blob: 34784a41c9e35747e5fd6aa1bc81227845f5d056 [file] [log] [blame]
/*
* q_tbf.c TBF.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <syslog.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include "utils.h"
#include "tc_util.h"
static void explain(void)
{
fprintf(stderr, "Usage: ... tbf limit BYTES burst BYTES[/BYTES] rate KBPS [ mtu BYTES[/BYTES] ]\n");
fprintf(stderr, " [ peakrate KBPS ] [ latency TIME ] ");
fprintf(stderr, "[ overhead BYTES ] [ linklayer TYPE ]\n");
}
static void explain1(const char *arg, const char *val)
{
fprintf(stderr, "tbf: illegal value for \"%s\": \"%s\"\n", arg, val);
}
static int tbf_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n)
{
int ok=0;
struct tc_tbf_qopt opt;
__u32 rtab[256];
__u32 ptab[256];
unsigned buffer=0, mtu=0, mpu=0, latency=0;
int Rcell_log=-1, Pcell_log = -1;
unsigned short overhead=0;
unsigned int linklayer = LINKLAYER_ETHERNET; /* Assume ethernet */
struct rtattr *tail;
memset(&opt, 0, sizeof(opt));
while (argc > 0) {
if (matches(*argv, "limit") == 0) {
NEXT_ARG();
if (opt.limit) {
fprintf(stderr, "tbf: duplicate \"limit\" specification\n");
return -1;
}
if (latency) {
fprintf(stderr, "tbf: specifying both \"latency\" and \"limit\" is not allowed\n");
return -1;
}
if (get_size(&opt.limit, *argv)) {
explain1("limit", *argv);
return -1;
}
ok++;
} else if (matches(*argv, "latency") == 0) {
NEXT_ARG();
if (latency) {
fprintf(stderr, "tbf: duplicate \"latency\" specification\n");
return -1;
}
if (opt.limit) {
fprintf(stderr, "tbf: specifying both \"limit\" and \"/latency\" is not allowed\n");
return -1;
}
if (get_time(&latency, *argv)) {
explain1("latency", *argv);
return -1;
}
ok++;
} else if (matches(*argv, "burst") == 0 ||
strcmp(*argv, "buffer") == 0 ||
strcmp(*argv, "maxburst") == 0) {
const char *parm_name = *argv;
NEXT_ARG();
if (buffer) {
fprintf(stderr, "tbf: duplicate \"buffer/burst/maxburst\" specification\n");
return -1;
}
if (get_size_and_cell(&buffer, &Rcell_log, *argv) < 0) {
explain1(parm_name, *argv);
return -1;
}
ok++;
} else if (strcmp(*argv, "mtu") == 0 ||
strcmp(*argv, "minburst") == 0) {
const char *parm_name = *argv;
NEXT_ARG();
if (mtu) {
fprintf(stderr, "tbf: duplicate \"mtu/minburst\" specification\n");
return -1;
}
if (get_size_and_cell(&mtu, &Pcell_log, *argv) < 0) {
explain1(parm_name, *argv);
return -1;
}
ok++;
} else if (strcmp(*argv, "mpu") == 0) {
NEXT_ARG();
if (mpu) {
fprintf(stderr, "tbf: duplicate \"mpu\" specification\n");
return -1;
}
if (get_size(&mpu, *argv)) {
explain1("mpu", *argv);
return -1;
}
ok++;
} else if (strcmp(*argv, "rate") == 0) {
NEXT_ARG();
if (opt.rate.rate) {
fprintf(stderr, "tbf: duplicate \"rate\" specification\n");
return -1;
}
if (get_rate(&opt.rate.rate, *argv)) {
explain1("rate", *argv);
return -1;
}
ok++;
} else if (matches(*argv, "peakrate") == 0) {
NEXT_ARG();
if (opt.peakrate.rate) {
fprintf(stderr, "tbf: duplicate \"peakrate\" specification\n");
return -1;
}
if (get_rate(&opt.peakrate.rate, *argv)) {
explain1("peakrate", *argv);
return -1;
}
ok++;
} else if (matches(*argv, "overhead") == 0) {
NEXT_ARG();
if (overhead) {
fprintf(stderr, "tbf: duplicate \"overhead\" specification\n");
return -1;
}
if (get_u16(&overhead, *argv, 10)) {
explain1("overhead", *argv); return -1;
}
} else if (matches(*argv, "linklayer") == 0) {
NEXT_ARG();
if (get_linklayer(&linklayer, *argv)) {
explain1("linklayer", *argv); return -1;
}
} else if (strcmp(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "tbf: unknown parameter \"%s\"\n", *argv);
explain();
return -1;
}
argc--; argv++;
}
int verdict = 0;
/* Be nice to the user: try to emit all error messages in
* one go rather than reveal one more problem when a
* previous one has been fixed.
*/
if (opt.rate.rate == 0) {
fprintf(stderr, "tbf: the \"rate\" parameter is mandatory.\n");
verdict = -1;
}
if (!buffer) {
fprintf(stderr, "tbf: the \"burst\" parameter is mandatory.\n");
verdict = -1;
}
if (opt.peakrate.rate) {
if (!mtu) {
fprintf(stderr, "tbf: when \"peakrate\" is specified, \"mtu\" must also be specified.\n");
verdict = -1;
}
}
if (opt.limit == 0 && latency == 0) {
fprintf(stderr, "tbf: either \"limit\" or \"latency\" is required.\n");
verdict = -1;
}
if (verdict != 0) {
explain();
return verdict;
}
if (opt.limit == 0) {
double lim = opt.rate.rate*(double)latency/TIME_UNITS_PER_SEC + buffer;
if (opt.peakrate.rate) {
double lim2 = opt.peakrate.rate*(double)latency/TIME_UNITS_PER_SEC + mtu;
if (lim2 < lim)
lim = lim2;
}
opt.limit = lim;
}
opt.rate.mpu = mpu;
opt.rate.overhead = overhead;
if (tc_calc_rtable(&opt.rate, rtab, Rcell_log, mtu, linklayer) < 0) {
fprintf(stderr, "tbf: failed to calculate rate table.\n");
return -1;
}
opt.buffer = tc_calc_xmittime(opt.rate.rate, buffer);
if (opt.peakrate.rate) {
opt.peakrate.mpu = mpu;
opt.peakrate.overhead = overhead;
if (tc_calc_rtable(&opt.peakrate, ptab, Pcell_log, mtu, linklayer) < 0) {
fprintf(stderr, "tbf: failed to calculate peak rate table.\n");
return -1;
}
opt.mtu = tc_calc_xmittime(opt.peakrate.rate, mtu);
}
tail = NLMSG_TAIL(n);
addattr_l(n, 1024, TCA_OPTIONS, NULL, 0);
addattr_l(n, 2024, TCA_TBF_PARMS, &opt, sizeof(opt));
addattr_l(n, 3024, TCA_TBF_RTAB, rtab, 1024);
if (opt.peakrate.rate)
addattr_l(n, 4096, TCA_TBF_PTAB, ptab, 1024);
tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail;
return 0;
}
static int tbf_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
struct rtattr *tb[TCA_TBF_PTAB+1];
struct tc_tbf_qopt *qopt;
unsigned int linklayer;
double buffer, mtu;
double latency;
SPRINT_BUF(b1);
SPRINT_BUF(b2);
SPRINT_BUF(b3);
if (opt == NULL)
return 0;
parse_rtattr_nested(tb, TCA_TBF_PTAB, opt);
if (tb[TCA_TBF_PARMS] == NULL)
return -1;
qopt = RTA_DATA(tb[TCA_TBF_PARMS]);
if (RTA_PAYLOAD(tb[TCA_TBF_PARMS]) < sizeof(*qopt))
return -1;
fprintf(f, "rate %s ", sprint_rate(qopt->rate.rate, b1));
buffer = tc_calc_xmitsize(qopt->rate.rate, qopt->buffer);
if (show_details) {
fprintf(f, "burst %s/%u mpu %s ", sprint_size(buffer, b1),
1<<qopt->rate.cell_log, sprint_size(qopt->rate.mpu, b2));
} else {
fprintf(f, "burst %s ", sprint_size(buffer, b1));
}
if (show_raw)
fprintf(f, "[%08x] ", qopt->buffer);
if (qopt->peakrate.rate) {
fprintf(f, "peakrate %s ", sprint_rate(qopt->peakrate.rate, b1));
if (qopt->mtu || qopt->peakrate.mpu) {
mtu = tc_calc_xmitsize(qopt->peakrate.rate, qopt->mtu);
if (show_details) {
fprintf(f, "mtu %s/%u mpu %s ", sprint_size(mtu, b1),
1<<qopt->peakrate.cell_log, sprint_size(qopt->peakrate.mpu, b2));
} else {
fprintf(f, "minburst %s ", sprint_size(mtu, b1));
}
if (show_raw)
fprintf(f, "[%08x] ", qopt->mtu);
}
}
if (show_raw)
fprintf(f, "limit %s ", sprint_size(qopt->limit, b1));
latency = TIME_UNITS_PER_SEC*(qopt->limit/(double)qopt->rate.rate) - tc_core_tick2time(qopt->buffer);
if (qopt->peakrate.rate) {
double lat2 = TIME_UNITS_PER_SEC*(qopt->limit/(double)qopt->peakrate.rate) - tc_core_tick2time(qopt->mtu);
if (lat2 > latency)
latency = lat2;
}
fprintf(f, "lat %s ", sprint_time(latency, b1));
if (qopt->rate.overhead) {
fprintf(f, "overhead %d", qopt->rate.overhead);
}
linklayer = (qopt->rate.linklayer & TC_LINKLAYER_MASK);
if (linklayer > TC_LINKLAYER_ETHERNET || show_details)
fprintf(f, "linklayer %s ", sprint_linklayer(linklayer, b3));
return 0;
}
struct qdisc_util tbf_qdisc_util = {
.id = "tbf",
.parse_qopt = tbf_parse_opt,
.print_qopt = tbf_print_opt,
};