |
| * @dev: struct device pointer to the PCI device of the I2O controller |
| * @addr: i2o_dma struct which should get the DMA buffer |
| * @len: length of the new DMA memory |
| * |
| * Allocate a coherent DMA memory and write the pointers into addr. |
| * |
| * Returns 0 on success or -ENOMEM on failure. |
| */ |
| int i2o_dma_alloc(struct device *dev, struct i2o_dma *addr, size_t len) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| int dma_64 = 0; |
| |
| mutex_lock(&mem_lock); |
| if ((sizeof(dma_addr_t) > 4) && (pdev->dma_mask == DMA_BIT_MASK(64))) { |
| dma_64 = 1; |
| if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { |
| mutex_unlock(&mem_lock); |
| return -ENOMEM; |
| } |
| } |
| |
| addr->virt = dma_alloc_coherent(dev, len, &addr->phys, GFP_KERNEL); |
| |
| if ((sizeof(dma_addr_t) > 4) && dma_64) |
| if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) |
| printk(KERN_WARNING "i2o: unable to set 64-bit DMA"); |
| mutex_unlock(&mem_lock); |
| |
| if (!addr->virt) |
| return -ENOMEM; |
| |
| memset(addr->virt, 0, len); |
| addr->len = len; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(i2o_dma_alloc); |
| |
| |
| /** |
| * i2o_dma_free - Free DMA memory |
| * @dev: struct device pointer to the PCI device of the I2O controller |
| * @addr: i2o_dma struct which contains the DMA buffer |
| * |
| * Free a coherent DMA memory and set virtual address of addr to NULL. |
| */ |
| void i2o_dma_free(struct device *dev, struct i2o_dma *addr) |
| { |
| if (addr->virt) { |
| if (addr->phys) |
| dma_free_coherent(dev, addr->len, addr->virt, |
| addr->phys); |
| else |
| kfree(addr->virt); |
| addr->virt = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(i2o_dma_free); |
| |
| |
| /** |
| * i2o_dma_realloc - Realloc DMA memory |
| * @dev: struct device pointer to the PCI device of the I2O controller |
| * @addr: pointer to a i2o_dma struct DMA buffer |
| * @len: new length of memory |
| * |
| * If there was something allocated in the addr, free it first. If len > 0 |
| * than try to allocate it and write the addresses back to the addr |
| * structure. If len == 0 set the virtual address to NULL. |
| * |
| * Returns the 0 on success or negative error code on failure. |
| */ |
| int i2o_dma_realloc(struct device *dev, struct i2o_dma *addr, size_t len) |
| { |
| i2o_dma_free(dev, addr); |
| |
| if (len) |
| return i2o_dma_alloc(dev, addr, len); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(i2o_dma_realloc); |
| |
| /* |
| * i2o_pool_alloc - Allocate an slab cache and mempool |
| * @mempool: pointer to struct i2o_pool to write data into. |
| * @name: name which is used to identify cache |
| * @size: size of each object |
| * @min_nr: minimum number of objects |
| * |
| * First allocates a slab cache with name and size. Then allocates a |
| * mempool which uses the slab cache for allocation and freeing. |
| * |
| * Returns 0 on success or negative error code on failure. |
| */ |
| int i2o_pool_alloc(struct i2o_pool *pool, const char *name, |
| size_t size, int min_nr) |
| { |
| pool->name = kmalloc(strlen(name) + 1, GFP_KERNEL); |
| if (!pool->name) |
| goto exit; |
| strcpy(pool->name, name); |
| |
| pool->slab = |
| kmem_cache_create(pool->name, size, 0, SLAB_HWCACHE_ALIGN, NULL); |
| if (!pool->slab) |
| goto free_name; |
| |
| pool->mempool = mempool_create_slab_pool(min_nr, pool->slab); |
| if (!pool->mempool) |
| goto free_slab; |
| |
| return 0; |
| |
| free_slab: |
| kmem_cache_destroy(pool->slab); |
| |
| free_name: |
| kfree(pool->name); |
| |
| exit: |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL_GPL(i2o_pool_alloc); |
| |
| /* |
| * i2o_pool_free - Free slab cache and mempool again |
| * @mempool: pointer to struct i2o_pool which should be freed |
| * |
| * Note that you have to return all objects to the mempool again before |
| * calling i2o_pool_free(). |
| */ |
| void i2o_pool_free(struct i2o_pool *pool) |
| { |
| mempool_destroy(pool->mempool); |
| kmem_cache_destroy(pool->slab); |
| kfree(pool->name); |
| }; |
| EXPORT_SYMBOL_GPL(i2o_pool_free); |