| /* |
| * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver |
| * |
| * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. |
| * Copyright (C) 2010 ST-Ericsson SA |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/highmem.h> |
| #include <linux/log2.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/card.h> |
| #include <linux/amba/bus.h> |
| #include <linux/clk.h> |
| #include <linux/scatterlist.h> |
| #include <linux/gpio.h> |
| #include <linux/of_gpio.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/amba/mmci.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/types.h> |
| |
| #include <asm/div64.h> |
| #include <asm/io.h> |
| #include <asm/sizes.h> |
| |
| #include "mmci.h" |
| |
| #define DRIVER_NAME "mmci-pl18x" |
| |
| static unsigned int fmax = 515633; |
| |
| /** |
| * struct variant_data - MMCI variant-specific quirks |
| * @clkreg: default value for MCICLOCK register |
| * @clkreg_enable: enable value for MMCICLOCK register |
| * @datalength_bits: number of bits in the MMCIDATALENGTH register |
| * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY |
| * is asserted (likewise for RX) |
| * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY |
| * is asserted (likewise for RX) |
| * @sdio: variant supports SDIO |
| * @st_clkdiv: true if using a ST-specific clock divider algorithm |
| * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register |
| * @pwrreg_powerup: power up value for MMCIPOWER register |
| * @signal_direction: input/out direction of bus signals can be indicated |
| */ |
| struct variant_data { |
| unsigned int clkreg; |
| unsigned int clkreg_enable; |
| unsigned int datalength_bits; |
| unsigned int fifosize; |
| unsigned int fifohalfsize; |
| bool sdio; |
| bool st_clkdiv; |
| bool blksz_datactrl16; |
| u32 pwrreg_powerup; |
| bool signal_direction; |
| }; |
| |
| static struct variant_data variant_arm = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .datalength_bits = 16, |
| .pwrreg_powerup = MCI_PWR_UP, |
| }; |
| |
| static struct variant_data variant_arm_extended_fifo = { |
| .fifosize = 128 * 4, |
| .fifohalfsize = 64 * 4, |
| .datalength_bits = 16, |
| .pwrreg_powerup = MCI_PWR_UP, |
| }; |
| |
| static struct variant_data variant_u300 = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg_enable = MCI_ST_U300_HWFCEN, |
| .datalength_bits = 16, |
| .sdio = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .signal_direction = true, |
| }; |
| |
| static struct variant_data variant_nomadik = { |
| .fifosize = 16 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg = MCI_CLK_ENABLE, |
| .datalength_bits = 24, |
| .sdio = true, |
| .st_clkdiv = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .signal_direction = true, |
| }; |
| |
| static struct variant_data variant_ux500 = { |
| .fifosize = 30 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg = MCI_CLK_ENABLE, |
| .clkreg_enable = MCI_ST_UX500_HWFCEN, |
| .datalength_bits = 24, |
| .sdio = true, |
| .st_clkdiv = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .signal_direction = true, |
| }; |
| |
| static struct variant_data variant_ux500v2 = { |
| .fifosize = 30 * 4, |
| .fifohalfsize = 8 * 4, |
| .clkreg = MCI_CLK_ENABLE, |
| .clkreg_enable = MCI_ST_UX500_HWFCEN, |
| .datalength_bits = 24, |
| .sdio = true, |
| .st_clkdiv = true, |
| .blksz_datactrl16 = true, |
| .pwrreg_powerup = MCI_PWR_ON, |
| .signal_direction = true, |
| }; |
| |
| /* |
| * This must be called with host->lock held |
| */ |
| static void mmci_write_clkreg(struct mmci_host *host, u32 clk) |
| { |
| if (host->clk_reg != clk) { |
| host->clk_reg = clk; |
| writel(clk, host->base + MMCICLOCK); |
| } |
| } |
| |
| /* |
| * This must be called with host->lock held |
| */ |
| static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) |
| { |
| if (host->pwr_reg != pwr) { |
| host->pwr_reg = pwr; |
| writel(pwr, host->base + MMCIPOWER); |
| } |
| } |
| |
| /* |
| * This must be called with host->lock held |
| */ |
| static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) |
| { |
| struct variant_data *variant = host->variant; |
| u32 clk = variant->clkreg; |
| |
| if (desired) { |
| if (desired >= host->mclk) { |
| clk = MCI_CLK_BYPASS; |
| if (variant->st_clkdiv) |
| clk |= MCI_ST_UX500_NEG_EDGE; |
| host->cclk = host->mclk; |
| } else if (variant->st_clkdiv) { |
| /* |
| * DB8500 TRM says f = mclk / (clkdiv + 2) |
| * => clkdiv = (mclk / f) - 2 |
| * Round the divider up so we don't exceed the max |
| * frequency |
| */ |
| clk = DIV_ROUND_UP(host->mclk, desired) - 2; |
| if (clk >= 256) |
| clk = 255; |
| host->cclk = host->mclk / (clk + 2); |
| } else { |
| /* |
| * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) |
| * => clkdiv = mclk / (2 * f) - 1 |
| */ |
| clk = host->mclk / (2 * desired) - 1; |
| if (clk >= 256) |
| clk = 255; |
| host->cclk = host->mclk / (2 * (clk + 1)); |
| } |
| |
| clk |= variant->clkreg_enable; |
| clk |= MCI_CLK_ENABLE; |
| /* This hasn't proven to be worthwhile */ |
| /* clk |= MCI_CLK_PWRSAVE; */ |
| } |
| |
| if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) |
| clk |= MCI_4BIT_BUS; |
| if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) |
| clk |= MCI_ST_8BIT_BUS; |
| |
| mmci_write_clkreg(host, clk); |
| } |
| |
| static void |
| mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) |
| { |
| writel(0, host->base + MMCICOMMAND); |
| |
| BUG_ON(host->data); |
| |
| host->mrq = NULL; |
| host->cmd = NULL; |
| |
| mmc_request_done(host->mmc, mrq); |
| |
| pm_runtime_mark_last_busy(mmc_dev(host->mmc)); |
| pm_runtime_put_autosuspend(mmc_dev(host->mmc)); |
| } |
| |
| static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) |
| { |
| void __iomem *base = host->base; |
| |
| if (host->singleirq) { |
| unsigned int mask0 = readl(base + MMCIMASK0); |
| |
| mask0 &= ~MCI_IRQ1MASK; |
| mask0 |= mask; |
| |
| writel(mask0, base + MMCIMASK0); |
| } |
| |
| writel(mask, base + MMCIMASK1); |
| } |
| |
| static void mmci_stop_data(struct mmci_host *host) |
| { |
| writel(0, host->base + MMCIDATACTRL); |
| mmci_set_mask1(host, 0); |
| host->data = NULL; |
| } |
| |
| static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) |
| { |
| unsigned int flags = SG_MITER_ATOMIC; |
| |
| if (data->flags & MMC_DATA_READ) |
| flags |= SG_MITER_TO_SG; |
| else |
| flags |= SG_MITER_FROM_SG; |
| |
| sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); |
| } |
| |
| /* |
| * All the DMA operation mode stuff goes inside this ifdef. |
| * This assumes that you have a generic DMA device interface, |
| * no custom DMA interfaces are supported. |
| */ |
| #ifdef CONFIG_DMA_ENGINE |
| static void __devinit mmci_dma_setup(struct mmci_host *host) |
| { |
| struct mmci_platform_data *plat = host->plat; |
| const char *rxname, *txname; |
| dma_cap_mask_t mask; |
| |
| if (!plat || !plat->dma_filter) { |
| dev_info(mmc_dev(host->mmc), "no DMA platform data\n"); |
| return; |
| } |
| |
| /* initialize pre request cookie */ |
| host->next_data.cookie = 1; |
| |
| /* Try to acquire a generic DMA engine slave channel */ |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| /* |
| * If only an RX channel is specified, the driver will |
| * attempt to use it bidirectionally, however if it is |
| * is specified but cannot be located, DMA will be disabled. |
| */ |
| if (plat->dma_rx_param) { |
| host->dma_rx_channel = dma_request_channel(mask, |
| plat->dma_filter, |
| plat->dma_rx_param); |
| /* E.g if no DMA hardware is present */ |
| if (!host->dma_rx_channel) |
| dev_err(mmc_dev(host->mmc), "no RX DMA channel\n"); |
| } |
| |
| if (plat->dma_tx_param) { |
| host->dma_tx_channel = dma_request_channel(mask, |
| plat->dma_filter, |
| plat->dma_tx_param); |
| if (!host->dma_tx_channel) |
| dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n"); |
| } else { |
| host->dma_tx_channel = host->dma_rx_channel; |
| } |
| |
| if (host->dma_rx_channel) |
| rxname = dma_chan_name(host->dma_rx_channel); |
| else |
| rxname = "none"; |
| |
| if (host->dma_tx_channel) |
| txname = dma_chan_name(host->dma_tx_channel); |
| else |
| txname = "none"; |
| |
| dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", |
| rxname, txname); |
| |
| /* |
| * Limit the maximum segment size in any SG entry according to |
| * the parameters of the DMA engine device. |
| */ |
| if (host->dma_tx_channel) { |
| struct device *dev = host->dma_tx_channel->device->dev; |
| unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| |
| if (max_seg_size < host->mmc->max_seg_size) |
| host->mmc->max_seg_size = max_seg_size; |
| } |
| if (host->dma_rx_channel) { |
| struct device *dev = host->dma_rx_channel->device->dev; |
| unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| |
| if (max_seg_size < host->mmc->max_seg_size) |
| host->mmc->max_seg_size = max_seg_size; |
| } |
| } |
| |
| /* |
| * This is used in __devinit or __devexit so inline it |
| * so it can be discarded. |
| */ |
| static inline void mmci_dma_release(struct mmci_host *host) |
| { |
| struct mmci_platform_data *plat = host->plat; |
| |
| if (host->dma_rx_channel) |
| dma_release_channel(host->dma_rx_channel); |
| if (host->dma_tx_channel && plat->dma_tx_param) |
| dma_release_channel(host->dma_tx_channel); |
| host->dma_rx_channel = host->dma_tx_channel = NULL; |
| } |
| |
| static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) |
| { |
| struct dma_chan *chan = host->dma_current; |
| enum dma_data_direction dir; |
| u32 status; |
| int i; |
| |
| /* Wait up to 1ms for the DMA to complete */ |
| for (i = 0; ; i++) { |
| status = readl(host->base + MMCISTATUS); |
| if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) |
| break; |
| udelay(10); |
| } |
| |
| /* |
| * Check to see whether we still have some data left in the FIFO - |
| * this catches DMA controllers which are unable to monitor the |
| * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- |
| * contiguous buffers. On TX, we'll get a FIFO underrun error. |
| */ |
| if (status & MCI_RXDATAAVLBLMASK) { |
| dmaengine_terminate_all(chan); |
| if (!data->error) |
| data->error = -EIO; |
| } |
| |
| if (data->flags & MMC_DATA_WRITE) { |
| dir = DMA_TO_DEVICE; |
| } else { |
| dir = DMA_FROM_DEVICE; |
| } |
| |
| if (!data->host_cookie) |
| dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); |
| |
| /* |
| * Use of DMA with scatter-gather is impossible. |
| * Give up with DMA and switch back to PIO mode. |
| */ |
| if (status & MCI_RXDATAAVLBLMASK) { |
| dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); |
| mmci_dma_release(host); |
| } |
| } |
| |
| static void mmci_dma_data_error(struct mmci_host *host) |
| { |
| dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); |
| dmaengine_terminate_all(host->dma_current); |
| } |
| |
| static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, |
| struct mmci_host_next *next) |
| { |
| struct variant_data *variant = host->variant; |
| struct dma_slave_config conf = { |
| .src_addr = host->phybase + MMCIFIFO, |
| .dst_addr = host->phybase + MMCIFIFO, |
| .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, |
| .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, |
| .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ |
| .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ |
| .device_fc = false, |
| }; |
| struct dma_chan *chan; |
| struct dma_device *device; |
| struct dma_async_tx_descriptor *desc; |
| enum dma_data_direction buffer_dirn; |
| int nr_sg; |
| |
| /* Check if next job is already prepared */ |
| if (data->host_cookie && !next && |
| host->dma_current && host->dma_desc_current) |
| return 0; |
| |
| if (!next) { |
| host->dma_current = NULL; |
| host->dma_desc_current = NULL; |
| } |
| |
| if (data->flags & MMC_DATA_READ) { |
| conf.direction = DMA_DEV_TO_MEM; |
| buffer_dirn = DMA_FROM_DEVICE; |
| chan = host->dma_rx_channel; |
| } else { |
| conf.direction = DMA_MEM_TO_DEV; |
| buffer_dirn = DMA_TO_DEVICE; |
| chan = host->dma_tx_channel; |
| } |
| |
| /* If there's no DMA channel, fall back to PIO */ |
| if (!chan) |
| return -EINVAL; |
| |
| /* If less than or equal to the fifo size, don't bother with DMA */ |
| if (data->blksz * data->blocks <= variant->fifosize) |
| return -EINVAL; |
| |
| device = chan->device; |
| nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn); |
| if (nr_sg == 0) |
| return -EINVAL; |
| |
| dmaengine_slave_config(chan, &conf); |
| desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, |
| conf.direction, DMA_CTRL_ACK); |
| if (!desc) |
| goto unmap_exit; |
| |
| if (next) { |
| next->dma_chan = chan; |
| next->dma_desc = desc; |
| } else { |
| host->dma_current = chan; |
| host->dma_desc_current = desc; |
| } |
| |
| return 0; |
| |
| unmap_exit: |
| if (!next) |
| dmaengine_terminate_all(chan); |
| dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn); |
| return -ENOMEM; |
| } |
| |
| static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) |
| { |
| int ret; |
| struct mmc_data *data = host->data; |
| |
| ret = mmci_dma_prep_data(host, host->data, NULL); |
| if (ret) |
| return ret; |
| |
| /* Okay, go for it. */ |
| dev_vdbg(mmc_dev(host->mmc), |
| "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", |
| data->sg_len, data->blksz, data->blocks, data->flags); |
| dmaengine_submit(host->dma_desc_current); |
| dma_async_issue_pending(host->dma_current); |
| |
| datactrl |= MCI_DPSM_DMAENABLE; |
| |
| /* Trigger the DMA transfer */ |
| writel(datactrl, host->base + MMCIDATACTRL); |
| |
| /* |
| * Let the MMCI say when the data is ended and it's time |
| * to fire next DMA request. When that happens, MMCI will |
| * call mmci_data_end() |
| */ |
| writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, |
| host->base + MMCIMASK0); |
| return 0; |
| } |
| |
| static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) |
| { |
| struct mmci_host_next *next = &host->next_data; |
| |
| if (data->host_cookie && data->host_cookie != next->cookie) { |
| pr_warning("[%s] invalid cookie: data->host_cookie %d" |
| " host->next_data.cookie %d\n", |
| __func__, data->host_cookie, host->next_data.cookie); |
| data->host_cookie = 0; |
| } |
| |
| if (!data->host_cookie) |
| return; |
| |
| host->dma_desc_current = next->dma_desc; |
| host->dma_current = next->dma_chan; |
| |
| next->dma_desc = NULL; |
| next->dma_chan = NULL; |
| } |
| |
| static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq, |
| bool is_first_req) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct mmc_data *data = mrq->data; |
| struct mmci_host_next *nd = &host->next_data; |
| |
| if (!data) |
| return; |
| |
| if (data->host_cookie) { |
| data->host_cookie = 0; |
| return; |
| } |
| |
| /* if config for dma */ |
| if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) || |
| ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) { |
| if (mmci_dma_prep_data(host, data, nd)) |
| data->host_cookie = 0; |
| else |
| data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; |
| } |
| } |
| |
| static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, |
| int err) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct mmc_data *data = mrq->data; |
| struct dma_chan *chan; |
| enum dma_data_direction dir; |
| |
| if (!data) |
| return; |
| |
| if (data->flags & MMC_DATA_READ) { |
| dir = DMA_FROM_DEVICE; |
| chan = host->dma_rx_channel; |
| } else { |
| dir = DMA_TO_DEVICE; |
| chan = host->dma_tx_channel; |
| } |
| |
| |
| /* if config for dma */ |
| if (chan) { |
| if (err) |
| dmaengine_terminate_all(chan); |
| if (data->host_cookie) |
| dma_unmap_sg(mmc_dev(host->mmc), data->sg, |
| data->sg_len, dir); |
| mrq->data->host_cookie = 0; |
| } |
| } |
| |
| #else |
| /* Blank functions if the DMA engine is not available */ |
| static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) |
| { |
| } |
| static inline void mmci_dma_setup(struct mmci_host *host) |
| { |
| } |
| |
| static inline void mmci_dma_release(struct mmci_host *host) |
| { |
| } |
| |
| static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) |
| { |
| } |
| |
| static inline void mmci_dma_data_error(struct mmci_host *host) |
| { |
| } |
| |
| static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) |
| { |
| return -ENOSYS; |
| } |
| |
| #define mmci_pre_request NULL |
| #define mmci_post_request NULL |
| |
| #endif |
| |
| static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) |
| { |
| struct variant_data *variant = host->variant; |
| unsigned int datactrl, timeout, irqmask; |
| unsigned long long clks; |
| void __iomem *base; |
| int blksz_bits; |
| |
| dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", |
| data->blksz, data->blocks, data->flags); |
| |
| host->data = data; |
| host->size = data->blksz * data->blocks; |
| data->bytes_xfered = 0; |
| |
| clks = (unsigned long long)data->timeout_ns * host->cclk; |
| do_div(clks, 1000000000UL); |
| |
| timeout = data->timeout_clks + (unsigned int)clks; |
| |
| base = host->base; |
| writel(timeout, base + MMCIDATATIMER); |
| writel(host->size, base + MMCIDATALENGTH); |
| |
| blksz_bits = ffs(data->blksz) - 1; |
| BUG_ON(1 << blksz_bits != data->blksz); |
| |
| if (variant->blksz_datactrl16) |
| datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); |
| else |
| datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; |
| |
| if (data->flags & MMC_DATA_READ) |
| datactrl |= MCI_DPSM_DIRECTION; |
| |
| /* The ST Micro variants has a special bit to enable SDIO */ |
| if (variant->sdio && host->mmc->card) |
| if (mmc_card_sdio(host->mmc->card)) |
| datactrl |= MCI_ST_DPSM_SDIOEN; |
| |
| /* |
| * Attempt to use DMA operation mode, if this |
| * should fail, fall back to PIO mode |
| */ |
| if (!mmci_dma_start_data(host, datactrl)) |
| return; |
| |
| /* IRQ mode, map the SG list for CPU reading/writing */ |
| mmci_init_sg(host, data); |
| |
| if (data->flags & MMC_DATA_READ) { |
| irqmask = MCI_RXFIFOHALFFULLMASK; |
| |
| /* |
| * If we have less than the fifo 'half-full' threshold to |
| * transfer, trigger a PIO interrupt as soon as any data |
| * is available. |
| */ |
| if (host->size < variant->fifohalfsize) |
| irqmask |= MCI_RXDATAAVLBLMASK; |
| } else { |
| /* |
| * We don't actually need to include "FIFO empty" here |
| * since its implicit in "FIFO half empty". |
| */ |
| irqmask = MCI_TXFIFOHALFEMPTYMASK; |
| } |
| |
| writel(datactrl, base + MMCIDATACTRL); |
| writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); |
| mmci_set_mask1(host, irqmask); |
| } |
| |
| static void |
| mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) |
| { |
| void __iomem *base = host->base; |
| |
| dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", |
| cmd->opcode, cmd->arg, cmd->flags); |
| |
| if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { |
| writel(0, base + MMCICOMMAND); |
| udelay(1); |
| } |
| |
| c |= cmd->opcode | MCI_CPSM_ENABLE; |
| if (cmd->flags & MMC_RSP_PRESENT) { |
| if (cmd->flags & MMC_RSP_136) |
| c |= MCI_CPSM_LONGRSP; |
| c |= MCI_CPSM_RESPONSE; |
| } |
| if (/*interrupt*/0) |
| c |= MCI_CPSM_INTERRUPT; |
| |
| host->cmd = cmd; |
| |
| writel(cmd->arg, base + MMCIARGUMENT); |
| writel(c, base + MMCICOMMAND); |
| } |
| |
| static void |
| mmci_data_irq(struct mmci_host *host, struct mmc_data *data, |
| unsigned int status) |
| { |
| /* First check for errors */ |
| if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| |
| MCI_TXUNDERRUN|MCI_RXOVERRUN)) { |
| u32 remain, success; |
| |
| /* Terminate the DMA transfer */ |
| if (dma_inprogress(host)) |
| mmci_dma_data_error(host); |
| |
| /* |
| * Calculate how far we are into the transfer. Note that |
| * the data counter gives the number of bytes transferred |
| * on the MMC bus, not on the host side. On reads, this |
| * can be as much as a FIFO-worth of data ahead. This |
| * matters for FIFO overruns only. |
| */ |
| remain = readl(host->base + MMCIDATACNT); |
| success = data->blksz * data->blocks - remain; |
| |
| dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", |
| status, success); |
| if (status & MCI_DATACRCFAIL) { |
| /* Last block was not successful */ |
| success -= 1; |
| data->error = -EILSEQ; |
| } else if (status & MCI_DATATIMEOUT) { |
| data->error = -ETIMEDOUT; |
| } else if (status & MCI_STARTBITERR) { |
| data->error = -ECOMM; |
| } else if (status & MCI_TXUNDERRUN) { |
| data->error = -EIO; |
| } else if (status & MCI_RXOVERRUN) { |
| if (success > host->variant->fifosize) |
| success -= host->variant->fifosize; |
| else |
| success = 0; |
| data->error = -EIO; |
| } |
| data->bytes_xfered = round_down(success, data->blksz); |
| } |
| |
| if (status & MCI_DATABLOCKEND) |
| dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); |
| |
| if (status & MCI_DATAEND || data->error) { |
| if (dma_inprogress(host)) |
| mmci_dma_unmap(host, data); |
| mmci_stop_data(host); |
| |
| if (!data->error) |
| /* The error clause is handled above, success! */ |
| data->bytes_xfered = data->blksz * data->blocks; |
| |
| if (!data->stop) { |
| mmci_request_end(host, data->mrq); |
| } else { |
| mmci_start_command(host, data->stop, 0); |
| } |
| } |
| } |
| |
| static void |
| mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, |
| unsigned int status) |
| { |
| void __iomem *base = host->base; |
| |
| host->cmd = NULL; |
| |
| if (status & MCI_CMDTIMEOUT) { |
| cmd->error = -ETIMEDOUT; |
| } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { |
| cmd->error = -EILSEQ; |
| } else { |
| cmd->resp[0] = readl(base + MMCIRESPONSE0); |
| cmd->resp[1] = readl(base + MMCIRESPONSE1); |
| cmd->resp[2] = readl(base + MMCIRESPONSE2); |
| cmd->resp[3] = readl(base + MMCIRESPONSE3); |
| } |
| |
| if (!cmd->data || cmd->error) { |
| if (host->data) { |
| /* Terminate the DMA transfer */ |
| if (dma_inprogress(host)) |
| mmci_dma_data_error(host); |
| mmci_stop_data(host); |
| } |
| mmci_request_end(host, cmd->mrq); |
| } else if (!(cmd->data->flags & MMC_DATA_READ)) { |
| mmci_start_data(host, cmd->data); |
| } |
| } |
| |
| static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) |
| { |
| void __iomem *base = host->base; |
| char *ptr = buffer; |
| u32 status; |
| int host_remain = host->size; |
| |
| do { |
| int count = host_remain - (readl(base + MMCIFIFOCNT) << 2); |
| |
| if (count > remain) |
| count = remain; |
| |
| if (count <= 0) |
| break; |
| |
| /* |
| * SDIO especially may want to send something that is |
| * not divisible by 4 (as opposed to card sectors |
| * etc). Therefore make sure to always read the last bytes |
| * while only doing full 32-bit reads towards the FIFO. |
| */ |
| if (unlikely(count & 0x3)) { |
| if (count < 4) { |
| unsigned char buf[4]; |
| readsl(base + MMCIFIFO, buf, 1); |
| memcpy(ptr, buf, count); |
| } else { |
| readsl(base + MMCIFIFO, ptr, count >> 2); |
| count &= ~0x3; |
| } |
| } else { |
| readsl(base + MMCIFIFO, ptr, count >> 2); |
| } |
| |
| ptr += count; |
| remain -= count; |
| host_remain -= count; |
| |
| if (remain == 0) |
| break; |
| |
| status = readl(base + MMCISTATUS); |
| } while (status & MCI_RXDATAAVLBL); |
| |
| return ptr - buffer; |
| } |
| |
| static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) |
| { |
| struct variant_data *variant = host->variant; |
| void __iomem *base = host->base; |
| char *ptr = buffer; |
| |
| do { |
| unsigned int count, maxcnt; |
| |
| maxcnt = status & MCI_TXFIFOEMPTY ? |
| variant->fifosize : variant->fifohalfsize; |
| count = min(remain, maxcnt); |
| |
| /* |
| * The ST Micro variant for SDIO transfer sizes |
| * less then 8 bytes should have clock H/W flow |
| * control disabled. |
| */ |
| if (variant->sdio && |
| mmc_card_sdio(host->mmc->card)) { |
| u32 clk; |
| if (count < 8) |
| clk = host->clk_reg & ~variant->clkreg_enable; |
| else |
| clk = host->clk_reg | variant->clkreg_enable; |
| |
| mmci_write_clkreg(host, clk); |
| } |
| |
| /* |
| * SDIO especially may want to send something that is |
| * not divisible by 4 (as opposed to card sectors |
| * etc), and the FIFO only accept full 32-bit writes. |
| * So compensate by adding +3 on the count, a single |
| * byte become a 32bit write, 7 bytes will be two |
| * 32bit writes etc. |
| */ |
| writesl(base + MMCIFIFO, ptr, (count + 3) >> 2); |
| |
| ptr += count; |
| remain -= count; |
| |
| if (remain == 0) |
| break; |
| |
| status = readl(base + MMCISTATUS); |
| } while (status & MCI_TXFIFOHALFEMPTY); |
| |
| return ptr - buffer; |
| } |
| |
| /* |
| * PIO data transfer IRQ handler. |
| */ |
| static irqreturn_t mmci_pio_irq(int irq, void *dev_id) |
| { |
| struct mmci_host *host = dev_id; |
| struct sg_mapping_iter *sg_miter = &host->sg_miter; |
| struct variant_data *variant = host->variant; |
| void __iomem *base = host->base; |
| unsigned long flags; |
| u32 status; |
| |
| status = readl(base + MMCISTATUS); |
| |
| dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); |
| |
| local_irq_save(flags); |
| |
| do { |
| unsigned int remain, len; |
| char *buffer; |
| |
| /* |
| * For write, we only need to test the half-empty flag |
| * here - if the FIFO is completely empty, then by |
| * definition it is more than half empty. |
| * |
| * For read, check for data available. |
| */ |
| if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) |
| break; |
| |
| if (!sg_miter_next(sg_miter)) |
| break; |
| |
| buffer = sg_miter->addr; |
| remain = sg_miter->length; |
| |
| len = 0; |
| if (status & MCI_RXACTIVE) |
| len = mmci_pio_read(host, buffer, remain); |
| if (status & MCI_TXACTIVE) |
| len = mmci_pio_write(host, buffer, remain, status); |
| |
| sg_miter->consumed = len; |
| |
| host->size -= len; |
| remain -= len; |
| |
| if (remain) |
| break; |
| |
| status = readl(base + MMCISTATUS); |
| } while (1); |
| |
| sg_miter_stop(sg_miter); |
| |
| local_irq_restore(flags); |
| |
| /* |
| * If we have less than the fifo 'half-full' threshold to transfer, |
| * trigger a PIO interrupt as soon as any data is available. |
| */ |
| if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) |
| mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); |
| |
| /* |
| * If we run out of data, disable the data IRQs; this |
| * prevents a race where the FIFO becomes empty before |
| * the chip itself has disabled the data path, and |
| * stops us racing with our data end IRQ. |
| */ |
| if (host->size == 0) { |
| mmci_set_mask1(host, 0); |
| writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Handle completion of command and data transfers. |
| */ |
| static irqreturn_t mmci_irq(int irq, void *dev_id) |
| { |
| struct mmci_host *host = dev_id; |
| u32 status; |
| int ret = 0; |
| |
| spin_lock(&host->lock); |
| |
| do { |
| struct mmc_command *cmd; |
| struct mmc_data *data; |
| |
| status = readl(host->base + MMCISTATUS); |
| |
| if (host->singleirq) { |
| if (status & readl(host->base + MMCIMASK1)) |
| mmci_pio_irq(irq, dev_id); |
| |
| status &= ~MCI_IRQ1MASK; |
| } |
| |
| status &= readl(host->base + MMCIMASK0); |
| writel(status, host->base + MMCICLEAR); |
| |
| dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); |
| |
| data = host->data; |
| if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| |
| MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND| |
| MCI_DATABLOCKEND) && data) |
| mmci_data_irq(host, data, status); |
| |
| cmd = host->cmd; |
| if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd) |
| mmci_cmd_irq(host, cmd, status); |
| |
| ret = 1; |
| } while (status); |
| |
| spin_unlock(&host->lock); |
| |
| return IRQ_RETVAL(ret); |
| } |
| |
| static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| unsigned long flags; |
| |
| WARN_ON(host->mrq != NULL); |
| |
| if (mrq->data && !is_power_of_2(mrq->data->blksz)) { |
| dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n", |
| mrq->data->blksz); |
| mrq->cmd->error = -EINVAL; |
| mmc_request_done(mmc, mrq); |
| return; |
| } |
| |
| pm_runtime_get_sync(mmc_dev(mmc)); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| host->mrq = mrq; |
| |
| if (mrq->data) |
| mmci_get_next_data(host, mrq->data); |
| |
| if (mrq->data && mrq->data->flags & MMC_DATA_READ) |
| mmci_start_data(host, mrq->data); |
| |
| mmci_start_command(host, mrq->cmd, 0); |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct variant_data *variant = host->variant; |
| u32 pwr = 0; |
| unsigned long flags; |
| int ret; |
| |
| pm_runtime_get_sync(mmc_dev(mmc)); |
| |
| if (host->plat->ios_handler && |
| host->plat->ios_handler(mmc_dev(mmc), ios)) |
| dev_err(mmc_dev(mmc), "platform ios_handler failed\n"); |
| |
| switch (ios->power_mode) { |
| case MMC_POWER_OFF: |
| if (host->vcc) |
| ret = mmc_regulator_set_ocr(mmc, host->vcc, 0); |
| break; |
| case MMC_POWER_UP: |
| if (host->vcc) { |
| ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd); |
| if (ret) { |
| dev_err(mmc_dev(mmc), "unable to set OCR\n"); |
| /* |
| * The .set_ios() function in the mmc_host_ops |
| * struct return void, and failing to set the |
| * power should be rare so we print an error |
| * and return here. |
| */ |
| goto out; |
| } |
| } |
| /* |
| * The ST Micro variant doesn't have the PL180s MCI_PWR_UP |
| * and instead uses MCI_PWR_ON so apply whatever value is |
| * configured in the variant data. |
| */ |
| pwr |= variant->pwrreg_powerup; |
| |
| break; |
| case MMC_POWER_ON: |
| pwr |= MCI_PWR_ON; |
| break; |
| } |
| |
| if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { |
| /* |
| * The ST Micro variant has some additional bits |
| * indicating signal direction for the signals in |
| * the SD/MMC bus and feedback-clock usage. |
| */ |
| pwr |= host->plat->sigdir; |
| |
| if (ios->bus_width == MMC_BUS_WIDTH_4) |
| pwr &= ~MCI_ST_DATA74DIREN; |
| else if (ios->bus_width == MMC_BUS_WIDTH_1) |
| pwr &= (~MCI_ST_DATA74DIREN & |
| ~MCI_ST_DATA31DIREN & |
| ~MCI_ST_DATA2DIREN); |
| } |
| |
| if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { |
| if (host->hw_designer != AMBA_VENDOR_ST) |
| pwr |= MCI_ROD; |
| else { |
| /* |
| * The ST Micro variant use the ROD bit for something |
| * else and only has OD (Open Drain). |
| */ |
| pwr |= MCI_OD; |
| } |
| } |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| mmci_set_clkreg(host, ios->clock); |
| mmci_write_pwrreg(host, pwr); |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| out: |
| pm_runtime_mark_last_busy(mmc_dev(mmc)); |
| pm_runtime_put_autosuspend(mmc_dev(mmc)); |
| } |
| |
| static int mmci_get_ro(struct mmc_host *mmc) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| |
| if (host->gpio_wp == -ENOSYS) |
| return -ENOSYS; |
| |
| return gpio_get_value_cansleep(host->gpio_wp); |
| } |
| |
| static int mmci_get_cd(struct mmc_host *mmc) |
| { |
| struct mmci_host *host = mmc_priv(mmc); |
| struct mmci_platform_data *plat = host->plat; |
| unsigned int status; |
| |
| if (host->gpio_cd == -ENOSYS) { |
| if (!plat->status) |
| return 1; /* Assume always present */ |
| |
| status = plat->status(mmc_dev(host->mmc)); |
| } else |
| status = !!gpio_get_value_cansleep(host->gpio_cd) |
| ^ plat->cd_invert; |
| |
| /* |
| * Use positive logic throughout - status is zero for no card, |
| * non-zero for card inserted. |
| */ |
| return status; |
| } |
| |
| static irqreturn_t mmci_cd_irq(int irq, void *dev_id) |
| { |
| struct mmci_host *host = dev_id; |
| |
| mmc_detect_change(host->mmc, msecs_to_jiffies(500)); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const struct mmc_host_ops mmci_ops = { |
| .request = mmci_request, |
| .pre_req = mmci_pre_request, |
| .post_req = mmci_post_request, |
| .set_ios = mmci_set_ios, |
| .get_ro = mmci_get_ro, |
| .get_cd = mmci_get_cd, |
| }; |
| |
| #ifdef CONFIG_OF |
| static void mmci_dt_populate_generic_pdata(struct device_node *np, |
| struct mmci_platform_data *pdata) |
| { |
| int bus_width = 0; |
| |
| pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0); |
| pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0); |
| |
| if (of_get_property(np, "cd-inverted", NULL)) |
| pdata->cd_invert = true; |
| else |
| pdata->cd_invert = false; |
| |
| of_property_read_u32(np, "max-frequency", &pdata->f_max); |
| if (!pdata->f_max) |
| pr_warn("%s has no 'max-frequency' property\n", np->full_name); |
| |
| if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) |
| pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED; |
| if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) |
| pdata->capabilities |= MMC_CAP_SD_HIGHSPEED; |
| |
| of_property_read_u32(np, "bus-width", &bus_width); |
| switch (bus_width) { |
| case 0 : |
| /* No bus-width supplied. */ |
| break; |
| case 4 : |
| pdata->capabilities |= MMC_CAP_4_BIT_DATA; |
| break; |
| case 8 : |
| pdata->capabilities |= MMC_CAP_8_BIT_DATA; |
| break; |
| default : |
| pr_warn("%s: Unsupported bus width\n", np->full_name); |
| } |
| } |
| #else |
| static void mmci_dt_populate_generic_pdata(struct device_node *np, |
| struct mmci_platform_data *pdata) |
| { |
| return; |
| } |
| #endif |
| |
| static int __devinit mmci_probe(struct amba_device *dev, |
| const struct amba_id *id) |
| { |
| struct mmci_platform_data *plat = dev->dev.platform_data; |
| struct device_node *np = dev->dev.of_node; |
| struct variant_data *variant = id->data; |
| struct mmci_host *host; |
| struct mmc_host *mmc; |
| int ret; |
| |
| /* Must have platform data or Device Tree. */ |
| if (!plat && !np) { |
| dev_err(&dev->dev, "No plat data or DT found\n"); |
| return -EINVAL; |
| } |
| |
| if (!plat) { |
| plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); |
| if (!plat) |
| return -ENOMEM; |
| } |
| |
| if (np) |
| mmci_dt_populate_generic_pdata(np, plat); |
| |
| ret = amba_request_regions(dev, DRIVER_NAME); |
| if (ret) |
| goto out; |
| |
| mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); |
| if (!mmc) { |
| ret = -ENOMEM; |
| goto rel_regions; |
| } |
| |
| host = mmc_priv(mmc); |
| host->mmc = mmc; |
| |
| host->gpio_wp = -ENOSYS; |
| host->gpio_cd = -ENOSYS; |
| host->gpio_cd_irq = -1; |
| |
| host->hw_designer = amba_manf(dev); |
| host->hw_revision = amba_rev(dev); |
| dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); |
| dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); |
| |
| host->clk = clk_get(&dev->dev, NULL); |
| if (IS_ERR(host->clk)) { |
| ret = PTR_ERR(host->clk); |
| host->clk = NULL; |
| goto host_free; |
| } |
| |
| ret = clk_prepare_enable(host->clk); |
| if (ret) |
| goto clk_free; |
| |
| host->plat = plat; |
| host->variant = variant; |
| host->mclk = clk_get_rate(host->clk); |
| /* |
| * According to the spec, mclk is max 100 MHz, |
| * so we try to adjust the clock down to this, |
| * (if possible). |
| */ |
| if (host->mclk > 100000000) { |
| ret = clk_set_rate(host->clk, 100000000); |
| if (ret < 0) |
| goto clk_disable; |
| host->mclk = clk_get_rate(host->clk); |
| dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", |
| host->mclk); |
| } |
| host->phybase = dev->res.start; |
| host->base = ioremap(dev->res.start, resource_size(&dev->res)); |
| if (!host->base) { |
| ret = -ENOMEM; |
| goto clk_disable; |
| } |
| |
| mmc->ops = &mmci_ops; |
| /* |
| * The ARM and ST versions of the block have slightly different |
| * clock divider equations which means that the minimum divider |
| * differs too. |
| */ |
| if (variant->st_clkdiv) |
| mmc->f_min = DIV_ROUND_UP(host->mclk, 257); |
| else |
| mmc->f_min = DIV_ROUND_UP(host->mclk, 512); |
| /* |
| * If the platform data supplies a maximum operating |
| * frequency, this takes precedence. Else, we fall back |
| * to using the module parameter, which has a (low) |
| * default value in case it is not specified. Either |
| * value must not exceed the clock rate into the block, |
| * of course. |
| */ |
| if (plat->f_max) |
| mmc->f_max = min(host->mclk, plat->f_max); |
| else |
| mmc->f_max = min(host->mclk, fmax); |
| dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); |
| |
| #ifdef CONFIG_REGULATOR |
| /* If we're using the regulator framework, try to fetch a regulator */ |
| host->vcc = regulator_get(&dev->dev, "vmmc"); |
| if (IS_ERR(host->vcc)) |
| host->vcc = NULL; |
| else { |
| int mask = mmc_regulator_get_ocrmask(host->vcc); |
| |
| if (mask < 0) |
| dev_err(&dev->dev, "error getting OCR mask (%d)\n", |
| mask); |
| else { |
| host->mmc->ocr_avail = (u32) mask; |
| if (plat->ocr_mask) |
| dev_warn(&dev->dev, |
| "Provided ocr_mask/setpower will not be used " |
| "(using regulator instead)\n"); |
| } |
| } |
| #endif |
| /* Fall back to platform data if no regulator is found */ |
| if (host->vcc == NULL) |
| mmc->ocr_avail = plat->ocr_mask; |
| mmc->caps = plat->capabilities; |
| mmc->caps2 = plat->capabilities2; |
| |
| /* |
| * We can do SGIO |
| */ |
| mmc->max_segs = NR_SG; |
| |
| /* |
| * Since only a certain number of bits are valid in the data length |
| * register, we must ensure that we don't exceed 2^num-1 bytes in a |
| * single request. |
| */ |
| mmc->max_req_size = (1 << variant->datalength_bits) - 1; |
| |
| /* |
| * Set the maximum segment size. Since we aren't doing DMA |
| * (yet) we are only limited by the data length register. |
| */ |
| mmc->max_seg_size = mmc->max_req_size; |
| |
| /* |
| * Block size can be up to 2048 bytes, but must be a power of two. |
| */ |
| mmc->max_blk_size = 1 << 11; |
| |
| /* |
| * Limit the number of blocks transferred so that we don't overflow |
| * the maximum request size. |
| */ |
| mmc->max_blk_count = mmc->max_req_size >> 11; |
| |
| spin_lock_init(&host->lock); |
| |
| writel(0, host->base + MMCIMASK0); |
| writel(0, host->base + MMCIMASK1); |
| writel(0xfff, host->base + MMCICLEAR); |
| |
| if (plat->gpio_cd == -EPROBE_DEFER) { |
| ret = -EPROBE_DEFER; |
| goto err_gpio_cd; |
| } |
| if (gpio_is_valid(plat->gpio_cd)) { |
| ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)"); |
| if (ret == 0) |
| ret = gpio_direction_input(plat->gpio_cd); |
| if (ret == 0) |
| host->gpio_cd = plat->gpio_cd; |
| else if (ret != -ENOSYS) |
| goto err_gpio_cd; |
| |
| /* |
| * A gpio pin that will detect cards when inserted and removed |
| * will most likely want to trigger on the edges if it is |
| * 0 when ejected and 1 when inserted (or mutatis mutandis |
| * for the inverted case) so we request triggers on both |
| * edges. |
| */ |
| ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd), |
| mmci_cd_irq, |
| IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, |
| DRIVER_NAME " (cd)", host); |
| if (ret >= 0) |
| host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd); |
| } |
| if (plat->gpio_wp == -EPROBE_DEFER) { |
| ret = -EPROBE_DEFER; |
| goto err_gpio_wp; |
| } |
| if (gpio_is_valid(plat->gpio_wp)) { |
| ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)"); |
| if (ret == 0) |
| ret = gpio_direction_input(plat->gpio_wp); |
| if (ret == 0) |
| host->gpio_wp = plat->gpio_wp; |
| else if (ret != -ENOSYS) |
| goto err_gpio_wp; |
| } |
| |
| if ((host->plat->status || host->gpio_cd != -ENOSYS) |
| && host->gpio_cd_irq < 0) |
| mmc->caps |= MMC_CAP_NEEDS_POLL; |
| |
| ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host); |
| if (ret) |
| goto unmap; |
| |
| if (!dev->irq[1]) |
| host->singleirq = true; |
| else { |
| ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED, |
| DRIVER_NAME " (pio)", host); |
| if (ret) |
| goto irq0_free; |
| } |
| |
| writel(MCI_IRQENABLE, host->base + MMCIMASK0); |
| |
| amba_set_drvdata(dev, mmc); |
| |
| dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", |
| mmc_hostname(mmc), amba_part(dev), amba_manf(dev), |
| amba_rev(dev), (unsigned long long)dev->res.start, |
| dev->irq[0], dev->irq[1]); |
| |
| mmci_dma_setup(host); |
| |
| pm_runtime_set_autosuspend_delay(&dev->dev, 50); |
| pm_runtime_use_autosuspend(&dev->dev); |
| pm_runtime_put(&dev->dev); |
| |
| mmc_add_host(mmc); |
| |
| return 0; |
| |
| irq0_free: |
| free_irq(dev->irq[0], host); |
| unmap: |
| if (host->gpio_wp != -ENOSYS) |
| gpio_free(host->gpio_wp); |
| err_gpio_wp: |
| if (host->gpio_cd_irq >= 0) |
| free_irq(host->gpio_cd_irq, host); |
| if (host->gpio_cd != -ENOSYS) |
| gpio_free(host->gpio_cd); |
| err_gpio_cd: |
| iounmap(host->base); |
| clk_disable: |
| clk_disable_unprepare(host->clk); |
| clk_free: |
| clk_put(host->clk); |
| host_free: |
| mmc_free_host(mmc); |
| rel_regions: |
| amba_release_regions(dev); |
| out: |
| return ret; |
| } |
| |
| static int __devexit mmci_remove(struct amba_device *dev) |
| { |
| struct mmc_host *mmc = amba_get_drvdata(dev); |
| |
| amba_set_drvdata(dev, NULL); |
| |
| if (mmc) { |
| struct mmci_host *host = mmc_priv(mmc); |
| |
| /* |
| * Undo pm_runtime_put() in probe. We use the _sync |
| * version here so that we can access the primecell. |
| */ |
| pm_runtime_get_sync(&dev->dev); |
| |
| mmc_remove_host(mmc); |
| |
| writel(0, host->base + MMCIMASK0); |
| writel(0, host->base + MMCIMASK1); |
| |
| writel(0, host->base + MMCICOMMAND); |
| writel(0, host->base + MMCIDATACTRL); |
| |
| mmci_dma_release(host); |
| free_irq(dev->irq[0], host); |
| if (!host->singleirq) |
| free_irq(dev->irq[1], host); |
| |
| if (host->gpio_wp != -ENOSYS) |
| gpio_free(host->gpio_wp); |
| if (host->gpio_cd_irq >= 0) |
| free_irq(host->gpio_cd_irq, host); |
| if (host->gpio_cd != -ENOSYS) |
| gpio_free(host->gpio_cd); |
| |
| iounmap(host->base); |
| clk_disable_unprepare(host->clk); |
| clk_put(host->clk); |
| |
| if (host->vcc) |
| mmc_regulator_set_ocr(mmc, host->vcc, 0); |
| regulator_put(host->vcc); |
| |
| mmc_free_host(mmc); |
| |
| amba_release_regions(dev); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SUSPEND |
| static int mmci_suspend(struct device *dev) |
| { |
| struct amba_device *adev = to_amba_device(dev); |
| struct mmc_host *mmc = amba_get_drvdata(adev); |
| int ret = 0; |
| |
| if (mmc) { |
| struct mmci_host *host = mmc_priv(mmc); |
| |
| ret = mmc_suspend_host(mmc); |
| if (ret == 0) { |
| pm_runtime_get_sync(dev); |
| writel(0, host->base + MMCIMASK0); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int mmci_resume(struct device *dev) |
| { |
| struct amba_device *adev = to_amba_device(dev); |
| struct mmc_host *mmc = amba_get_drvdata(adev); |
| int ret = 0; |
| |
| if (mmc) { |
| struct mmci_host *host = mmc_priv(mmc); |
| |
| writel(MCI_IRQENABLE, host->base + MMCIMASK0); |
| pm_runtime_put(dev); |
| |
| ret = mmc_resume_host(mmc); |
| } |
| |
| return ret; |
| } |
| #endif |
| |
| static const struct dev_pm_ops mmci_dev_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume) |
| }; |
| |
| static struct amba_id mmci_ids[] = { |
| { |
| .id = 0x00041180, |
| .mask = 0xff0fffff, |
| .data = &variant_arm, |
| }, |
| { |
| .id = 0x01041180, |
| .mask = 0xff0fffff, |
| .data = &variant_arm_extended_fifo, |
| }, |
| { |
| .id = 0x00041181, |
| .mask = 0x000fffff, |
| .data = &variant_arm, |
| }, |
| /* ST Micro variants */ |
| { |
| .id = 0x00180180, |
| .mask = 0x00ffffff, |
| .data = &variant_u300, |
| }, |
| { |
| .id = 0x10180180, |
| .mask = 0xf0ffffff, |
| .data = &variant_nomadik, |
| }, |
| { |
| .id = 0x00280180, |
| .mask = 0x00ffffff, |
| .data = &variant_u300, |
| }, |
| { |
| .id = 0x00480180, |
| .mask = 0xf0ffffff, |
| .data = &variant_ux500, |
| }, |
| { |
| .id = 0x10480180, |
| .mask = 0xf0ffffff, |
| .data = &variant_ux500v2, |
| }, |
| { 0, 0 }, |
| }; |
| |
| MODULE_DEVICE_TABLE(amba, mmci_ids); |
| |
| static struct amba_driver mmci_driver = { |
| .drv = { |
| .name = DRIVER_NAME, |
| .pm = &mmci_dev_pm_ops, |
| }, |
| .probe = mmci_probe, |
| .remove = mmci_remove, |
| .id_table = mmci_ids, |
| }; |
| |
| module_amba_driver(mmci_driver); |
| |
| module_param(fmax, uint, 0444); |
| |
| MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); |
| MODULE_LICENSE("GPL"); |