blob: f07c4e0618ab27a025cc56d2ae10bb99944e21cc [file] [log] [blame]
///////////////////////////////////////////////////////////////////////////////
//
/// \file block_decoder.c
/// \brief Decodes .lzma Blocks
//
// Copyright (C) 2007 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////
#include "block_decoder.h"
#include "block_private.h"
#include "raw_decoder.h"
#include "check.h"
struct lzma_coder_s {
enum {
SEQ_CODE,
SEQ_PADDING,
SEQ_CHECK,
} sequence;
/// The filters in the chain; initialized with lzma_raw_decoder_init().
lzma_next_coder next;
/// Decoding options; we also write Compressed Size and Uncompressed
/// Size back to this structure when the encoding has been finished.
lzma_options_block *options;
/// Compressed Size calculated while encoding
lzma_vli compressed_size;
/// Uncompressed Size calculated while encoding
lzma_vli uncompressed_size;
/// Maximum allowed Compressed Size; this takes into account the
/// size of the Block Header and Check fields when Compressed Size
/// is unknown.
lzma_vli compressed_limit;
/// Position when reading the Check field
size_t check_pos;
/// Check of the uncompressed data
lzma_check check;
};
static lzma_ret
block_decode(lzma_coder *coder, lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
switch (coder->sequence) {
case SEQ_CODE: {
if (*out_pos >= out_size)
return LZMA_OK;
const size_t in_start = *in_pos;
const size_t out_start = *out_pos;
const lzma_ret ret = coder->next.code(coder->next.coder,
allocator, in, in_pos, in_size,
out, out_pos, out_size, action);
const size_t in_used = *in_pos - in_start;
const size_t out_used = *out_pos - out_start;
// NOTE: We compare to compressed_limit here, which prevents
// the total size of the Block growing past LZMA_VLI_VALUE_MAX.
if (update_size(&coder->compressed_size, in_used,
coder->compressed_limit)
|| update_size(&coder->uncompressed_size,
out_used,
coder->options->uncompressed_size))
return LZMA_DATA_ERROR;
lzma_check_update(&coder->check, coder->options->check,
out + out_start, out_used);
if (ret != LZMA_STREAM_END)
return ret;
coder->sequence = SEQ_PADDING;
}
// Fall through
case SEQ_PADDING:
// If Compressed Data is padded to a multiple of four bytes.
while (coder->compressed_size & 3) {
if (*in_pos >= in_size)
return LZMA_OK;
if (in[(*in_pos)++] != 0x00)
return LZMA_DATA_ERROR;
if (update_size(&coder->compressed_size, 1,
coder->compressed_limit))
return LZMA_DATA_ERROR;
}
// Compressed and Uncompressed Sizes are now at their final
// values. Verify that they match the values given to us.
if (!is_size_valid(coder->compressed_size,
coder->options->compressed_size)
|| !is_size_valid(coder->uncompressed_size,
coder->options->uncompressed_size))
return LZMA_DATA_ERROR;
// Copy the values into coder->options. The caller
// may use this information to construct Index.
coder->options->compressed_size = coder->compressed_size;
coder->options->uncompressed_size = coder->uncompressed_size;
if (coder->options->check == LZMA_CHECK_NONE)
return LZMA_STREAM_END;
lzma_check_finish(&coder->check, coder->options->check);
coder->sequence = SEQ_CHECK;
// Fall through
case SEQ_CHECK:
while (*in_pos < in_size) {
if (in[(*in_pos)++] != coder->check.buffer[
coder->check_pos])
return LZMA_DATA_ERROR;
if (++coder->check_pos == lzma_check_sizes[
coder->options->check])
return LZMA_STREAM_END;
}
return LZMA_OK;
}
return LZMA_PROG_ERROR;
}
static void
block_decoder_end(lzma_coder *coder, lzma_allocator *allocator)
{
lzma_next_coder_end(&coder->next, allocator);
lzma_free(coder, allocator);
return;
}
static lzma_ret
block_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
lzma_options_block *options)
{
// While lzma_block_total_size_get() is meant to calculate the Total
// Size, it also validates the options excluding the filters.
if (lzma_block_total_size_get(options) == 0)
return LZMA_PROG_ERROR;
// Allocate and initialize *next->coder if needed.
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
return LZMA_MEM_ERROR;
next->code = &block_decode;
next->end = &block_decoder_end;
next->coder->next = LZMA_NEXT_CODER_INIT;
}
// Basic initializations
next->coder->sequence = SEQ_CODE;
next->coder->options = options;
next->coder->compressed_size = 0;
next->coder->uncompressed_size = 0;
// If Compressed Size is not known, we calculate the maximum allowed
// value so that Total Size of the Block still is a valid VLI and
// a multiple of four.
next->coder->compressed_limit
= options->compressed_size == LZMA_VLI_VALUE_UNKNOWN
? (LZMA_VLI_VALUE_MAX & ~LZMA_VLI_C(3))
- options->header_size
- lzma_check_sizes[options->check]
: options->compressed_size;
// Initialize the check
next->coder->check_pos = 0;
return_if_error(lzma_check_init(&next->coder->check, options->check));
return lzma_raw_decoder_init(&next->coder->next, allocator,
options->filters);
}
extern lzma_ret
lzma_block_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
lzma_options_block *options)
{
lzma_next_coder_init(block_decoder_init, next, allocator, options);
}
extern LZMA_API lzma_ret
lzma_block_decoder(lzma_stream *strm, lzma_options_block *options)
{
lzma_next_strm_init(strm, block_decoder_init, options);
strm->internal->supported_actions[LZMA_RUN] = true;
strm->internal->supported_actions[LZMA_SYNC_FLUSH] = true;
return LZMA_OK;
}