| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file lzma_encoder_optimum_normal.c |
| // |
| // Author: Igor Pavlov |
| // |
| // This file has been put into the public domain. |
| // You can do whatever you want with this file. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "lzma_encoder_private.h" |
| #include "fastpos.h" |
| #include "memcmplen.h" |
| |
| |
| //////////// |
| // Prices // |
| //////////// |
| |
| static uint32_t |
| get_literal_price(const lzma_coder *const coder, const uint32_t pos, |
| const uint32_t prev_byte, const bool match_mode, |
| uint32_t match_byte, uint32_t symbol) |
| { |
| const probability *const subcoder = literal_subcoder(coder->literal, |
| coder->literal_context_bits, coder->literal_pos_mask, |
| pos, prev_byte); |
| |
| uint32_t price = 0; |
| |
| if (!match_mode) { |
| price = rc_bittree_price(subcoder, 8, symbol); |
| } else { |
| uint32_t offset = 0x100; |
| symbol += UINT32_C(1) << 8; |
| |
| do { |
| match_byte <<= 1; |
| |
| const uint32_t match_bit = match_byte & offset; |
| const uint32_t subcoder_index |
| = offset + match_bit + (symbol >> 8); |
| const uint32_t bit = (symbol >> 7) & 1; |
| price += rc_bit_price(subcoder[subcoder_index], bit); |
| |
| symbol <<= 1; |
| offset &= ~(match_byte ^ symbol); |
| |
| } while (symbol < (UINT32_C(1) << 16)); |
| } |
| |
| return price; |
| } |
| |
| |
| static inline uint32_t |
| get_len_price(const lzma_length_encoder *const lencoder, |
| const uint32_t len, const uint32_t pos_state) |
| { |
| // NOTE: Unlike the other price tables, length prices are updated |
| // in lzma_encoder.c |
| return lencoder->prices[pos_state][len - MATCH_LEN_MIN]; |
| } |
| |
| |
| static inline uint32_t |
| get_short_rep_price(const lzma_coder *const coder, |
| const lzma_lzma_state state, const uint32_t pos_state) |
| { |
| return rc_bit_0_price(coder->is_rep0[state]) |
| + rc_bit_0_price(coder->is_rep0_long[state][pos_state]); |
| } |
| |
| |
| static inline uint32_t |
| get_pure_rep_price(const lzma_coder *const coder, const uint32_t rep_index, |
| const lzma_lzma_state state, uint32_t pos_state) |
| { |
| uint32_t price; |
| |
| if (rep_index == 0) { |
| price = rc_bit_0_price(coder->is_rep0[state]); |
| price += rc_bit_1_price(coder->is_rep0_long[state][pos_state]); |
| } else { |
| price = rc_bit_1_price(coder->is_rep0[state]); |
| |
| if (rep_index == 1) { |
| price += rc_bit_0_price(coder->is_rep1[state]); |
| } else { |
| price += rc_bit_1_price(coder->is_rep1[state]); |
| price += rc_bit_price(coder->is_rep2[state], |
| rep_index - 2); |
| } |
| } |
| |
| return price; |
| } |
| |
| |
| static inline uint32_t |
| get_rep_price(const lzma_coder *const coder, const uint32_t rep_index, |
| const uint32_t len, const lzma_lzma_state state, |
| const uint32_t pos_state) |
| { |
| return get_len_price(&coder->rep_len_encoder, len, pos_state) |
| + get_pure_rep_price(coder, rep_index, state, pos_state); |
| } |
| |
| |
| static inline uint32_t |
| get_dist_len_price(const lzma_coder *const coder, const uint32_t dist, |
| const uint32_t len, const uint32_t pos_state) |
| { |
| const uint32_t dist_state = get_dist_state(len); |
| uint32_t price; |
| |
| if (dist < FULL_DISTANCES) { |
| price = coder->dist_prices[dist_state][dist]; |
| } else { |
| const uint32_t dist_slot = get_dist_slot_2(dist); |
| price = coder->dist_slot_prices[dist_state][dist_slot] |
| + coder->align_prices[dist & ALIGN_MASK]; |
| } |
| |
| price += get_len_price(&coder->match_len_encoder, len, pos_state); |
| |
| return price; |
| } |
| |
| |
| static void |
| fill_dist_prices(lzma_coder *coder) |
| { |
| for (uint32_t dist_state = 0; dist_state < DIST_STATES; ++dist_state) { |
| |
| uint32_t *const dist_slot_prices |
| = coder->dist_slot_prices[dist_state]; |
| |
| // Price to encode the dist_slot. |
| for (uint32_t dist_slot = 0; |
| dist_slot < coder->dist_table_size; ++dist_slot) |
| dist_slot_prices[dist_slot] = rc_bittree_price( |
| coder->dist_slot[dist_state], |
| DIST_SLOT_BITS, dist_slot); |
| |
| // For matches with distance >= FULL_DISTANCES, add the price |
| // of the direct bits part of the match distance. (Align bits |
| // are handled by fill_align_prices()). |
| for (uint32_t dist_slot = DIST_MODEL_END; |
| dist_slot < coder->dist_table_size; |
| ++dist_slot) |
| dist_slot_prices[dist_slot] += rc_direct_price( |
| ((dist_slot >> 1) - 1) - ALIGN_BITS); |
| |
| // Distances in the range [0, 3] are fully encoded with |
| // dist_slot, so they are used for coder->dist_prices |
| // as is. |
| for (uint32_t i = 0; i < DIST_MODEL_START; ++i) |
| coder->dist_prices[dist_state][i] |
| = dist_slot_prices[i]; |
| } |
| |
| // Distances in the range [4, 127] depend on dist_slot and |
| // dist_special. We do this in a loop separate from the above |
| // loop to avoid redundant calls to get_dist_slot(). |
| for (uint32_t i = DIST_MODEL_START; i < FULL_DISTANCES; ++i) { |
| const uint32_t dist_slot = get_dist_slot(i); |
| const uint32_t footer_bits = ((dist_slot >> 1) - 1); |
| const uint32_t base = (2 | (dist_slot & 1)) << footer_bits; |
| const uint32_t price = rc_bittree_reverse_price( |
| coder->dist_special + base - dist_slot - 1, |
| footer_bits, i - base); |
| |
| for (uint32_t dist_state = 0; dist_state < DIST_STATES; |
| ++dist_state) |
| coder->dist_prices[dist_state][i] |
| = price + coder->dist_slot_prices[ |
| dist_state][dist_slot]; |
| } |
| |
| coder->match_price_count = 0; |
| return; |
| } |
| |
| |
| static void |
| fill_align_prices(lzma_coder *coder) |
| { |
| for (uint32_t i = 0; i < ALIGN_SIZE; ++i) |
| coder->align_prices[i] = rc_bittree_reverse_price( |
| coder->dist_align, ALIGN_BITS, i); |
| |
| coder->align_price_count = 0; |
| return; |
| } |
| |
| |
| ///////////// |
| // Optimal // |
| ///////////// |
| |
| static inline void |
| make_literal(lzma_optimal *optimal) |
| { |
| optimal->back_prev = UINT32_MAX; |
| optimal->prev_1_is_literal = false; |
| } |
| |
| |
| static inline void |
| make_short_rep(lzma_optimal *optimal) |
| { |
| optimal->back_prev = 0; |
| optimal->prev_1_is_literal = false; |
| } |
| |
| |
| #define is_short_rep(optimal) \ |
| ((optimal).back_prev == 0) |
| |
| |
| static void |
| backward(lzma_coder *restrict coder, uint32_t *restrict len_res, |
| uint32_t *restrict back_res, uint32_t cur) |
| { |
| coder->opts_end_index = cur; |
| |
| uint32_t pos_mem = coder->opts[cur].pos_prev; |
| uint32_t back_mem = coder->opts[cur].back_prev; |
| |
| do { |
| if (coder->opts[cur].prev_1_is_literal) { |
| make_literal(&coder->opts[pos_mem]); |
| coder->opts[pos_mem].pos_prev = pos_mem - 1; |
| |
| if (coder->opts[cur].prev_2) { |
| coder->opts[pos_mem - 1].prev_1_is_literal |
| = false; |
| coder->opts[pos_mem - 1].pos_prev |
| = coder->opts[cur].pos_prev_2; |
| coder->opts[pos_mem - 1].back_prev |
| = coder->opts[cur].back_prev_2; |
| } |
| } |
| |
| const uint32_t pos_prev = pos_mem; |
| const uint32_t back_cur = back_mem; |
| |
| back_mem = coder->opts[pos_prev].back_prev; |
| pos_mem = coder->opts[pos_prev].pos_prev; |
| |
| coder->opts[pos_prev].back_prev = back_cur; |
| coder->opts[pos_prev].pos_prev = cur; |
| cur = pos_prev; |
| |
| } while (cur != 0); |
| |
| coder->opts_current_index = coder->opts[0].pos_prev; |
| *len_res = coder->opts[0].pos_prev; |
| *back_res = coder->opts[0].back_prev; |
| |
| return; |
| } |
| |
| |
| ////////// |
| // Main // |
| ////////// |
| |
| static inline uint32_t |
| helper1(lzma_coder *restrict coder, lzma_mf *restrict mf, |
| uint32_t *restrict back_res, uint32_t *restrict len_res, |
| uint32_t position) |
| { |
| const uint32_t nice_len = mf->nice_len; |
| |
| uint32_t len_main; |
| uint32_t matches_count; |
| |
| if (mf->read_ahead == 0) { |
| len_main = mf_find(mf, &matches_count, coder->matches); |
| } else { |
| assert(mf->read_ahead == 1); |
| len_main = coder->longest_match_length; |
| matches_count = coder->matches_count; |
| } |
| |
| const uint32_t buf_avail = my_min(mf_avail(mf) + 1, MATCH_LEN_MAX); |
| if (buf_avail < 2) { |
| *back_res = UINT32_MAX; |
| *len_res = 1; |
| return UINT32_MAX; |
| } |
| |
| const uint8_t *const buf = mf_ptr(mf) - 1; |
| |
| uint32_t rep_lens[REPS]; |
| uint32_t rep_max_index = 0; |
| |
| for (uint32_t i = 0; i < REPS; ++i) { |
| const uint8_t *const buf_back = buf - coder->reps[i] - 1; |
| |
| if (not_equal_16(buf, buf_back)) { |
| rep_lens[i] = 0; |
| continue; |
| } |
| |
| rep_lens[i] = lzma_memcmplen(buf, buf_back, 2, buf_avail); |
| |
| if (rep_lens[i] > rep_lens[rep_max_index]) |
| rep_max_index = i; |
| } |
| |
| if (rep_lens[rep_max_index] >= nice_len) { |
| *back_res = rep_max_index; |
| *len_res = rep_lens[rep_max_index]; |
| mf_skip(mf, *len_res - 1); |
| return UINT32_MAX; |
| } |
| |
| |
| if (len_main >= nice_len) { |
| *back_res = coder->matches[matches_count - 1].dist + REPS; |
| *len_res = len_main; |
| mf_skip(mf, len_main - 1); |
| return UINT32_MAX; |
| } |
| |
| const uint8_t current_byte = *buf; |
| const uint8_t match_byte = *(buf - coder->reps[0] - 1); |
| |
| if (len_main < 2 && current_byte != match_byte |
| && rep_lens[rep_max_index] < 2) { |
| *back_res = UINT32_MAX; |
| *len_res = 1; |
| return UINT32_MAX; |
| } |
| |
| coder->opts[0].state = coder->state; |
| |
| const uint32_t pos_state = position & coder->pos_mask; |
| |
| coder->opts[1].price = rc_bit_0_price( |
| coder->is_match[coder->state][pos_state]) |
| + get_literal_price(coder, position, buf[-1], |
| !is_literal_state(coder->state), |
| match_byte, current_byte); |
| |
| make_literal(&coder->opts[1]); |
| |
| const uint32_t match_price = rc_bit_1_price( |
| coder->is_match[coder->state][pos_state]); |
| const uint32_t rep_match_price = match_price |
| + rc_bit_1_price(coder->is_rep[coder->state]); |
| |
| if (match_byte == current_byte) { |
| const uint32_t short_rep_price = rep_match_price |
| + get_short_rep_price( |
| coder, coder->state, pos_state); |
| |
| if (short_rep_price < coder->opts[1].price) { |
| coder->opts[1].price = short_rep_price; |
| make_short_rep(&coder->opts[1]); |
| } |
| } |
| |
| const uint32_t len_end = my_max(len_main, rep_lens[rep_max_index]); |
| |
| if (len_end < 2) { |
| *back_res = coder->opts[1].back_prev; |
| *len_res = 1; |
| return UINT32_MAX; |
| } |
| |
| coder->opts[1].pos_prev = 0; |
| |
| for (uint32_t i = 0; i < REPS; ++i) |
| coder->opts[0].backs[i] = coder->reps[i]; |
| |
| uint32_t len = len_end; |
| do { |
| coder->opts[len].price = RC_INFINITY_PRICE; |
| } while (--len >= 2); |
| |
| |
| for (uint32_t i = 0; i < REPS; ++i) { |
| uint32_t rep_len = rep_lens[i]; |
| if (rep_len < 2) |
| continue; |
| |
| const uint32_t price = rep_match_price + get_pure_rep_price( |
| coder, i, coder->state, pos_state); |
| |
| do { |
| const uint32_t cur_and_len_price = price |
| + get_len_price( |
| &coder->rep_len_encoder, |
| rep_len, pos_state); |
| |
| if (cur_and_len_price < coder->opts[rep_len].price) { |
| coder->opts[rep_len].price = cur_and_len_price; |
| coder->opts[rep_len].pos_prev = 0; |
| coder->opts[rep_len].back_prev = i; |
| coder->opts[rep_len].prev_1_is_literal = false; |
| } |
| } while (--rep_len >= 2); |
| } |
| |
| |
| const uint32_t normal_match_price = match_price |
| + rc_bit_0_price(coder->is_rep[coder->state]); |
| |
| len = rep_lens[0] >= 2 ? rep_lens[0] + 1 : 2; |
| if (len <= len_main) { |
| uint32_t i = 0; |
| while (len > coder->matches[i].len) |
| ++i; |
| |
| for(; ; ++len) { |
| const uint32_t dist = coder->matches[i].dist; |
| const uint32_t cur_and_len_price = normal_match_price |
| + get_dist_len_price(coder, |
| dist, len, pos_state); |
| |
| if (cur_and_len_price < coder->opts[len].price) { |
| coder->opts[len].price = cur_and_len_price; |
| coder->opts[len].pos_prev = 0; |
| coder->opts[len].back_prev = dist + REPS; |
| coder->opts[len].prev_1_is_literal = false; |
| } |
| |
| if (len == coder->matches[i].len) |
| if (++i == matches_count) |
| break; |
| } |
| } |
| |
| return len_end; |
| } |
| |
| |
| static inline uint32_t |
| helper2(lzma_coder *coder, uint32_t *reps, const uint8_t *buf, |
| uint32_t len_end, uint32_t position, const uint32_t cur, |
| const uint32_t nice_len, const uint32_t buf_avail_full) |
| { |
| uint32_t matches_count = coder->matches_count; |
| uint32_t new_len = coder->longest_match_length; |
| uint32_t pos_prev = coder->opts[cur].pos_prev; |
| lzma_lzma_state state; |
| |
| if (coder->opts[cur].prev_1_is_literal) { |
| --pos_prev; |
| |
| if (coder->opts[cur].prev_2) { |
| state = coder->opts[coder->opts[cur].pos_prev_2].state; |
| |
| if (coder->opts[cur].back_prev_2 < REPS) |
| update_long_rep(state); |
| else |
| update_match(state); |
| |
| } else { |
| state = coder->opts[pos_prev].state; |
| } |
| |
| update_literal(state); |
| |
| } else { |
| state = coder->opts[pos_prev].state; |
| } |
| |
| if (pos_prev == cur - 1) { |
| if (is_short_rep(coder->opts[cur])) |
| update_short_rep(state); |
| else |
| update_literal(state); |
| } else { |
| uint32_t pos; |
| if (coder->opts[cur].prev_1_is_literal |
| && coder->opts[cur].prev_2) { |
| pos_prev = coder->opts[cur].pos_prev_2; |
| pos = coder->opts[cur].back_prev_2; |
| update_long_rep(state); |
| } else { |
| pos = coder->opts[cur].back_prev; |
| if (pos < REPS) |
| update_long_rep(state); |
| else |
| update_match(state); |
| } |
| |
| if (pos < REPS) { |
| reps[0] = coder->opts[pos_prev].backs[pos]; |
| |
| uint32_t i; |
| for (i = 1; i <= pos; ++i) |
| reps[i] = coder->opts[pos_prev].backs[i - 1]; |
| |
| for (; i < REPS; ++i) |
| reps[i] = coder->opts[pos_prev].backs[i]; |
| |
| } else { |
| reps[0] = pos - REPS; |
| |
| for (uint32_t i = 1; i < REPS; ++i) |
| reps[i] = coder->opts[pos_prev].backs[i - 1]; |
| } |
| } |
| |
| coder->opts[cur].state = state; |
| |
| for (uint32_t i = 0; i < REPS; ++i) |
| coder->opts[cur].backs[i] = reps[i]; |
| |
| const uint32_t cur_price = coder->opts[cur].price; |
| |
| const uint8_t current_byte = *buf; |
| const uint8_t match_byte = *(buf - reps[0] - 1); |
| |
| const uint32_t pos_state = position & coder->pos_mask; |
| |
| const uint32_t cur_and_1_price = cur_price |
| + rc_bit_0_price(coder->is_match[state][pos_state]) |
| + get_literal_price(coder, position, buf[-1], |
| !is_literal_state(state), match_byte, current_byte); |
| |
| bool next_is_literal = false; |
| |
| if (cur_and_1_price < coder->opts[cur + 1].price) { |
| coder->opts[cur + 1].price = cur_and_1_price; |
| coder->opts[cur + 1].pos_prev = cur; |
| make_literal(&coder->opts[cur + 1]); |
| next_is_literal = true; |
| } |
| |
| const uint32_t match_price = cur_price |
| + rc_bit_1_price(coder->is_match[state][pos_state]); |
| const uint32_t rep_match_price = match_price |
| + rc_bit_1_price(coder->is_rep[state]); |
| |
| if (match_byte == current_byte |
| && !(coder->opts[cur + 1].pos_prev < cur |
| && coder->opts[cur + 1].back_prev == 0)) { |
| |
| const uint32_t short_rep_price = rep_match_price |
| + get_short_rep_price(coder, state, pos_state); |
| |
| if (short_rep_price <= coder->opts[cur + 1].price) { |
| coder->opts[cur + 1].price = short_rep_price; |
| coder->opts[cur + 1].pos_prev = cur; |
| make_short_rep(&coder->opts[cur + 1]); |
| next_is_literal = true; |
| } |
| } |
| |
| if (buf_avail_full < 2) |
| return len_end; |
| |
| const uint32_t buf_avail = my_min(buf_avail_full, nice_len); |
| |
| if (!next_is_literal && match_byte != current_byte) { // speed optimization |
| // try literal + rep0 |
| const uint8_t *const buf_back = buf - reps[0] - 1; |
| const uint32_t limit = my_min(buf_avail_full, nice_len + 1); |
| |
| const uint32_t len_test = lzma_memcmplen(buf, buf_back, 1, limit) - 1; |
| |
| if (len_test >= 2) { |
| lzma_lzma_state state_2 = state; |
| update_literal(state_2); |
| |
| const uint32_t pos_state_next = (position + 1) & coder->pos_mask; |
| const uint32_t next_rep_match_price = cur_and_1_price |
| + rc_bit_1_price(coder->is_match[state_2][pos_state_next]) |
| + rc_bit_1_price(coder->is_rep[state_2]); |
| |
| //for (; len_test >= 2; --len_test) { |
| const uint32_t offset = cur + 1 + len_test; |
| |
| while (len_end < offset) |
| coder->opts[++len_end].price = RC_INFINITY_PRICE; |
| |
| const uint32_t cur_and_len_price = next_rep_match_price |
| + get_rep_price(coder, 0, len_test, |
| state_2, pos_state_next); |
| |
| if (cur_and_len_price < coder->opts[offset].price) { |
| coder->opts[offset].price = cur_and_len_price; |
| coder->opts[offset].pos_prev = cur + 1; |
| coder->opts[offset].back_prev = 0; |
| coder->opts[offset].prev_1_is_literal = true; |
| coder->opts[offset].prev_2 = false; |
| } |
| //} |
| } |
| } |
| |
| |
| uint32_t start_len = 2; // speed optimization |
| |
| for (uint32_t rep_index = 0; rep_index < REPS; ++rep_index) { |
| const uint8_t *const buf_back = buf - reps[rep_index] - 1; |
| if (not_equal_16(buf, buf_back)) |
| continue; |
| |
| uint32_t len_test = lzma_memcmplen(buf, buf_back, 2, buf_avail); |
| |
| while (len_end < cur + len_test) |
| coder->opts[++len_end].price = RC_INFINITY_PRICE; |
| |
| const uint32_t len_test_temp = len_test; |
| const uint32_t price = rep_match_price + get_pure_rep_price( |
| coder, rep_index, state, pos_state); |
| |
| do { |
| const uint32_t cur_and_len_price = price |
| + get_len_price(&coder->rep_len_encoder, |
| len_test, pos_state); |
| |
| if (cur_and_len_price < coder->opts[cur + len_test].price) { |
| coder->opts[cur + len_test].price = cur_and_len_price; |
| coder->opts[cur + len_test].pos_prev = cur; |
| coder->opts[cur + len_test].back_prev = rep_index; |
| coder->opts[cur + len_test].prev_1_is_literal = false; |
| } |
| } while (--len_test >= 2); |
| |
| len_test = len_test_temp; |
| |
| if (rep_index == 0) |
| start_len = len_test + 1; |
| |
| |
| uint32_t len_test_2 = len_test + 1; |
| const uint32_t limit = my_min(buf_avail_full, |
| len_test_2 + nice_len); |
| for (; len_test_2 < limit |
| && buf[len_test_2] == buf_back[len_test_2]; |
| ++len_test_2) ; |
| |
| len_test_2 -= len_test + 1; |
| |
| if (len_test_2 >= 2) { |
| lzma_lzma_state state_2 = state; |
| update_long_rep(state_2); |
| |
| uint32_t pos_state_next = (position + len_test) & coder->pos_mask; |
| |
| const uint32_t cur_and_len_literal_price = price |
| + get_len_price(&coder->rep_len_encoder, |
| len_test, pos_state) |
| + rc_bit_0_price(coder->is_match[state_2][pos_state_next]) |
| + get_literal_price(coder, position + len_test, |
| buf[len_test - 1], true, |
| buf_back[len_test], buf[len_test]); |
| |
| update_literal(state_2); |
| |
| pos_state_next = (position + len_test + 1) & coder->pos_mask; |
| |
| const uint32_t next_rep_match_price = cur_and_len_literal_price |
| + rc_bit_1_price(coder->is_match[state_2][pos_state_next]) |
| + rc_bit_1_price(coder->is_rep[state_2]); |
| |
| //for(; len_test_2 >= 2; len_test_2--) { |
| const uint32_t offset = cur + len_test + 1 + len_test_2; |
| |
| while (len_end < offset) |
| coder->opts[++len_end].price = RC_INFINITY_PRICE; |
| |
| const uint32_t cur_and_len_price = next_rep_match_price |
| + get_rep_price(coder, 0, len_test_2, |
| state_2, pos_state_next); |
| |
| if (cur_and_len_price < coder->opts[offset].price) { |
| coder->opts[offset].price = cur_and_len_price; |
| coder->opts[offset].pos_prev = cur + len_test + 1; |
| coder->opts[offset].back_prev = 0; |
| coder->opts[offset].prev_1_is_literal = true; |
| coder->opts[offset].prev_2 = true; |
| coder->opts[offset].pos_prev_2 = cur; |
| coder->opts[offset].back_prev_2 = rep_index; |
| } |
| //} |
| } |
| } |
| |
| |
| //for (uint32_t len_test = 2; len_test <= new_len; ++len_test) |
| if (new_len > buf_avail) { |
| new_len = buf_avail; |
| |
| matches_count = 0; |
| while (new_len > coder->matches[matches_count].len) |
| ++matches_count; |
| |
| coder->matches[matches_count++].len = new_len; |
| } |
| |
| |
| if (new_len >= start_len) { |
| const uint32_t normal_match_price = match_price |
| + rc_bit_0_price(coder->is_rep[state]); |
| |
| while (len_end < cur + new_len) |
| coder->opts[++len_end].price = RC_INFINITY_PRICE; |
| |
| uint32_t i = 0; |
| while (start_len > coder->matches[i].len) |
| ++i; |
| |
| for (uint32_t len_test = start_len; ; ++len_test) { |
| const uint32_t cur_back = coder->matches[i].dist; |
| uint32_t cur_and_len_price = normal_match_price |
| + get_dist_len_price(coder, |
| cur_back, len_test, pos_state); |
| |
| if (cur_and_len_price < coder->opts[cur + len_test].price) { |
| coder->opts[cur + len_test].price = cur_and_len_price; |
| coder->opts[cur + len_test].pos_prev = cur; |
| coder->opts[cur + len_test].back_prev |
| = cur_back + REPS; |
| coder->opts[cur + len_test].prev_1_is_literal = false; |
| } |
| |
| if (len_test == coder->matches[i].len) { |
| // Try Match + Literal + Rep0 |
| const uint8_t *const buf_back = buf - cur_back - 1; |
| uint32_t len_test_2 = len_test + 1; |
| const uint32_t limit = my_min(buf_avail_full, |
| len_test_2 + nice_len); |
| |
| for (; len_test_2 < limit && |
| buf[len_test_2] == buf_back[len_test_2]; |
| ++len_test_2) ; |
| |
| len_test_2 -= len_test + 1; |
| |
| if (len_test_2 >= 2) { |
| lzma_lzma_state state_2 = state; |
| update_match(state_2); |
| uint32_t pos_state_next |
| = (position + len_test) & coder->pos_mask; |
| |
| const uint32_t cur_and_len_literal_price = cur_and_len_price |
| + rc_bit_0_price( |
| coder->is_match[state_2][pos_state_next]) |
| + get_literal_price(coder, |
| position + len_test, |
| buf[len_test - 1], |
| true, |
| buf_back[len_test], |
| buf[len_test]); |
| |
| update_literal(state_2); |
| pos_state_next = (pos_state_next + 1) & coder->pos_mask; |
| |
| const uint32_t next_rep_match_price |
| = cur_and_len_literal_price |
| + rc_bit_1_price( |
| coder->is_match[state_2][pos_state_next]) |
| + rc_bit_1_price(coder->is_rep[state_2]); |
| |
| // for(; len_test_2 >= 2; --len_test_2) { |
| const uint32_t offset = cur + len_test + 1 + len_test_2; |
| |
| while (len_end < offset) |
| coder->opts[++len_end].price = RC_INFINITY_PRICE; |
| |
| cur_and_len_price = next_rep_match_price |
| + get_rep_price(coder, 0, len_test_2, |
| state_2, pos_state_next); |
| |
| if (cur_and_len_price < coder->opts[offset].price) { |
| coder->opts[offset].price = cur_and_len_price; |
| coder->opts[offset].pos_prev = cur + len_test + 1; |
| coder->opts[offset].back_prev = 0; |
| coder->opts[offset].prev_1_is_literal = true; |
| coder->opts[offset].prev_2 = true; |
| coder->opts[offset].pos_prev_2 = cur; |
| coder->opts[offset].back_prev_2 |
| = cur_back + REPS; |
| } |
| //} |
| } |
| |
| if (++i == matches_count) |
| break; |
| } |
| } |
| } |
| |
| return len_end; |
| } |
| |
| |
| extern void |
| lzma_lzma_optimum_normal(lzma_coder *restrict coder, lzma_mf *restrict mf, |
| uint32_t *restrict back_res, uint32_t *restrict len_res, |
| uint32_t position) |
| { |
| // If we have symbols pending, return the next pending symbol. |
| if (coder->opts_end_index != coder->opts_current_index) { |
| assert(mf->read_ahead > 0); |
| *len_res = coder->opts[coder->opts_current_index].pos_prev |
| - coder->opts_current_index; |
| *back_res = coder->opts[coder->opts_current_index].back_prev; |
| coder->opts_current_index = coder->opts[ |
| coder->opts_current_index].pos_prev; |
| return; |
| } |
| |
| // Update the price tables. In LZMA SDK <= 4.60 (and possibly later) |
| // this was done in both initialization function and in the main loop. |
| // In liblzma they were moved into this single place. |
| if (mf->read_ahead == 0) { |
| if (coder->match_price_count >= (1 << 7)) |
| fill_dist_prices(coder); |
| |
| if (coder->align_price_count >= ALIGN_SIZE) |
| fill_align_prices(coder); |
| } |
| |
| // TODO: This needs quite a bit of cleaning still. But splitting |
| // the original function into two pieces makes it at least a little |
| // more readable, since those two parts don't share many variables. |
| |
| uint32_t len_end = helper1(coder, mf, back_res, len_res, position); |
| if (len_end == UINT32_MAX) |
| return; |
| |
| uint32_t reps[REPS]; |
| memcpy(reps, coder->reps, sizeof(reps)); |
| |
| uint32_t cur; |
| for (cur = 1; cur < len_end; ++cur) { |
| assert(cur < OPTS); |
| |
| coder->longest_match_length = mf_find( |
| mf, &coder->matches_count, coder->matches); |
| |
| if (coder->longest_match_length >= mf->nice_len) |
| break; |
| |
| len_end = helper2(coder, reps, mf_ptr(mf) - 1, len_end, |
| position + cur, cur, mf->nice_len, |
| my_min(mf_avail(mf) + 1, OPTS - 1 - cur)); |
| } |
| |
| backward(coder, len_res, back_res, cur); |
| return; |
| } |