| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file simple_coder.c |
| /// \brief Wrapper for simple filters |
| /// |
| /// Simple filters don't change the size of the data i.e. number of bytes |
| /// in equals the number of bytes out. |
| // |
| // Copyright (C) 2007 Lasse Collin |
| // |
| // This library is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 2.1 of the License, or (at your option) any later version. |
| // |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| // Lesser General Public License for more details. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "simple_private.h" |
| |
| |
| /// Copied or encodes/decodes more data to out[]. |
| static lzma_ret |
| copy_or_code(lzma_coder *coder, lzma_allocator *allocator, |
| const uint8_t *restrict in, size_t *restrict in_pos, |
| size_t in_size, uint8_t *restrict out, |
| size_t *restrict out_pos, size_t out_size, lzma_action action) |
| { |
| assert(!coder->end_was_reached); |
| |
| if (coder->next.code == NULL) { |
| bufcpy(in, in_pos, in_size, out, out_pos, out_size); |
| |
| // Check if end of stream was reached. |
| if (coder->is_encoder && action == LZMA_FINISH |
| && *in_pos == in_size) |
| coder->end_was_reached = true; |
| |
| } else { |
| // Call the next coder in the chain to provide us some data. |
| // We don't care about uncompressed_size here, because |
| // the next filter in the chain will do it for us (since |
| // we don't change the size of the data). |
| const lzma_ret ret = coder->next.code( |
| coder->next.coder, allocator, |
| in, in_pos, in_size, |
| out, out_pos, out_size, action); |
| |
| if (ret == LZMA_STREAM_END) { |
| assert(!coder->is_encoder |
| || action == LZMA_FINISH); |
| coder->end_was_reached = true; |
| |
| } else if (ret != LZMA_OK) { |
| return ret; |
| } |
| } |
| |
| return LZMA_OK; |
| } |
| |
| |
| static size_t |
| call_filter(lzma_coder *coder, uint8_t *buffer, size_t size) |
| { |
| const size_t filtered = coder->filter(coder->simple, |
| coder->now_pos, coder->is_encoder, |
| buffer, size); |
| coder->now_pos += filtered; |
| return filtered; |
| } |
| |
| |
| static lzma_ret |
| simple_code(lzma_coder *coder, lzma_allocator *allocator, |
| const uint8_t *restrict in, size_t *restrict in_pos, |
| size_t in_size, uint8_t *restrict out, |
| size_t *restrict out_pos, size_t out_size, lzma_action action) |
| { |
| // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it |
| // in cases when the filter is able to filter everything. With most |
| // simple filters it can be done at offset that is a multiple of 2, |
| // 4, or 16. With x86 filter, it needs good luck, and thus cannot |
| // be made to work predictably. |
| if (action == LZMA_SYNC_FLUSH) |
| return LZMA_HEADER_ERROR; |
| |
| // Flush already filtered data from coder->buffer[] to out[]. |
| if (coder->pos < coder->filtered) { |
| bufcpy(coder->buffer, &coder->pos, coder->filtered, |
| out, out_pos, out_size); |
| |
| // If we couldn't flush all the filtered data, return to |
| // application immediatelly. |
| if (coder->pos < coder->filtered) |
| return LZMA_OK; |
| |
| if (coder->end_was_reached) { |
| assert(coder->filtered == coder->size); |
| return LZMA_STREAM_END; |
| } |
| } |
| |
| // If we get here, there is no filtered data left in the buffer. |
| coder->filtered = 0; |
| |
| assert(!coder->end_was_reached); |
| |
| // If there is more output space left than there is unfiltered data |
| // in coder->buffer[], flush coder->buffer[] to out[], and copy/code |
| // more data to out[] hopefully filling it completely. Then filter |
| // the data in out[]. This step is where most of the data gets |
| // filtered if the buffer sizes used by the application are reasonable. |
| const size_t out_avail = out_size - *out_pos; |
| const size_t buf_avail = coder->size - coder->pos; |
| if (out_avail > buf_avail) { |
| // Store the old position so that we know from which byte |
| // to start filtering. |
| const size_t out_start = *out_pos; |
| |
| // Flush data from coder->buffer[] to out[], but don't reset |
| // coder->pos and coder->size yet. This way the coder can be |
| // restarted if the next filter in the chain returns e.g. |
| // LZMA_MEM_ERROR. |
| memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail); |
| *out_pos += buf_avail; |
| |
| // Copy/Encode/Decode more data to out[]. |
| { |
| const lzma_ret ret = copy_or_code(coder, allocator, |
| in, in_pos, in_size, |
| out, out_pos, out_size, action); |
| assert(ret != LZMA_STREAM_END); |
| if (ret != LZMA_OK) |
| return ret; |
| } |
| |
| // Filter out[]. |
| const size_t size = *out_pos - out_start; |
| const size_t filtered = call_filter( |
| coder, out + out_start, size); |
| |
| const size_t unfiltered = size - filtered; |
| assert(unfiltered <= coder->allocated / 2); |
| |
| // Now we can update coder->pos and coder->size, because |
| // the next coder in the chain (if any) was successful. |
| coder->pos = 0; |
| coder->size = unfiltered; |
| |
| if (coder->end_was_reached) { |
| // The last byte has been copied to out[] already. |
| // They are left as is. |
| coder->size = 0; |
| |
| } else if (unfiltered > 0) { |
| // There is unfiltered data left in out[]. Copy it to |
| // coder->buffer[] and rewind *out_pos appropriately. |
| *out_pos -= unfiltered; |
| memcpy(coder->buffer, out + *out_pos, unfiltered); |
| } |
| } else if (coder->pos > 0) { |
| memmove(coder->buffer, coder->buffer + coder->pos, buf_avail); |
| coder->size -= coder->pos; |
| coder->pos = 0; |
| } |
| |
| assert(coder->pos == 0); |
| |
| // If coder->buffer[] isn't empty, try to fill it by copying/decoding |
| // more data. Then filter coder->buffer[] and copy the successfully |
| // filtered data to out[]. It is probable, that some filtered and |
| // unfiltered data will be left to coder->buffer[]. |
| if (coder->size > 0) { |
| { |
| const lzma_ret ret = copy_or_code(coder, allocator, |
| in, in_pos, in_size, |
| coder->buffer, &coder->size, |
| coder->allocated, action); |
| assert(ret != LZMA_STREAM_END); |
| if (ret != LZMA_OK) |
| return ret; |
| } |
| |
| coder->filtered = call_filter( |
| coder, coder->buffer, coder->size); |
| |
| // Everything is considered to be filtered if coder->buffer[] |
| // contains the last bytes of the data. |
| if (coder->end_was_reached) |
| coder->filtered = coder->size; |
| |
| // Flush as much as possible. |
| bufcpy(coder->buffer, &coder->pos, coder->filtered, |
| out, out_pos, out_size); |
| } |
| |
| // Check if we got everything done. |
| if (coder->end_was_reached && coder->pos == coder->size) |
| return LZMA_STREAM_END; |
| |
| return LZMA_OK; |
| } |
| |
| |
| static void |
| simple_coder_end(lzma_coder *coder, lzma_allocator *allocator) |
| { |
| lzma_next_coder_end(&coder->next, allocator); |
| lzma_free(coder->simple, allocator); |
| lzma_free(coder, allocator); |
| return; |
| } |
| |
| |
| extern lzma_ret |
| lzma_simple_coder_init(lzma_next_coder *next, lzma_allocator *allocator, |
| const lzma_filter_info *filters, |
| size_t (*filter)(lzma_simple *simple, uint32_t now_pos, |
| bool is_encoder, uint8_t *buffer, size_t size), |
| size_t simple_size, size_t unfiltered_max, bool is_encoder) |
| { |
| // Allocate memory for the lzma_coder structure if needed. |
| if (next->coder == NULL) { |
| // Here we allocate space also for the temporary buffer. We |
| // need twice the size of unfiltered_max, because then it |
| // is always possible to filter at least unfiltered_max bytes |
| // more data in coder->buffer[] if it can be filled completely. |
| next->coder = lzma_alloc(sizeof(lzma_coder) |
| + 2 * unfiltered_max, allocator); |
| if (next->coder == NULL) |
| return LZMA_MEM_ERROR; |
| |
| next->code = &simple_code; |
| next->end = &simple_coder_end; |
| |
| next->coder->next = LZMA_NEXT_CODER_INIT; |
| next->coder->filter = filter; |
| next->coder->allocated = 2 * unfiltered_max; |
| |
| // Allocate memory for filter-specific data structure. |
| if (simple_size > 0) { |
| next->coder->simple = lzma_alloc( |
| simple_size, allocator); |
| if (next->coder->simple == NULL) |
| return LZMA_MEM_ERROR; |
| } else { |
| next->coder->simple = NULL; |
| } |
| } |
| |
| if (filters[0].options != NULL) { |
| const lzma_options_simple *simple = filters[0].options; |
| next->coder->now_pos = simple->start_offset; |
| } else { |
| next->coder->now_pos = 0; |
| } |
| |
| // Reset variables. |
| next->coder->is_encoder = is_encoder; |
| next->coder->end_was_reached = false; |
| next->coder->pos = 0; |
| next->coder->filtered = 0; |
| next->coder->size = 0; |
| |
| return lzma_next_filter_init( |
| &next->coder->next, allocator, filters + 1); |
| } |