| /* MN10300 Arch-specific interrupt handling |
| * |
| * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/seq_file.h> |
| #include <asm/setup.h> |
| |
| unsigned long __mn10300_irq_enabled_epsw = EPSW_IE | EPSW_IM_7; |
| EXPORT_SYMBOL(__mn10300_irq_enabled_epsw); |
| |
| atomic_t irq_err_count; |
| |
| /* |
| * MN10300 interrupt controller operations |
| */ |
| static void mn10300_cpupic_ack(unsigned int irq) |
| { |
| u16 tmp; |
| *(volatile u8 *) &GxICR(irq) = GxICR_DETECT; |
| tmp = GxICR(irq); |
| } |
| |
| static void mn10300_cpupic_mask(unsigned int irq) |
| { |
| u16 tmp = GxICR(irq); |
| GxICR(irq) = (tmp & GxICR_LEVEL); |
| tmp = GxICR(irq); |
| } |
| |
| static void mn10300_cpupic_mask_ack(unsigned int irq) |
| { |
| u16 tmp = GxICR(irq); |
| GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_DETECT; |
| tmp = GxICR(irq); |
| } |
| |
| static void mn10300_cpupic_unmask(unsigned int irq) |
| { |
| u16 tmp = GxICR(irq); |
| GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_ENABLE; |
| tmp = GxICR(irq); |
| } |
| |
| static void mn10300_cpupic_unmask_clear(unsigned int irq) |
| { |
| /* the MN10300 PIC latches its interrupt request bit, even after the |
| * device has ceased to assert its interrupt line and the interrupt |
| * channel has been disabled in the PIC, so for level-triggered |
| * interrupts we need to clear the request bit when we re-enable */ |
| u16 tmp = GxICR(irq); |
| GxICR(irq) = (tmp & GxICR_LEVEL) | GxICR_ENABLE | GxICR_DETECT; |
| tmp = GxICR(irq); |
| } |
| |
| /* |
| * MN10300 PIC level-triggered IRQ handling. |
| * |
| * The PIC has no 'ACK' function per se. It is possible to clear individual |
| * channel latches, but each latch relatches whether or not the channel is |
| * masked, so we need to clear the latch when we unmask the channel. |
| * |
| * Also for this reason, we don't supply an ack() op (it's unused anyway if |
| * mask_ack() is provided), and mask_ack() just masks. |
| */ |
| static struct irq_chip mn10300_cpu_pic_level = { |
| .name = "cpu_l", |
| .disable = mn10300_cpupic_mask, |
| .enable = mn10300_cpupic_unmask_clear, |
| .ack = NULL, |
| .mask = mn10300_cpupic_mask, |
| .mask_ack = mn10300_cpupic_mask, |
| .unmask = mn10300_cpupic_unmask_clear, |
| }; |
| |
| /* |
| * MN10300 PIC edge-triggered IRQ handling. |
| * |
| * We use the latch clearing function of the PIC as the 'ACK' function. |
| */ |
| static struct irq_chip mn10300_cpu_pic_edge = { |
| .name = "cpu_e", |
| .disable = mn10300_cpupic_mask, |
| .enable = mn10300_cpupic_unmask, |
| .ack = mn10300_cpupic_ack, |
| .mask = mn10300_cpupic_mask, |
| .mask_ack = mn10300_cpupic_mask_ack, |
| .unmask = mn10300_cpupic_unmask, |
| }; |
| |
| /* |
| * 'what should we do if we get a hw irq event on an illegal vector'. |
| * each architecture has to answer this themselves. |
| */ |
| void ack_bad_irq(int irq) |
| { |
| printk(KERN_WARNING "unexpected IRQ trap at vector %02x\n", irq); |
| } |
| |
| /* |
| * change the level at which an IRQ executes |
| * - must not be called whilst interrupts are being processed! |
| */ |
| void set_intr_level(int irq, u16 level) |
| { |
| u16 tmp; |
| |
| if (in_interrupt()) |
| BUG(); |
| |
| tmp = GxICR(irq); |
| GxICR(irq) = (tmp & GxICR_ENABLE) | level; |
| tmp = GxICR(irq); |
| } |
| |
| /* |
| * mark an interrupt to be ACK'd after interrupt handlers have been run rather |
| * than before |
| * - see Documentation/mn10300/features.txt |
| */ |
| void set_intr_postackable(int irq) |
| { |
| set_irq_chip_and_handler(irq, &mn10300_cpu_pic_level, |
| handle_level_irq); |
| } |
| |
| /* |
| * initialise the interrupt system |
| */ |
| void __init init_IRQ(void) |
| { |
| int irq; |
| |
| for (irq = 0; irq < NR_IRQS; irq++) |
| if (irq_desc[irq].chip == &no_irq_chip) |
| /* due to the PIC latching interrupt requests, even |
| * when the IRQ is disabled, IRQ_PENDING is superfluous |
| * and we can use handle_level_irq() for edge-triggered |
| * interrupts */ |
| set_irq_chip_and_handler(irq, &mn10300_cpu_pic_edge, |
| handle_level_irq); |
| unit_init_IRQ(); |
| } |
| |
| /* |
| * handle normal device IRQs |
| */ |
| asmlinkage void do_IRQ(void) |
| { |
| unsigned long sp, epsw, irq_disabled_epsw, old_irq_enabled_epsw; |
| int irq; |
| |
| sp = current_stack_pointer(); |
| BUG_ON(sp - (sp & ~(THREAD_SIZE - 1)) < STACK_WARN); |
| |
| /* make sure local_irq_enable() doesn't muck up the interrupt priority |
| * setting in EPSW */ |
| old_irq_enabled_epsw = __mn10300_irq_enabled_epsw; |
| local_save_flags(epsw); |
| __mn10300_irq_enabled_epsw = EPSW_IE | (EPSW_IM & epsw); |
| irq_disabled_epsw = EPSW_IE | MN10300_CLI_LEVEL; |
| |
| __IRQ_STAT(smp_processor_id(), __irq_count)++; |
| |
| irq_enter(); |
| |
| for (;;) { |
| /* ask the interrupt controller for the next IRQ to process |
| * - the result we get depends on EPSW.IM |
| */ |
| irq = IAGR & IAGR_GN; |
| if (!irq) |
| break; |
| |
| local_irq_restore(irq_disabled_epsw); |
| |
| generic_handle_irq(irq >> 2); |
| |
| /* restore IRQ controls for IAGR access */ |
| local_irq_restore(epsw); |
| } |
| |
| __mn10300_irq_enabled_epsw = old_irq_enabled_epsw; |
| |
| irq_exit(); |
| } |
| |
| /* |
| * Display interrupt management information through /proc/interrupts |
| */ |
| int show_interrupts(struct seq_file *p, void *v) |
| { |
| int i = *(loff_t *) v, j, cpu; |
| struct irqaction *action; |
| unsigned long flags; |
| |
| switch (i) { |
| /* display column title bar naming CPUs */ |
| case 0: |
| seq_printf(p, " "); |
| for (j = 0; j < NR_CPUS; j++) |
| if (cpu_online(j)) |
| seq_printf(p, "CPU%d ", j); |
| seq_putc(p, '\n'); |
| break; |
| |
| /* display information rows, one per active CPU */ |
| case 1 ... NR_IRQS - 1: |
| raw_spin_lock_irqsave(&irq_desc[i].lock, flags); |
| |
| action = irq_desc[i].action; |
| if (action) { |
| seq_printf(p, "%3d: ", i); |
| for_each_present_cpu(cpu) |
| seq_printf(p, "%10u ", kstat_irqs_cpu(i, cpu)); |
| seq_printf(p, " %14s.%u", irq_desc[i].chip->name, |
| (GxICR(i) & GxICR_LEVEL) >> |
| GxICR_LEVEL_SHIFT); |
| seq_printf(p, " %s", action->name); |
| |
| for (action = action->next; |
| action; |
| action = action->next) |
| seq_printf(p, ", %s", action->name); |
| |
| seq_putc(p, '\n'); |
| } |
| |
| raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); |
| break; |
| |
| /* polish off with NMI and error counters */ |
| case NR_IRQS: |
| seq_printf(p, "NMI: "); |
| for (j = 0; j < NR_CPUS; j++) |
| if (cpu_online(j)) |
| seq_printf(p, "%10u ", nmi_count(j)); |
| seq_putc(p, '\n'); |
| |
| seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count)); |
| break; |
| } |
| |
| return 0; |
| } |