| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file lzma_encoder.c |
| /// \brief LZMA encoder |
| /// |
| // Authors: Igor Pavlov |
| // Lasse Collin |
| // |
| // This file has been put into the public domain. |
| // You can do whatever you want with this file. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "lzma2_encoder.h" |
| #include "lzma_encoder_private.h" |
| #include "fastpos.h" |
| |
| |
| ///////////// |
| // Literal // |
| ///////////// |
| |
| static inline void |
| literal_matched(lzma_range_encoder *rc, probability *subcoder, |
| uint32_t match_byte, uint32_t symbol) |
| { |
| uint32_t offset = 0x100; |
| symbol += UINT32_C(1) << 8; |
| |
| do { |
| match_byte <<= 1; |
| const uint32_t match_bit = match_byte & offset; |
| const uint32_t subcoder_index |
| = offset + match_bit + (symbol >> 8); |
| const uint32_t bit = (symbol >> 7) & 1; |
| rc_bit(rc, &subcoder[subcoder_index], bit); |
| |
| symbol <<= 1; |
| offset &= ~(match_byte ^ symbol); |
| |
| } while (symbol < (UINT32_C(1) << 16)); |
| } |
| |
| |
| static inline void |
| literal(lzma_coder *coder, lzma_mf *mf, uint32_t position) |
| { |
| // Locate the literal byte to be encoded and the subcoder. |
| const uint8_t cur_byte = mf->buffer[ |
| mf->read_pos - mf->read_ahead]; |
| probability *subcoder = literal_subcoder(coder->literal, |
| coder->literal_context_bits, coder->literal_pos_mask, |
| position, mf->buffer[mf->read_pos - mf->read_ahead - 1]); |
| |
| if (is_literal_state(coder->state)) { |
| // Previous LZMA-symbol was a literal. Encode a normal |
| // literal without a match byte. |
| rc_bittree(&coder->rc, subcoder, 8, cur_byte); |
| } else { |
| // Previous LZMA-symbol was a match. Use the last byte of |
| // the match as a "match byte". That is, compare the bits |
| // of the current literal and the match byte. |
| const uint8_t match_byte = mf->buffer[ |
| mf->read_pos - coder->reps[0] - 1 |
| - mf->read_ahead]; |
| literal_matched(&coder->rc, subcoder, match_byte, cur_byte); |
| } |
| |
| update_literal(coder->state); |
| } |
| |
| |
| ////////////////// |
| // Match length // |
| ////////////////// |
| |
| static void |
| length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state) |
| { |
| const uint32_t table_size = lc->table_size; |
| lc->counters[pos_state] = table_size; |
| |
| const uint32_t a0 = rc_bit_0_price(lc->choice); |
| const uint32_t a1 = rc_bit_1_price(lc->choice); |
| const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2); |
| const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2); |
| uint32_t *const prices = lc->prices[pos_state]; |
| |
| uint32_t i; |
| for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i) |
| prices[i] = a0 + rc_bittree_price(lc->low[pos_state], |
| LEN_LOW_BITS, i); |
| |
| for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i) |
| prices[i] = b0 + rc_bittree_price(lc->mid[pos_state], |
| LEN_MID_BITS, i - LEN_LOW_SYMBOLS); |
| |
| for (; i < table_size; ++i) |
| prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS, |
| i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS); |
| |
| return; |
| } |
| |
| |
| static inline void |
| length(lzma_range_encoder *rc, lzma_length_encoder *lc, |
| const uint32_t pos_state, uint32_t len, const bool fast_mode) |
| { |
| assert(len <= MATCH_LEN_MAX); |
| len -= MATCH_LEN_MIN; |
| |
| if (len < LEN_LOW_SYMBOLS) { |
| rc_bit(rc, &lc->choice, 0); |
| rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len); |
| } else { |
| rc_bit(rc, &lc->choice, 1); |
| len -= LEN_LOW_SYMBOLS; |
| |
| if (len < LEN_MID_SYMBOLS) { |
| rc_bit(rc, &lc->choice2, 0); |
| rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len); |
| } else { |
| rc_bit(rc, &lc->choice2, 1); |
| len -= LEN_MID_SYMBOLS; |
| rc_bittree(rc, lc->high, LEN_HIGH_BITS, len); |
| } |
| } |
| |
| // Only getoptimum uses the prices so don't update the table when |
| // in fast mode. |
| if (!fast_mode) |
| if (--lc->counters[pos_state] == 0) |
| length_update_prices(lc, pos_state); |
| } |
| |
| |
| /////////// |
| // Match // |
| /////////// |
| |
| static inline void |
| match(lzma_coder *coder, const uint32_t pos_state, |
| const uint32_t distance, const uint32_t len) |
| { |
| update_match(coder->state); |
| |
| length(&coder->rc, &coder->match_len_encoder, pos_state, len, |
| coder->fast_mode); |
| |
| const uint32_t pos_slot = get_pos_slot(distance); |
| const uint32_t len_to_pos_state = get_len_to_pos_state(len); |
| rc_bittree(&coder->rc, coder->pos_slot[len_to_pos_state], |
| POS_SLOT_BITS, pos_slot); |
| |
| if (pos_slot >= START_POS_MODEL_INDEX) { |
| const uint32_t footer_bits = (pos_slot >> 1) - 1; |
| const uint32_t base = (2 | (pos_slot & 1)) << footer_bits; |
| const uint32_t pos_reduced = distance - base; |
| |
| if (pos_slot < END_POS_MODEL_INDEX) { |
| // Careful here: base - pos_slot - 1 can be -1, but |
| // rc_bittree_reverse starts at probs[1], not probs[0]. |
| rc_bittree_reverse(&coder->rc, |
| coder->pos_special + base - pos_slot - 1, |
| footer_bits, pos_reduced); |
| } else { |
| rc_direct(&coder->rc, pos_reduced >> ALIGN_BITS, |
| footer_bits - ALIGN_BITS); |
| rc_bittree_reverse( |
| &coder->rc, coder->pos_align, |
| ALIGN_BITS, pos_reduced & ALIGN_MASK); |
| ++coder->align_price_count; |
| } |
| } |
| |
| coder->reps[3] = coder->reps[2]; |
| coder->reps[2] = coder->reps[1]; |
| coder->reps[1] = coder->reps[0]; |
| coder->reps[0] = distance; |
| ++coder->match_price_count; |
| } |
| |
| |
| //////////////////// |
| // Repeated match // |
| //////////////////// |
| |
| static inline void |
| rep_match(lzma_coder *coder, const uint32_t pos_state, |
| const uint32_t rep, const uint32_t len) |
| { |
| if (rep == 0) { |
| rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0); |
| rc_bit(&coder->rc, |
| &coder->is_rep0_long[coder->state][pos_state], |
| len != 1); |
| } else { |
| const uint32_t distance = coder->reps[rep]; |
| rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1); |
| |
| if (rep == 1) { |
| rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0); |
| } else { |
| rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1); |
| rc_bit(&coder->rc, &coder->is_rep2[coder->state], |
| rep - 2); |
| |
| if (rep == 3) |
| coder->reps[3] = coder->reps[2]; |
| |
| coder->reps[2] = coder->reps[1]; |
| } |
| |
| coder->reps[1] = coder->reps[0]; |
| coder->reps[0] = distance; |
| } |
| |
| if (len == 1) { |
| update_short_rep(coder->state); |
| } else { |
| length(&coder->rc, &coder->rep_len_encoder, pos_state, len, |
| coder->fast_mode); |
| update_long_rep(coder->state); |
| } |
| } |
| |
| |
| ////////// |
| // Main // |
| ////////// |
| |
| static void |
| encode_symbol(lzma_coder *coder, lzma_mf *mf, |
| uint32_t back, uint32_t len, uint32_t position) |
| { |
| const uint32_t pos_state = position & coder->pos_mask; |
| |
| if (back == UINT32_MAX) { |
| // Literal i.e. eight-bit byte |
| assert(len == 1); |
| rc_bit(&coder->rc, |
| &coder->is_match[coder->state][pos_state], 0); |
| literal(coder, mf, position); |
| } else { |
| // Some type of match |
| rc_bit(&coder->rc, |
| &coder->is_match[coder->state][pos_state], 1); |
| |
| if (back < REP_DISTANCES) { |
| // It's a repeated match i.e. the same distance |
| // has been used earlier. |
| rc_bit(&coder->rc, &coder->is_rep[coder->state], 1); |
| rep_match(coder, pos_state, back, len); |
| } else { |
| // Normal match |
| rc_bit(&coder->rc, &coder->is_rep[coder->state], 0); |
| match(coder, pos_state, back - REP_DISTANCES, len); |
| } |
| } |
| |
| assert(mf->read_ahead >= len); |
| mf->read_ahead -= len; |
| } |
| |
| |
| static bool |
| encode_init(lzma_coder *coder, lzma_mf *mf) |
| { |
| assert(mf_position(mf) == 0); |
| |
| if (mf->read_pos == mf->read_limit) { |
| if (mf->action == LZMA_RUN) |
| return false; // We cannot do anything. |
| |
| // We are finishing (we cannot get here when flushing). |
| assert(mf->write_pos == mf->read_pos); |
| assert(mf->action == LZMA_FINISH); |
| } else { |
| // Do the actual initialization. The first LZMA symbol must |
| // always be a literal. |
| mf_skip(mf, 1); |
| mf->read_ahead = 0; |
| rc_bit(&coder->rc, &coder->is_match[0][0], 0); |
| rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]); |
| } |
| |
| // Initialization is done (except if empty file). |
| coder->is_initialized = true; |
| |
| return true; |
| } |
| |
| |
| static void |
| encode_eopm(lzma_coder *coder, uint32_t position) |
| { |
| const uint32_t pos_state = position & coder->pos_mask; |
| rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1); |
| rc_bit(&coder->rc, &coder->is_rep[coder->state], 0); |
| match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN); |
| } |
| |
| |
| /// Number of bytes that a single encoding loop in lzma_lzma_encode() can |
| /// consume from the dictionary. This limit comes from lzma_lzma_optimum() |
| /// and may need to be updated if that function is significantly modified. |
| #define LOOP_INPUT_MAX (OPTS + 1) |
| |
| |
| extern lzma_ret |
| lzma_lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, |
| uint8_t *restrict out, size_t *restrict out_pos, |
| size_t out_size, uint32_t limit) |
| { |
| // Initialize the stream if no data has been encoded yet. |
| if (!coder->is_initialized && !encode_init(coder, mf)) |
| return LZMA_OK; |
| |
| // Get the lowest bits of the uncompressed offset from the LZ layer. |
| uint32_t position = mf_position(mf); |
| |
| while (true) { |
| // Encode pending bits, if any. Calling this before encoding |
| // the next symbol is needed only with plain LZMA, since |
| // LZMA2 always provides big enough buffer to flush |
| // everything out from the range encoder. For the same reason, |
| // rc_encode() never returns true when this function is used |
| // as part of LZMA2 encoder. |
| if (rc_encode(&coder->rc, out, out_pos, out_size)) { |
| assert(limit == UINT32_MAX); |
| return LZMA_OK; |
| } |
| |
| // With LZMA2 we need to take care that compressed size of |
| // a chunk doesn't get too big. |
| // FIXME? Check if this could be improved. |
| if (limit != UINT32_MAX |
| && (mf->read_pos - mf->read_ahead >= limit |
| || *out_pos + rc_pending(&coder->rc) |
| >= LZMA2_CHUNK_MAX |
| - LOOP_INPUT_MAX)) |
| break; |
| |
| // Check that there is some input to process. |
| if (mf->read_pos >= mf->read_limit) { |
| if (mf->action == LZMA_RUN) |
| return LZMA_OK; |
| |
| if (mf->read_ahead == 0) |
| break; |
| } |
| |
| // Get optimal match (repeat position and length). |
| // Value ranges for pos: |
| // - [0, REP_DISTANCES): repeated match |
| // - [REP_DISTANCES, UINT32_MAX): |
| // match at (pos - REP_DISTANCES) |
| // - UINT32_MAX: not a match but a literal |
| // Value ranges for len: |
| // - [MATCH_LEN_MIN, MATCH_LEN_MAX] |
| uint32_t len; |
| uint32_t back; |
| |
| if (coder->fast_mode) |
| lzma_lzma_optimum_fast(coder, mf, &back, &len); |
| else |
| lzma_lzma_optimum_normal( |
| coder, mf, &back, &len, position); |
| |
| encode_symbol(coder, mf, back, len, position); |
| |
| position += len; |
| } |
| |
| if (!coder->is_flushed) { |
| coder->is_flushed = true; |
| |
| // We don't support encoding plain LZMA streams without EOPM, |
| // and LZMA2 doesn't use EOPM at LZMA level. |
| if (limit == UINT32_MAX) |
| encode_eopm(coder, position); |
| |
| // Flush the remaining bytes from the range encoder. |
| rc_flush(&coder->rc); |
| |
| // Copy the remaining bytes to the output buffer. If there |
| // isn't enough output space, we will copy out the remaining |
| // bytes on the next call to this function by using |
| // the rc_encode() call in the encoding loop above. |
| if (rc_encode(&coder->rc, out, out_pos, out_size)) { |
| assert(limit == UINT32_MAX); |
| return LZMA_OK; |
| } |
| } |
| |
| // Make it ready for the next LZMA2 chunk. |
| coder->is_flushed = false; |
| |
| return LZMA_STREAM_END; |
| } |
| |
| |
| static lzma_ret |
| lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, |
| uint8_t *restrict out, size_t *restrict out_pos, |
| size_t out_size) |
| { |
| // Plain LZMA has no support for sync-flushing. |
| if (unlikely(mf->action == LZMA_SYNC_FLUSH)) |
| return LZMA_OPTIONS_ERROR; |
| |
| return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX); |
| } |
| |
| |
| //////////////////// |
| // Initialization // |
| //////////////////// |
| |
| static bool |
| is_options_valid(const lzma_options_lzma *options) |
| { |
| // Validate some of the options. LZ encoder validates nice_len too |
| // but we need a valid value here earlier. |
| return is_lclppb_valid(options) |
| && options->nice_len >= MATCH_LEN_MIN |
| && options->nice_len <= MATCH_LEN_MAX |
| && (options->mode == LZMA_MODE_FAST |
| || options->mode == LZMA_MODE_NORMAL); |
| } |
| |
| |
| static void |
| set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options) |
| { |
| // LZ encoder initialization does the validation for these so we |
| // don't need to validate here. |
| lz_options->before_size = OPTS; |
| lz_options->dict_size = options->dict_size; |
| lz_options->after_size = LOOP_INPUT_MAX; |
| lz_options->match_len_max = MATCH_LEN_MAX; |
| lz_options->nice_len = options->nice_len; |
| lz_options->match_finder = options->mf; |
| lz_options->depth = options->depth; |
| lz_options->preset_dict = options->preset_dict; |
| lz_options->preset_dict_size = options->preset_dict_size; |
| return; |
| } |
| |
| |
| static void |
| length_encoder_reset(lzma_length_encoder *lencoder, |
| const uint32_t num_pos_states, const bool fast_mode) |
| { |
| bit_reset(lencoder->choice); |
| bit_reset(lencoder->choice2); |
| |
| for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) { |
| bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS); |
| bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS); |
| } |
| |
| bittree_reset(lencoder->high, LEN_HIGH_BITS); |
| |
| if (!fast_mode) |
| for (size_t pos_state = 0; pos_state < num_pos_states; |
| ++pos_state) |
| length_update_prices(lencoder, pos_state); |
| |
| return; |
| } |
| |
| |
| extern lzma_ret |
| lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options) |
| { |
| if (!is_options_valid(options)) |
| return LZMA_OPTIONS_ERROR; |
| |
| coder->pos_mask = (1U << options->pb) - 1; |
| coder->literal_context_bits = options->lc; |
| coder->literal_pos_mask = (1U << options->lp) - 1; |
| |
| // Range coder |
| rc_reset(&coder->rc); |
| |
| // State |
| coder->state = STATE_LIT_LIT; |
| for (size_t i = 0; i < REP_DISTANCES; ++i) |
| coder->reps[i] = 0; |
| |
| literal_init(coder->literal, options->lc, options->lp); |
| |
| // Bit encoders |
| for (size_t i = 0; i < STATES; ++i) { |
| for (size_t j = 0; j <= coder->pos_mask; ++j) { |
| bit_reset(coder->is_match[i][j]); |
| bit_reset(coder->is_rep0_long[i][j]); |
| } |
| |
| bit_reset(coder->is_rep[i]); |
| bit_reset(coder->is_rep0[i]); |
| bit_reset(coder->is_rep1[i]); |
| bit_reset(coder->is_rep2[i]); |
| } |
| |
| for (size_t i = 0; i < FULL_DISTANCES - END_POS_MODEL_INDEX; ++i) |
| bit_reset(coder->pos_special[i]); |
| |
| // Bit tree encoders |
| for (size_t i = 0; i < LEN_TO_POS_STATES; ++i) |
| bittree_reset(coder->pos_slot[i], POS_SLOT_BITS); |
| |
| bittree_reset(coder->pos_align, ALIGN_BITS); |
| |
| // Length encoders |
| length_encoder_reset(&coder->match_len_encoder, |
| 1U << options->pb, coder->fast_mode); |
| |
| length_encoder_reset(&coder->rep_len_encoder, |
| 1U << options->pb, coder->fast_mode); |
| |
| // Price counts are incremented every time appropriate probabilities |
| // are changed. price counts are set to zero when the price tables |
| // are updated, which is done when the appropriate price counts have |
| // big enough value, and lzma_mf.read_ahead == 0 which happens at |
| // least every OPTS (a few thousand) possible price count increments. |
| // |
| // By resetting price counts to UINT32_MAX / 2, we make sure that the |
| // price tables will be initialized before they will be used (since |
| // the value is definitely big enough), and that it is OK to increment |
| // price counts without risk of integer overflow (since UINT32_MAX / 2 |
| // is small enough). The current code doesn't increment price counts |
| // before initializing price tables, but it maybe done in future if |
| // we add support for saving the state between LZMA2 chunks. |
| coder->match_price_count = UINT32_MAX / 2; |
| coder->align_price_count = UINT32_MAX / 2; |
| |
| coder->opts_end_index = 0; |
| coder->opts_current_index = 0; |
| |
| return LZMA_OK; |
| } |
| |
| |
| extern lzma_ret |
| lzma_lzma_encoder_create(lzma_coder **coder_ptr, lzma_allocator *allocator, |
| const lzma_options_lzma *options, lzma_lz_options *lz_options) |
| { |
| // Allocate lzma_coder if it wasn't already allocated. |
| if (*coder_ptr == NULL) { |
| *coder_ptr = lzma_alloc(sizeof(lzma_coder), allocator); |
| if (*coder_ptr == NULL) |
| return LZMA_MEM_ERROR; |
| } |
| |
| lzma_coder *coder = *coder_ptr; |
| |
| // Set compression mode. We haven't validates the options yet, |
| // but it's OK here, since nothing bad happens with invalid |
| // options in the code below, and they will get rejected by |
| // lzma_lzma_encoder_reset() call at the end of this function. |
| switch (options->mode) { |
| case LZMA_MODE_FAST: |
| coder->fast_mode = true; |
| break; |
| |
| case LZMA_MODE_NORMAL: { |
| coder->fast_mode = false; |
| |
| // Set dist_table_size. |
| // Round the dictionary size up to next 2^n. |
| uint32_t log_size = 0; |
| while ((UINT32_C(1) << log_size) < options->dict_size) |
| ++log_size; |
| |
| coder->dist_table_size = log_size * 2; |
| |
| // Length encoders' price table size |
| coder->match_len_encoder.table_size |
| = options->nice_len + 1 - MATCH_LEN_MIN; |
| coder->rep_len_encoder.table_size |
| = options->nice_len + 1 - MATCH_LEN_MIN; |
| break; |
| } |
| |
| default: |
| return LZMA_OPTIONS_ERROR; |
| } |
| |
| // We don't need to write the first byte as literal if there is |
| // a non-empty preset dictionary. encode_init() wouldn't even work |
| // if there is a non-empty preset dictionary, because encode_init() |
| // assumes that position is zero and previous byte is also zero. |
| coder->is_initialized = options->preset_dict != NULL |
| && options->preset_dict_size > 0; |
| coder->is_flushed = false; |
| |
| set_lz_options(lz_options, options); |
| |
| return lzma_lzma_encoder_reset(coder, options); |
| } |
| |
| |
| static lzma_ret |
| lzma_encoder_init(lzma_lz_encoder *lz, lzma_allocator *allocator, |
| const void *options, lzma_lz_options *lz_options) |
| { |
| lz->code = &lzma_encode; |
| return lzma_lzma_encoder_create( |
| &lz->coder, allocator, options, lz_options); |
| } |
| |
| |
| extern lzma_ret |
| lzma_lzma_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, |
| const lzma_filter_info *filters) |
| { |
| return lzma_lz_encoder_init( |
| next, allocator, filters, &lzma_encoder_init); |
| } |
| |
| |
| extern uint64_t |
| lzma_lzma_encoder_memusage(const void *options) |
| { |
| if (!is_options_valid(options)) |
| return UINT64_MAX; |
| |
| lzma_lz_options lz_options; |
| set_lz_options(&lz_options, options); |
| |
| const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options); |
| if (lz_memusage == UINT64_MAX) |
| return UINT64_MAX; |
| |
| return (uint64_t)(sizeof(lzma_coder)) + lz_memusage; |
| } |
| |
| |
| extern bool |
| lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte) |
| { |
| if (!is_lclppb_valid(options)) |
| return true; |
| |
| *byte = (options->pb * 5 + options->lp) * 9 + options->lc; |
| assert(*byte <= (4 * 5 + 4) * 9 + 8); |
| |
| return false; |
| } |
| |
| |
| #ifdef HAVE_ENCODER_LZMA1 |
| extern lzma_ret |
| lzma_lzma_props_encode(const void *options, uint8_t *out) |
| { |
| const lzma_options_lzma *const opt = options; |
| |
| if (lzma_lzma_lclppb_encode(opt, out)) |
| return LZMA_PROG_ERROR; |
| |
| unaligned_write32le(out + 1, opt->dict_size); |
| |
| return LZMA_OK; |
| } |
| #endif |
| |
| |
| extern LZMA_API(lzma_bool) |
| lzma_mode_is_supported(lzma_mode mode) |
| { |
| return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL; |
| } |