| /* |
| * arch/arm/kernel/topology.c |
| * |
| * Copyright (C) 2011 Linaro Limited. |
| * Written by: Vincent Guittot |
| * |
| * based on arch/sh/kernel/topology.c |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| #include <linux/node.h> |
| #include <linux/nodemask.h> |
| #include <linux/of.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/topology.h> |
| |
| /* |
| * cpu power scale management |
| */ |
| |
| /* |
| * cpu power table |
| * This per cpu data structure describes the relative capacity of each core. |
| * On a heteregenous system, cores don't have the same computation capacity |
| * and we reflect that difference in the cpu_power field so the scheduler can |
| * take this difference into account during load balance. A per cpu structure |
| * is preferred because each CPU updates its own cpu_power field during the |
| * load balance except for idle cores. One idle core is selected to run the |
| * rebalance_domains for all idle cores and the cpu_power can be updated |
| * during this sequence. |
| */ |
| static DEFINE_PER_CPU(unsigned long, cpu_scale); |
| |
| unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu) |
| { |
| return per_cpu(cpu_scale, cpu); |
| } |
| |
| static void set_power_scale(unsigned int cpu, unsigned long power) |
| { |
| per_cpu(cpu_scale, cpu) = power; |
| } |
| |
| #ifdef CONFIG_OF |
| struct cpu_efficiency { |
| const char *compatible; |
| unsigned long efficiency; |
| }; |
| |
| /* |
| * Table of relative efficiency of each processors |
| * The efficiency value must fit in 20bit and the final |
| * cpu_scale value must be in the range |
| * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2 |
| * in order to return at most 1 when DIV_ROUND_CLOSEST |
| * is used to compute the capacity of a CPU. |
| * Processors that are not defined in the table, |
| * use the default SCHED_POWER_SCALE value for cpu_scale. |
| */ |
| struct cpu_efficiency table_efficiency[] = { |
| {"arm,cortex-a15", 3891}, |
| {"arm,cortex-a7", 2048}, |
| {NULL, }, |
| }; |
| |
| struct cpu_capacity { |
| unsigned long hwid; |
| unsigned long capacity; |
| }; |
| |
| struct cpu_capacity *cpu_capacity; |
| |
| unsigned long middle_capacity = 1; |
| |
| /* |
| * Iterate all CPUs' descriptor in DT and compute the efficiency |
| * (as per table_efficiency). Also calculate a middle efficiency |
| * as close as possible to (max{eff_i} - min{eff_i}) / 2 |
| * This is later used to scale the cpu_power field such that an |
| * 'average' CPU is of middle power. Also see the comments near |
| * table_efficiency[] and update_cpu_power(). |
| */ |
| static void __init parse_dt_topology(void) |
| { |
| struct cpu_efficiency *cpu_eff; |
| struct device_node *cn = NULL; |
| unsigned long min_capacity = (unsigned long)(-1); |
| unsigned long max_capacity = 0; |
| unsigned long capacity = 0; |
| int alloc_size, cpu = 0; |
| |
| alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity); |
| cpu_capacity = (struct cpu_capacity *)kzalloc(alloc_size, GFP_NOWAIT); |
| |
| while ((cn = of_find_node_by_type(cn, "cpu"))) { |
| const u32 *rate, *reg; |
| int len; |
| |
| if (cpu >= num_possible_cpus()) |
| break; |
| |
| for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) |
| if (of_device_is_compatible(cn, cpu_eff->compatible)) |
| break; |
| |
| if (cpu_eff->compatible == NULL) |
| continue; |
| |
| rate = of_get_property(cn, "clock-frequency", &len); |
| if (!rate || len != 4) { |
| pr_err("%s missing clock-frequency property\n", |
| cn->full_name); |
| continue; |
| } |
| |
| reg = of_get_property(cn, "reg", &len); |
| if (!reg || len != 4) { |
| pr_err("%s missing reg property\n", cn->full_name); |
| continue; |
| } |
| |
| capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; |
| |
| /* Save min capacity of the system */ |
| if (capacity < min_capacity) |
| min_capacity = capacity; |
| |
| /* Save max capacity of the system */ |
| if (capacity > max_capacity) |
| max_capacity = capacity; |
| |
| cpu_capacity[cpu].capacity = capacity; |
| cpu_capacity[cpu++].hwid = be32_to_cpup(reg); |
| } |
| |
| if (cpu < num_possible_cpus()) |
| cpu_capacity[cpu].hwid = (unsigned long)(-1); |
| |
| /* If min and max capacities are equals, we bypass the update of the |
| * cpu_scale because all CPUs have the same capacity. Otherwise, we |
| * compute a middle_capacity factor that will ensure that the capacity |
| * of an 'average' CPU of the system will be as close as possible to |
| * SCHED_POWER_SCALE, which is the default value, but with the |
| * constraint explained near table_efficiency[]. |
| */ |
| if (min_capacity == max_capacity) |
| cpu_capacity[0].hwid = (unsigned long)(-1); |
| else if (4*max_capacity < (3*(max_capacity + min_capacity))) |
| middle_capacity = (min_capacity + max_capacity) |
| >> (SCHED_POWER_SHIFT+1); |
| else |
| middle_capacity = ((max_capacity / 3) |
| >> (SCHED_POWER_SHIFT-1)) + 1; |
| |
| } |
| |
| /* |
| * Look for a customed capacity of a CPU in the cpu_capacity table during the |
| * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the |
| * function returns directly for SMP system. |
| */ |
| void update_cpu_power(unsigned int cpu, unsigned long hwid) |
| { |
| unsigned int idx = 0; |
| |
| /* look for the cpu's hwid in the cpu capacity table */ |
| for (idx = 0; idx < num_possible_cpus(); idx++) { |
| if (cpu_capacity[idx].hwid == hwid) |
| break; |
| |
| if (cpu_capacity[idx].hwid == -1) |
| return; |
| } |
| |
| if (idx == num_possible_cpus()) |
| return; |
| |
| set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity); |
| |
| printk(KERN_INFO "CPU%u: update cpu_power %lu\n", |
| cpu, arch_scale_freq_power(NULL, cpu)); |
| } |
| |
| #else |
| static inline void parse_dt_topology(void) {} |
| static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {} |
| #endif |
| |
| |
| /* |
| * cpu topology management |
| */ |
| |
| #define MPIDR_SMP_BITMASK (0x3 << 30) |
| #define MPIDR_SMP_VALUE (0x2 << 30) |
| |
| #define MPIDR_MT_BITMASK (0x1 << 24) |
| |
| /* |
| * These masks reflect the current use of the affinity levels. |
| * The affinity level can be up to 16 bits according to ARM ARM |
| */ |
| #define MPIDR_HWID_BITMASK 0xFFFFFF |
| |
| #define MPIDR_LEVEL0_MASK 0x3 |
| #define MPIDR_LEVEL0_SHIFT 0 |
| |
| #define MPIDR_LEVEL1_MASK 0xF |
| #define MPIDR_LEVEL1_SHIFT 8 |
| |
| #define MPIDR_LEVEL2_MASK 0xFF |
| #define MPIDR_LEVEL2_SHIFT 16 |
| |
| /* |
| * cpu topology table |
| */ |
| struct cputopo_arm cpu_topology[NR_CPUS]; |
| |
| const struct cpumask *cpu_coregroup_mask(int cpu) |
| { |
| return &cpu_topology[cpu].core_sibling; |
| } |
| |
| void update_siblings_masks(unsigned int cpuid) |
| { |
| struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; |
| int cpu; |
| |
| /* update core and thread sibling masks */ |
| for_each_possible_cpu(cpu) { |
| cpu_topo = &cpu_topology[cpu]; |
| |
| if (cpuid_topo->socket_id != cpu_topo->socket_id) |
| continue; |
| |
| cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); |
| if (cpu != cpuid) |
| cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); |
| |
| if (cpuid_topo->core_id != cpu_topo->core_id) |
| continue; |
| |
| cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); |
| if (cpu != cpuid) |
| cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); |
| } |
| smp_wmb(); |
| } |
| |
| /* |
| * store_cpu_topology is called at boot when only one cpu is running |
| * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, |
| * which prevents simultaneous write access to cpu_topology array |
| */ |
| void store_cpu_topology(unsigned int cpuid) |
| { |
| struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; |
| unsigned int mpidr; |
| |
| /* If the cpu topology has been already set, just return */ |
| if (cpuid_topo->core_id != -1) |
| return; |
| |
| mpidr = read_cpuid_mpidr(); |
| |
| /* create cpu topology mapping */ |
| if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { |
| /* |
| * This is a multiprocessor system |
| * multiprocessor format & multiprocessor mode field are set |
| */ |
| |
| if (mpidr & MPIDR_MT_BITMASK) { |
| /* core performance interdependency */ |
| cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT) |
| & MPIDR_LEVEL0_MASK; |
| cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT) |
| & MPIDR_LEVEL1_MASK; |
| cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT) |
| & MPIDR_LEVEL2_MASK; |
| } else { |
| /* largely independent cores */ |
| cpuid_topo->thread_id = -1; |
| cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT) |
| & MPIDR_LEVEL0_MASK; |
| cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT) |
| & MPIDR_LEVEL1_MASK; |
| } |
| } else { |
| /* |
| * This is an uniprocessor system |
| * we are in multiprocessor format but uniprocessor system |
| * or in the old uniprocessor format |
| */ |
| cpuid_topo->thread_id = -1; |
| cpuid_topo->core_id = 0; |
| cpuid_topo->socket_id = -1; |
| } |
| |
| update_siblings_masks(cpuid); |
| |
| update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK); |
| |
| printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", |
| cpuid, cpu_topology[cpuid].thread_id, |
| cpu_topology[cpuid].core_id, |
| cpu_topology[cpuid].socket_id, mpidr); |
| } |
| |
| /* |
| * init_cpu_topology is called at boot when only one cpu is running |
| * which prevent simultaneous write access to cpu_topology array |
| */ |
| void __init init_cpu_topology(void) |
| { |
| unsigned int cpu; |
| |
| /* init core mask and power*/ |
| for_each_possible_cpu(cpu) { |
| struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); |
| |
| cpu_topo->thread_id = -1; |
| cpu_topo->core_id = -1; |
| cpu_topo->socket_id = -1; |
| cpumask_clear(&cpu_topo->core_sibling); |
| cpumask_clear(&cpu_topo->thread_sibling); |
| |
| set_power_scale(cpu, SCHED_POWER_SCALE); |
| } |
| smp_wmb(); |
| |
| parse_dt_topology(); |
| } |