| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file lz_decoder.c |
| /// \brief LZ out window |
| /// |
| // Authors: Igor Pavlov |
| // Lasse Collin |
| // |
| // This file has been put into the public domain. |
| // You can do whatever you want with this file. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // liblzma supports multiple LZ77-based filters. The LZ part is shared |
| // between these filters. The LZ code takes care of dictionary handling |
| // and passing the data between filters in the chain. The filter-specific |
| // part decodes from the input buffer to the dictionary. |
| |
| |
| #include "lz_decoder.h" |
| |
| |
| struct lzma_coder_s { |
| /// Dictionary (history buffer) |
| lzma_dict dict; |
| |
| /// The actual LZ-based decoder e.g. LZMA |
| lzma_lz_decoder lz; |
| |
| /// Next filter in the chain, if any. Note that LZMA and LZMA2 are |
| /// only allowed as the last filter, but the long-range filter in |
| /// future can be in the middle of the chain. |
| lzma_next_coder next; |
| |
| /// True if the next filter in the chain has returned LZMA_STREAM_END. |
| bool next_finished; |
| |
| /// True if the LZ decoder (e.g. LZMA) has detected end of payload |
| /// marker. This may become true before next_finished becomes true. |
| bool this_finished; |
| |
| /// Temporary buffer needed when the LZ-based filter is not the last |
| /// filter in the chain. The output of the next filter is first |
| /// decoded into buffer[], which is then used as input for the actual |
| /// LZ-based decoder. |
| struct { |
| size_t pos; |
| size_t size; |
| uint8_t buffer[LZMA_BUFFER_SIZE]; |
| } temp; |
| }; |
| |
| |
| static void |
| lz_decoder_reset(lzma_coder *coder) |
| { |
| coder->dict.pos = 0; |
| coder->dict.full = 0; |
| coder->dict.buf[coder->dict.size - 1] = '\0'; |
| coder->dict.need_reset = false; |
| return; |
| } |
| |
| |
| static lzma_ret |
| decode_buffer(lzma_coder *coder, |
| const uint8_t *restrict in, size_t *restrict in_pos, |
| size_t in_size, uint8_t *restrict out, |
| size_t *restrict out_pos, size_t out_size) |
| { |
| while (true) { |
| // Wrap the dictionary if needed. |
| if (coder->dict.pos == coder->dict.size) |
| coder->dict.pos = 0; |
| |
| // Store the current dictionary position. It is needed to know |
| // where to start copying to the out[] buffer. |
| const size_t dict_start = coder->dict.pos; |
| |
| // Calculate how much we allow coder->lz.code() to decode. |
| // It must not decode past the end of the dictionary |
| // buffer, and we don't want it to decode more than is |
| // actually needed to fill the out[] buffer. |
| coder->dict.limit = coder->dict.pos |
| + my_min(out_size - *out_pos, |
| coder->dict.size - coder->dict.pos); |
| |
| // Call the coder->lz.code() to do the actual decoding. |
| const lzma_ret ret = coder->lz.code( |
| coder->lz.coder, &coder->dict, |
| in, in_pos, in_size); |
| |
| // Copy the decoded data from the dictionary to the out[] |
| // buffer. |
| const size_t copy_size = coder->dict.pos - dict_start; |
| assert(copy_size <= out_size - *out_pos); |
| memcpy(out + *out_pos, coder->dict.buf + dict_start, |
| copy_size); |
| *out_pos += copy_size; |
| |
| // Reset the dictionary if so requested by coder->lz.code(). |
| if (coder->dict.need_reset) { |
| lz_decoder_reset(coder); |
| |
| // Since we reset dictionary, we don't check if |
| // dictionary became full. |
| if (ret != LZMA_OK || *out_pos == out_size) |
| return ret; |
| } else { |
| // Return if everything got decoded or an error |
| // occurred, or if there's no more data to decode. |
| // |
| // Note that detecting if there's something to decode |
| // is done by looking if dictionary become full |
| // instead of looking if *in_pos == in_size. This |
| // is because it is possible that all the input was |
| // consumed already but some data is pending to be |
| // written to the dictionary. |
| if (ret != LZMA_OK || *out_pos == out_size |
| || coder->dict.pos < coder->dict.size) |
| return ret; |
| } |
| } |
| } |
| |
| |
| static lzma_ret |
| lz_decode(lzma_coder *coder, |
| lzma_allocator *allocator lzma_attribute((__unused__)), |
| const uint8_t *restrict in, size_t *restrict in_pos, |
| size_t in_size, uint8_t *restrict out, |
| size_t *restrict out_pos, size_t out_size, |
| lzma_action action) |
| { |
| if (coder->next.code == NULL) |
| return decode_buffer(coder, in, in_pos, in_size, |
| out, out_pos, out_size); |
| |
| // We aren't the last coder in the chain, we need to decode |
| // our input to a temporary buffer. |
| while (*out_pos < out_size) { |
| // Fill the temporary buffer if it is empty. |
| if (!coder->next_finished |
| && coder->temp.pos == coder->temp.size) { |
| coder->temp.pos = 0; |
| coder->temp.size = 0; |
| |
| const lzma_ret ret = coder->next.code( |
| coder->next.coder, |
| allocator, in, in_pos, in_size, |
| coder->temp.buffer, &coder->temp.size, |
| LZMA_BUFFER_SIZE, action); |
| |
| if (ret == LZMA_STREAM_END) |
| coder->next_finished = true; |
| else if (ret != LZMA_OK || coder->temp.size == 0) |
| return ret; |
| } |
| |
| if (coder->this_finished) { |
| if (coder->temp.size != 0) |
| return LZMA_DATA_ERROR; |
| |
| if (coder->next_finished) |
| return LZMA_STREAM_END; |
| |
| return LZMA_OK; |
| } |
| |
| const lzma_ret ret = decode_buffer(coder, coder->temp.buffer, |
| &coder->temp.pos, coder->temp.size, |
| out, out_pos, out_size); |
| |
| if (ret == LZMA_STREAM_END) |
| coder->this_finished = true; |
| else if (ret != LZMA_OK) |
| return ret; |
| else if (coder->next_finished && *out_pos < out_size) |
| return LZMA_DATA_ERROR; |
| } |
| |
| return LZMA_OK; |
| } |
| |
| |
| static void |
| lz_decoder_end(lzma_coder *coder, lzma_allocator *allocator) |
| { |
| lzma_next_end(&coder->next, allocator); |
| lzma_free(coder->dict.buf, allocator); |
| |
| if (coder->lz.end != NULL) |
| coder->lz.end(coder->lz.coder, allocator); |
| else |
| lzma_free(coder->lz.coder, allocator); |
| |
| lzma_free(coder, allocator); |
| return; |
| } |
| |
| |
| extern lzma_ret |
| lzma_lz_decoder_init(lzma_next_coder *next, lzma_allocator *allocator, |
| const lzma_filter_info *filters, |
| lzma_ret (*lz_init)(lzma_lz_decoder *lz, |
| lzma_allocator *allocator, const void *options, |
| lzma_lz_options *lz_options)) |
| { |
| // Allocate the base structure if it isn't already allocated. |
| if (next->coder == NULL) { |
| next->coder = lzma_alloc(sizeof(lzma_coder), allocator); |
| if (next->coder == NULL) |
| return LZMA_MEM_ERROR; |
| |
| next->code = &lz_decode; |
| next->end = &lz_decoder_end; |
| |
| next->coder->dict.buf = NULL; |
| next->coder->dict.size = 0; |
| next->coder->lz = LZMA_LZ_DECODER_INIT; |
| next->coder->next = LZMA_NEXT_CODER_INIT; |
| } |
| |
| // Allocate and initialize the LZ-based decoder. It will also give |
| // us the dictionary size. |
| lzma_lz_options lz_options; |
| return_if_error(lz_init(&next->coder->lz, allocator, |
| filters[0].options, &lz_options)); |
| |
| // If the dictionary size is very small, increase it to 4096 bytes. |
| // This is to prevent constant wrapping of the dictionary, which |
| // would slow things down. The downside is that since we don't check |
| // separately for the real dictionary size, we may happily accept |
| // corrupt files. |
| if (lz_options.dict_size < 4096) |
| lz_options.dict_size = 4096; |
| |
| // Make dictionary size a multipe of 16. Some LZ-based decoders like |
| // LZMA use the lowest bits lzma_dict.pos to know the alignment of the |
| // data. Aligned buffer is also good when memcpying from the |
| // dictionary to the output buffer, since applications are |
| // recommended to give aligned buffers to liblzma. |
| // |
| // Avoid integer overflow. |
| if (lz_options.dict_size > SIZE_MAX - 15) |
| return LZMA_MEM_ERROR; |
| |
| lz_options.dict_size = (lz_options.dict_size + 15) & ~((size_t)(15)); |
| |
| // Allocate and initialize the dictionary. |
| if (next->coder->dict.size != lz_options.dict_size) { |
| lzma_free(next->coder->dict.buf, allocator); |
| next->coder->dict.buf |
| = lzma_alloc(lz_options.dict_size, allocator); |
| if (next->coder->dict.buf == NULL) |
| return LZMA_MEM_ERROR; |
| |
| next->coder->dict.size = lz_options.dict_size; |
| } |
| |
| lz_decoder_reset(next->coder); |
| |
| // Use the preset dictionary if it was given to us. |
| if (lz_options.preset_dict != NULL |
| && lz_options.preset_dict_size > 0) { |
| // If the preset dictionary is bigger than the actual |
| // dictionary, copy only the tail. |
| const size_t copy_size = my_min(lz_options.preset_dict_size, |
| lz_options.dict_size); |
| const size_t offset = lz_options.preset_dict_size - copy_size; |
| memcpy(next->coder->dict.buf, lz_options.preset_dict + offset, |
| copy_size); |
| next->coder->dict.pos = copy_size; |
| next->coder->dict.full = copy_size; |
| } |
| |
| // Miscellaneous initializations |
| next->coder->next_finished = false; |
| next->coder->this_finished = false; |
| next->coder->temp.pos = 0; |
| next->coder->temp.size = 0; |
| |
| // Initialize the next filter in the chain, if any. |
| return lzma_next_filter_init(&next->coder->next, allocator, |
| filters + 1); |
| } |
| |
| |
| extern uint64_t |
| lzma_lz_decoder_memusage(size_t dictionary_size) |
| { |
| return sizeof(lzma_coder) + (uint64_t)(dictionary_size); |
| } |
| |
| |
| extern void |
| lzma_lz_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size) |
| { |
| coder->lz.set_uncompressed(coder->lz.coder, uncompressed_size); |
| } |