| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file lz_encoder.c |
| /// \brief LZ in window |
| // |
| // Copyright (C) 1999-2008 Igor Pavlov |
| // Copyright (C) 2007-2008 Lasse Collin |
| // |
| // This library is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 2.1 of the License, or (at your option) any later version. |
| // |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| // Lesser General Public License for more details. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "lz_encoder.h" |
| #include "lz_encoder_hash.h" |
| |
| |
| struct lzma_coder_s { |
| /// LZ-based encoder e.g. LZMA |
| lzma_lz_encoder lz; |
| |
| /// History buffer and match finder |
| lzma_mf mf; |
| |
| /// Next coder in the chain |
| lzma_next_coder next; |
| }; |
| |
| |
| /// \brief Moves the data in the input window to free space for new data |
| /// |
| /// mf->buffer is a sliding input window, which keeps mf->keep_size_before |
| /// bytes of input history available all the time. Now and then we need to |
| /// "slide" the buffer to make space for the new data to the end of the |
| /// buffer. At the same time, data older than keep_size_before is dropped. |
| /// |
| static void |
| move_window(lzma_mf *mf) |
| { |
| // Align the move to a multiple of 16 bytes. Some LZ-based encoders |
| // like LZMA use the lowest bits of mf->read_pos to know the |
| // alignment of the uncompressed data. We also get better speed |
| // for memmove() with aligned buffers. |
| assert(mf->read_pos > mf->keep_size_before); |
| const uint32_t move_offset |
| = (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15); |
| |
| assert(mf->write_pos > move_offset); |
| const size_t move_size = mf->write_pos - move_offset; |
| |
| assert(move_offset + move_size <= mf->size); |
| |
| memmove(mf->buffer, mf->buffer + move_offset, move_size); |
| |
| mf->offset += move_offset; |
| mf->read_pos -= move_offset; |
| mf->read_limit -= move_offset; |
| mf->write_pos -= move_offset; |
| |
| return; |
| } |
| |
| |
| /// \brief Tries to fill the input window (mf->buffer) |
| /// |
| /// If we are the last encoder in the chain, our input data is in in[]. |
| /// Otherwise we call the next filter in the chain to process in[] and |
| /// write its output to mf->buffer. |
| /// |
| /// This function must not be called once it has returned LZMA_STREAM_END. |
| /// |
| static lzma_ret |
| fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in, |
| size_t *in_pos, size_t in_size, lzma_action action) |
| { |
| assert(coder->mf.read_pos <= coder->mf.write_pos); |
| |
| // Move the sliding window if needed. |
| if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after) |
| move_window(&coder->mf); |
| |
| // Maybe this is ugly, but lzma_mf uses uint32_t for most things |
| // (which I find cleanest), but we need size_t here when filling |
| // the history window. |
| size_t write_pos = coder->mf.write_pos; |
| size_t in_used; |
| lzma_ret ret; |
| if (coder->next.code == NULL) { |
| // Not using a filter, simply memcpy() as much as possible. |
| in_used = lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer, |
| &write_pos, coder->mf.size); |
| |
| ret = action != LZMA_RUN && *in_pos == in_size |
| ? LZMA_STREAM_END : LZMA_OK; |
| |
| } else { |
| const size_t in_start = *in_pos; |
| ret = coder->next.code(coder->next.coder, allocator, |
| in, in_pos, in_size, |
| coder->mf.buffer, &write_pos, |
| coder->mf.size, action); |
| in_used = *in_pos - in_start; |
| } |
| |
| coder->mf.write_pos = write_pos; |
| |
| // If end of stream has been reached or flushing completed, we allow |
| // the encoder to process all the input (that is, read_pos is allowed |
| // to reach write_pos). Otherwise we keep keep_size_after bytes |
| // available as prebuffer. |
| if (ret == LZMA_STREAM_END) { |
| assert(*in_pos == in_size); |
| ret = LZMA_OK; |
| coder->mf.action = action; |
| coder->mf.read_limit = coder->mf.write_pos; |
| |
| } else if (coder->mf.write_pos > coder->mf.keep_size_after) { |
| // This needs to be done conditionally, because if we got |
| // only little new input, there may be too little input |
| // to do any encoding yet. |
| coder->mf.read_limit = coder->mf.write_pos |
| - coder->mf.keep_size_after; |
| } |
| |
| // Restart the match finder after finished LZMA_SYNC_FLUSH. |
| if (coder->mf.pending > 0 |
| && coder->mf.read_pos < coder->mf.read_limit) { |
| // Match finder may update coder->pending and expects it to |
| // start from zero, so use a temporary variable. |
| const size_t pending = coder->mf.pending; |
| coder->mf.pending = 0; |
| |
| // Rewind read_pos so that the match finder can hash |
| // the pending bytes. |
| assert(coder->mf.read_pos >= pending); |
| coder->mf.read_pos -= pending; |
| |
| // Call the skip function directly instead of using |
| // mf_skip(), since we don't want to touch mf->read_ahead. |
| coder->mf.skip(&coder->mf, pending); |
| } |
| |
| return ret; |
| } |
| |
| |
| static lzma_ret |
| lz_encode(lzma_coder *coder, lzma_allocator *allocator, |
| const uint8_t *restrict in, size_t *restrict in_pos, |
| size_t in_size, |
| uint8_t *restrict out, size_t *restrict out_pos, |
| size_t out_size, lzma_action action) |
| { |
| while (*out_pos < out_size |
| && (*in_pos < in_size || action != LZMA_RUN)) { |
| // Read more data to coder->mf.buffer if needed. |
| if (coder->mf.action == LZMA_RUN && coder->mf.read_pos |
| >= coder->mf.read_limit) |
| return_if_error(fill_window(coder, allocator, |
| in, in_pos, in_size, action)); |
| |
| // Encode |
| const lzma_ret ret = coder->lz.code(coder->lz.coder, |
| &coder->mf, out, out_pos, out_size); |
| if (ret != LZMA_OK) { |
| // Setting this to LZMA_RUN for cases when we are |
| // flushing. It doesn't matter when finishing or if |
| // an error occurred. |
| coder->mf.action = LZMA_RUN; |
| return ret; |
| } |
| } |
| |
| return LZMA_OK; |
| } |
| |
| |
| static bool |
| lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator, |
| const lzma_lz_options *lz_options) |
| { |
| // For now, the dictionary size is limited to 1.5 GiB. This may grow |
| // in the future if needed, but it needs a little more work than just |
| // changing this check. |
| if (lz_options->dictionary_size < LZMA_DICTIONARY_SIZE_MIN |
| || lz_options->dictionary_size |
| > (UINT32_C(1) << 30) + (UINT32_C(1) << 29) |
| || lz_options->find_len_max |
| > lz_options->match_len_max) |
| return true; |
| |
| mf->keep_size_before = lz_options->before_size |
| + lz_options->dictionary_size; |
| |
| mf->keep_size_after = lz_options->after_size |
| + lz_options->match_len_max; |
| |
| // To avoid constant memmove()s, allocate some extra space. Since |
| // memmove()s become more expensive when the size of the buffer |
| // increases, we reserve more space when a large dictionary is |
| // used to make the memmove() calls rarer. |
| // |
| // This works with dictionaries up to about 3 GiB. If bigger |
| // dictionary is wanted, some extra work is needed: |
| // - Several variables in lzma_mf have to be changed from uint32_t |
| // to size_t. |
| // - Memory usage calculation needs something too, e.g. use uint64_t |
| // for mf->size. |
| uint32_t reserve = lz_options->dictionary_size / 2; |
| if (reserve > (UINT32_C(1) << 30)) |
| reserve /= 2; |
| |
| reserve += (lz_options->before_size + lz_options->match_len_max |
| + lz_options->after_size) / 2 + (UINT32_C(1) << 19); |
| |
| const uint32_t old_size = mf->size; |
| mf->size = mf->keep_size_before + reserve + mf->keep_size_after; |
| |
| // Deallocate the old history buffer if it exists but has different |
| // size than what is needed now. |
| if (mf->buffer != NULL && old_size != mf->size) { |
| lzma_free(mf->buffer, allocator); |
| mf->buffer = NULL; |
| } |
| |
| // Match finder options |
| mf->match_len_max = lz_options->match_len_max; |
| mf->find_len_max = lz_options->find_len_max; |
| |
| // cyclic_size has to stay smaller than 2 Gi. Note that this doesn't |
| // mean limitting dictionary size to less than 2 GiB. With a match |
| // finder that uses multibyte resolution (hashes start at e.g. every |
| // fourth byte), cyclic_size would stay below 2 Gi even when |
| // dictionary size is greater than 2 GiB. |
| // |
| // It would be possible to allow cyclic_size >= 2 Gi, but then we |
| // would need to be careful to use 64-bit types in various places |
| // (size_t could do since we would need bigger than 32-bit address |
| // space anyway). It would also require either zeroing a multigigabyte |
| // buffer at initialization (waste of time and RAM) or allow |
| // normalization in lz_encoder_mf.c to access uninitialized |
| // memory to keep the code simpler. The current way is simple and |
| // still allows pretty big dictionaries, so I don't expect these |
| // limits to change. |
| mf->cyclic_size = lz_options->dictionary_size + 1; |
| |
| // Validate the match finder ID and setup the function pointers. |
| switch (lz_options->match_finder) { |
| #ifdef HAVE_MF_HC3 |
| case LZMA_MF_HC3: |
| mf->find = &lzma_mf_hc3_find; |
| mf->skip = &lzma_mf_hc3_skip; |
| break; |
| #endif |
| #ifdef HAVE_MF_HC4 |
| case LZMA_MF_HC4: |
| mf->find = &lzma_mf_hc4_find; |
| mf->skip = &lzma_mf_hc4_skip; |
| break; |
| #endif |
| #ifdef HAVE_MF_BT2 |
| case LZMA_MF_BT2: |
| mf->find = &lzma_mf_bt2_find; |
| mf->skip = &lzma_mf_bt2_skip; |
| break; |
| #endif |
| #ifdef HAVE_MF_BT3 |
| case LZMA_MF_BT3: |
| mf->find = &lzma_mf_bt3_find; |
| mf->skip = &lzma_mf_bt3_skip; |
| break; |
| #endif |
| #ifdef HAVE_MF_BT4 |
| case LZMA_MF_BT4: |
| mf->find = &lzma_mf_bt4_find; |
| mf->skip = &lzma_mf_bt4_skip; |
| break; |
| #endif |
| |
| default: |
| return true; |
| } |
| |
| // Calculate the sizes of mf->hash and mf->son and check that |
| // find_len_max is big enough for the selected match finder. |
| const uint32_t hash_bytes = lz_options->match_finder & 0x0F; |
| if (hash_bytes > mf->find_len_max) |
| return true; |
| |
| const bool is_bt = (lz_options->match_finder & 0x10) != 0; |
| uint32_t hs; |
| |
| if (hash_bytes == 2) { |
| hs = 0xFFFF; |
| } else { |
| // Round dictionary size up to the next 2^n - 1 so it can |
| // be used as a hash mask. |
| hs = lz_options->dictionary_size - 1; |
| hs |= hs >> 1; |
| hs |= hs >> 2; |
| hs |= hs >> 4; |
| hs |= hs >> 8; |
| hs >>= 1; |
| hs |= 0xFFFF; |
| |
| if (hs > (UINT32_C(1) << 24)) { |
| if (hash_bytes == 3) |
| hs = (UINT32_C(1) << 24) - 1; |
| else |
| hs >>= 1; |
| } |
| } |
| |
| mf->hash_mask = hs; |
| |
| ++hs; |
| if (hash_bytes > 2) |
| hs += HASH_2_SIZE; |
| if (hash_bytes > 3) |
| hs += HASH_3_SIZE; |
| /* |
| No match finder uses this at the moment. |
| if (mf->hash_bytes > 4) |
| hs += HASH_4_SIZE; |
| */ |
| |
| // If the above code calculating hs is modified, make sure that |
| // this assertion stays valid (UINT32_MAX / 5 is not strictly the |
| // exact limit). If it doesn't, you need to calculate that |
| // hash_size_sum + sons_count cannot overflow. |
| assert(hs < UINT32_MAX / 5); |
| |
| const uint32_t old_count = mf->hash_size_sum + mf->sons_count; |
| mf->hash_size_sum = hs; |
| mf->sons_count = mf->cyclic_size; |
| if (is_bt) |
| mf->sons_count *= 2; |
| |
| const uint32_t new_count = mf->hash_size_sum + mf->sons_count; |
| |
| // Deallocate the old hash array if it exists and has different size |
| // than what is needed now. |
| if (mf->hash != NULL && old_count != new_count) { |
| lzma_free(mf->hash, allocator); |
| mf->hash = NULL; |
| } |
| |
| // Maximum number of match finder cycles |
| mf->loops = lz_options->match_finder_cycles; |
| if (mf->loops == 0) { |
| mf->loops = 16 + (mf->find_len_max / 2); |
| if (!is_bt) |
| mf->loops /= 2; |
| } |
| |
| return false; |
| } |
| |
| |
| static bool |
| lz_encoder_init(lzma_mf *mf, lzma_allocator *allocator) |
| { |
| // Allocate the history buffer. |
| if (mf->buffer == NULL) { |
| mf->buffer = lzma_alloc(mf->size, allocator); |
| if (mf->buffer == NULL) |
| return true; |
| } |
| |
| // Use cyclic_size as initial mf->offset. This allows |
| // avoiding a few branches in the match finders. The downside is |
| // that match finder needs to be normalized more often, which may |
| // hurt performance with huge dictionaries. |
| mf->offset = mf->cyclic_size; |
| mf->read_pos = 0; |
| mf->read_ahead = 0; |
| mf->read_limit = 0; |
| mf->write_pos = 0; |
| mf->pending = 0; |
| |
| // Allocate match finder's hash array. |
| const size_t alloc_count = mf->hash_size_sum + mf->sons_count; |
| |
| #if UINT32_MAX >= SIZE_MAX / 4 |
| // Check for integer overflow. (Huge dictionaries are not |
| // possible on 32-bit CPU.) |
| if (alloc_count > SIZE_MAX / sizeof(uint32_t)) |
| return true; |
| #endif |
| |
| if (mf->hash == NULL) { |
| mf->hash = lzma_alloc(alloc_count * sizeof(uint32_t), |
| allocator); |
| if (mf->hash == NULL) |
| return true; |
| } |
| |
| mf->son = mf->hash + mf->hash_size_sum; |
| mf->cyclic_pos = 0; |
| |
| // Initialize the hash table. Since EMPTY_HASH_VALUE is zero, we |
| // can use memset(). |
| /* |
| for (uint32_t i = 0; i < hash_size_sum; ++i) |
| mf->hash[i] = EMPTY_HASH_VALUE; |
| */ |
| memzero(mf->hash, (size_t)(mf->hash_size_sum) * sizeof(uint32_t)); |
| |
| // We don't need to initialize mf->son, but not doing that will |
| // make Valgrind complain in normalization (see normalize() in |
| // lz_encoder_mf.c). |
| // |
| // Skipping this initialization is *very* good when big dictionary is |
| // used but only small amount of data gets actually compressed: most |
| // of the mf->hash won't get actually allocated by the kernel, so |
| // we avoid wasting RAM and improve initialization speed a lot. |
| //memzero(mf->son, (size_t)(mf->sons_count) * sizeof(uint32_t)); |
| |
| mf->action = LZMA_RUN; |
| |
| return false; |
| } |
| |
| |
| extern uint64_t |
| lzma_lz_encoder_memusage(const lzma_lz_options *lz_options) |
| { |
| // Old buffers must not exist when calling lz_encoder_prepare(). |
| lzma_mf mf = { |
| .buffer = NULL, |
| .hash = NULL, |
| }; |
| |
| // Setup the size information into mf. |
| if (lz_encoder_prepare(&mf, NULL, lz_options)) |
| return UINT64_MAX; |
| |
| // Calculate the memory usage. |
| return (uint64_t)(mf.hash_size_sum + mf.sons_count) |
| * sizeof(uint32_t) |
| + (uint64_t)(mf.size) + sizeof(lzma_coder); |
| } |
| |
| |
| static void |
| lz_encoder_end(lzma_coder *coder, lzma_allocator *allocator) |
| { |
| lzma_next_end(&coder->next, allocator); |
| |
| lzma_free(coder->mf.hash, allocator); |
| lzma_free(coder->mf.buffer, allocator); |
| |
| if (coder->lz.end != NULL) |
| coder->lz.end(coder->lz.coder, allocator); |
| else |
| lzma_free(coder->lz.coder, allocator); |
| |
| lzma_free(coder, allocator); |
| return; |
| } |
| |
| |
| extern lzma_ret |
| lzma_lz_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, |
| const lzma_filter_info *filters, |
| lzma_ret (*lz_init)(lzma_lz_encoder *lz, |
| lzma_allocator *allocator, const void *options, |
| lzma_lz_options *lz_options)) |
| { |
| // Allocate and initialize the base data structure. |
| if (next->coder == NULL) { |
| next->coder = lzma_alloc(sizeof(lzma_coder), allocator); |
| if (next->coder == NULL) |
| return LZMA_MEM_ERROR; |
| |
| next->code = &lz_encode; |
| next->end = &lz_encoder_end; |
| |
| next->coder->lz.coder = NULL; |
| next->coder->lz.code = NULL; |
| next->coder->lz.end = NULL; |
| |
| next->coder->mf.buffer = NULL; |
| next->coder->mf.hash = NULL; |
| |
| next->coder->next = LZMA_NEXT_CODER_INIT; |
| } |
| |
| // Initialize the LZ-based encoder. |
| lzma_lz_options lz_options; |
| return_if_error(lz_init(&next->coder->lz, allocator, |
| filters[0].options, &lz_options)); |
| |
| // Setup the size information into next->coder->mf and deallocate |
| // old buffers if they have wrong size. |
| if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options)) |
| return LZMA_OPTIONS_ERROR; |
| |
| // Allocate new buffers if needed, and do the rest of |
| // the initialization. |
| if (lz_encoder_init(&next->coder->mf, allocator)) |
| return LZMA_MEM_ERROR; |
| |
| // Initialize the next filter in the chain, if any. |
| return lzma_next_filter_init(&next->coder->next, allocator, |
| filters + 1); |
| } |
| |
| |
| extern LZMA_API lzma_bool |
| lzma_mf_is_supported(lzma_match_finder mf) |
| { |
| bool ret = false; |
| |
| #ifdef HAVE_MF_HC3 |
| if (mf == LZMA_MF_HC3) |
| ret = true; |
| #endif |
| |
| #ifdef HAVE_MF_HC4 |
| if (mf == LZMA_MF_HC4) |
| ret = true; |
| #endif |
| |
| #ifdef HAVE_MF_BT2 |
| if (mf == LZMA_MF_BT2) |
| ret = true; |
| #endif |
| |
| #ifdef HAVE_MF_BT3 |
| if (mf == LZMA_MF_BT3) |
| ret = true; |
| #endif |
| |
| #ifdef HAVE_MF_BT4 |
| if (mf == LZMA_MF_BT4) |
| ret = true; |
| #endif |
| |
| return ret; |
| } |