blob: 0fe0824eb9318f3760fd5cbda123cbe92ba6a0e7 [file] [log] [blame]
///////////////////////////////////////////////////////////////////////////////
//
/// \file arm64.c
/// \brief Filter for ARM64 binaries
///
/// This converts ARM64 relative addresses in the BL and ADRP immediates
/// to absolute values to increase redundancy of ARM64 code.
///
/// Converting B or ADR instructions was also tested but it's not useful.
/// A majority of the jumps for the B instruction are very small (+/- 0xFF).
/// These are typical for loops and if-statements. Encoding them to their
/// absolute address reduces redundancy since many of the small relative
/// jump values are repeated, but very few of the absolute addresses are.
//
// Authors: Lasse Collin
// Jia Tan
// Igor Pavlov
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "simple_private.h"
static size_t
arm64_code(void *simple lzma_attribute((__unused__)),
uint32_t now_pos, bool is_encoder,
uint8_t *buffer, size_t size)
{
size_t i;
// Clang 14.0.6 on x86-64 makes this four times bigger and 40 % slower
// with auto-vectorization that is enabled by default with -O2.
// Such vectorization bloat happens with -O2 when targeting ARM64 too
// but performance hasn't been tested.
#ifdef __clang__
# pragma clang loop vectorize(disable)
#endif
for (i = 0; i + 4 <= size; i += 4) {
uint32_t pc = (uint32_t)(now_pos + i);
uint32_t instr = read32le(buffer + i);
if ((instr >> 26) == 0x25) {
// BL instruction:
// The full 26-bit immediate is converted.
// The range is +/-128 MiB.
//
// Using the full range is helps quite a lot with
// big executables. Smaller range would reduce false
// positives in non-code sections of the input though
// so this is a compromise that slightly favors big
// files. With the full range only six bits of the 32
// need to match to trigger a conversion.
const uint32_t src = instr;
instr = 0x94000000;
pc >>= 2;
if (!is_encoder)
pc = 0U - pc;
instr |= (src + pc) & 0x03FFFFFF;
write32le(buffer + i, instr);
} else if ((instr & 0x9F000000) == 0x90000000) {
// ADRP instruction:
// Only values in the range +/-512 MiB are converted.
//
// Using less than the full +/-4 GiB range reduces
// false positives on non-code sections of the input
// while being excellent for executables up to 512 MiB.
// The positive effect of ADRP conversion is smaller
// than that of BL but it also doesn't hurt so much in
// non-code sections of input because, with +/-512 MiB
// range, nine bits of 32 need to match to trigger a
// conversion (two 10-bit match choices = 9 bits).
const uint32_t src = ((instr >> 29) & 3)
| ((instr >> 3) & 0x001FFFFC);
// With the addition only one branch is needed to
// check the +/- range. This is usually false when
// processing ARM64 code so branch prediction will
// handle it well in terms of performance.
//
//if ((src & 0x001E0000) != 0
// && (src & 0x001E0000) != 0x001E0000)
if ((src + 0x00020000) & 0x001C0000)
continue;
instr &= 0x9000001F;
pc >>= 12;
if (!is_encoder)
pc = 0U - pc;
const uint32_t dest = src + pc;
instr |= (dest & 3) << 29;
instr |= (dest & 0x0003FFFC) << 3;
instr |= (0U - (dest & 0x00020000)) & 0x00E00000;
write32le(buffer + i, instr);
}
}
return i;
}
static lzma_ret
arm64_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
const lzma_filter_info *filters, bool is_encoder)
{
return lzma_simple_coder_init(next, allocator, filters,
&arm64_code, 0, 4, 4, is_encoder);
}
#ifdef HAVE_ENCODER_ARM64
extern lzma_ret
lzma_simple_arm64_encoder_init(lzma_next_coder *next,
const lzma_allocator *allocator,
const lzma_filter_info *filters)
{
return arm64_coder_init(next, allocator, filters, true);
}
#endif
#ifdef HAVE_DECODER_ARM64
extern lzma_ret
lzma_simple_arm64_decoder_init(lzma_next_coder *next,
const lzma_allocator *allocator,
const lzma_filter_info *filters)
{
return arm64_coder_init(next, allocator, filters, false);
}
#endif