| /////////////////////////////////////////////////////////////////////////////// |
| // |
| /// \file tuklib_integer.h |
| /// \brief Various integer and bit operations |
| /// |
| /// This file provides macros or functions to do some basic integer and bit |
| /// operations. |
| /// |
| /// Endianness related integer operations (XX = 16, 32, or 64; Y = b or l): |
| /// - Byte swapping: bswapXX(num) |
| /// - Byte order conversions to/from native: convXXYe(num) |
| /// - Aligned reads: readXXYe(ptr) |
| /// - Aligned writes: writeXXYe(ptr, num) |
| /// - Unaligned reads (16/32-bit only): unaligned_readXXYe(ptr) |
| /// - Unaligned writes (16/32-bit only): unaligned_writeXXYe(ptr, num) |
| /// |
| /// Since they can macros, the arguments should have no side effects since |
| /// they may be evaluated more than once. |
| /// |
| /// \todo PowerPC and possibly some other architectures support |
| /// byte swapping load and store instructions. This file |
| /// doesn't take advantage of those instructions. |
| /// |
| /// Bit scan operations for non-zero 32-bit integers: |
| /// - Bit scan reverse (find highest non-zero bit): bsr32(num) |
| /// - Count leading zeros: clz32(num) |
| /// - Count trailing zeros: ctz32(num) |
| /// - Bit scan forward (simply an alias for ctz32()): bsf32(num) |
| /// |
| /// The above bit scan operations return 0-31. If num is zero, |
| /// the result is undefined. |
| // |
| // Authors: Lasse Collin |
| // Joachim Henke |
| // |
| // This file has been put into the public domain. |
| // You can do whatever you want with this file. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifndef TUKLIB_INTEGER_H |
| #define TUKLIB_INTEGER_H |
| |
| #include "tuklib_common.h" |
| |
| |
| //////////////////////////////////////// |
| // Operating system specific features // |
| //////////////////////////////////////// |
| |
| #if defined(HAVE_BYTESWAP_H) |
| // glibc, uClibc, dietlibc |
| # include <byteswap.h> |
| # ifdef HAVE_BSWAP_16 |
| # define bswap16(num) bswap_16(num) |
| # endif |
| # ifdef HAVE_BSWAP_32 |
| # define bswap32(num) bswap_32(num) |
| # endif |
| # ifdef HAVE_BSWAP_64 |
| # define bswap64(num) bswap_64(num) |
| # endif |
| |
| #elif defined(HAVE_SYS_ENDIAN_H) |
| // *BSDs and Darwin |
| # include <sys/endian.h> |
| |
| #elif defined(HAVE_SYS_BYTEORDER_H) |
| // Solaris |
| # include <sys/byteorder.h> |
| # ifdef BSWAP_16 |
| # define bswap16(num) BSWAP_16(num) |
| # endif |
| # ifdef BSWAP_32 |
| # define bswap32(num) BSWAP_32(num) |
| # endif |
| # ifdef BSWAP_64 |
| # define bswap64(num) BSWAP_64(num) |
| # endif |
| # ifdef BE_16 |
| # define conv16be(num) BE_16(num) |
| # endif |
| # ifdef BE_32 |
| # define conv32be(num) BE_32(num) |
| # endif |
| # ifdef BE_64 |
| # define conv64be(num) BE_64(num) |
| # endif |
| # ifdef LE_16 |
| # define conv16le(num) LE_16(num) |
| # endif |
| # ifdef LE_32 |
| # define conv32le(num) LE_32(num) |
| # endif |
| # ifdef LE_64 |
| # define conv64le(num) LE_64(num) |
| # endif |
| #endif |
| |
| |
| /////////////////// |
| // Byte swapping // |
| /////////////////// |
| |
| #ifndef bswap16 |
| # define bswap16(num) \ |
| (((uint16_t)(num) << 8) | ((uint16_t)(num) >> 8)) |
| #endif |
| |
| #ifndef bswap32 |
| # define bswap32(num) \ |
| ( (((uint32_t)(num) << 24) ) \ |
| | (((uint32_t)(num) << 8) & UINT32_C(0x00FF0000)) \ |
| | (((uint32_t)(num) >> 8) & UINT32_C(0x0000FF00)) \ |
| | (((uint32_t)(num) >> 24) ) ) |
| #endif |
| |
| #ifndef bswap64 |
| # define bswap64(num) \ |
| ( (((uint64_t)(num) << 56) ) \ |
| | (((uint64_t)(num) << 40) & UINT64_C(0x00FF000000000000)) \ |
| | (((uint64_t)(num) << 24) & UINT64_C(0x0000FF0000000000)) \ |
| | (((uint64_t)(num) << 8) & UINT64_C(0x000000FF00000000)) \ |
| | (((uint64_t)(num) >> 8) & UINT64_C(0x00000000FF000000)) \ |
| | (((uint64_t)(num) >> 24) & UINT64_C(0x0000000000FF0000)) \ |
| | (((uint64_t)(num) >> 40) & UINT64_C(0x000000000000FF00)) \ |
| | (((uint64_t)(num) >> 56) ) ) |
| #endif |
| |
| // Define conversion macros using the basic byte swapping macros. |
| #ifdef WORDS_BIGENDIAN |
| # ifndef conv16be |
| # define conv16be(num) ((uint16_t)(num)) |
| # endif |
| # ifndef conv32be |
| # define conv32be(num) ((uint32_t)(num)) |
| # endif |
| # ifndef conv64be |
| # define conv64be(num) ((uint64_t)(num)) |
| # endif |
| # ifndef conv16le |
| # define conv16le(num) bswap16(num) |
| # endif |
| # ifndef conv32le |
| # define conv32le(num) bswap32(num) |
| # endif |
| # ifndef conv64le |
| # define conv64le(num) bswap64(num) |
| # endif |
| #else |
| # ifndef conv16be |
| # define conv16be(num) bswap16(num) |
| # endif |
| # ifndef conv32be |
| # define conv32be(num) bswap32(num) |
| # endif |
| # ifndef conv64be |
| # define conv64be(num) bswap64(num) |
| # endif |
| # ifndef conv16le |
| # define conv16le(num) ((uint16_t)(num)) |
| # endif |
| # ifndef conv32le |
| # define conv32le(num) ((uint32_t)(num)) |
| # endif |
| # ifndef conv64le |
| # define conv64le(num) ((uint64_t)(num)) |
| # endif |
| #endif |
| |
| |
| ////////////////////////////// |
| // Aligned reads and writes // |
| ////////////////////////////// |
| |
| static inline uint16_t |
| read16be(const uint8_t *buf) |
| { |
| uint16_t num = *(const uint16_t *)buf; |
| return conv16be(num); |
| } |
| |
| |
| static inline uint16_t |
| read16le(const uint8_t *buf) |
| { |
| uint16_t num = *(const uint16_t *)buf; |
| return conv16le(num); |
| } |
| |
| |
| static inline uint32_t |
| read32be(const uint8_t *buf) |
| { |
| uint32_t num = *(const uint32_t *)buf; |
| return conv32be(num); |
| } |
| |
| |
| static inline uint32_t |
| read32le(const uint8_t *buf) |
| { |
| uint32_t num = *(const uint32_t *)buf; |
| return conv32le(num); |
| } |
| |
| |
| static inline uint64_t |
| read64be(const uint8_t *buf) |
| { |
| uint64_t num = *(const uint64_t *)buf; |
| return conv64be(num); |
| } |
| |
| |
| static inline uint64_t |
| read64le(const uint8_t *buf) |
| { |
| uint64_t num = *(const uint64_t *)buf; |
| return conv64le(num); |
| } |
| |
| |
| // NOTE: Possible byte swapping must be done in a macro to allow GCC |
| // to optimize byte swapping of constants when using glibc's or *BSD's |
| // byte swapping macros. The actual write is done in an inline function |
| // to make type checking of the buf pointer possible similarly to readXXYe() |
| // functions. |
| |
| #define write16be(buf, num) write16ne((buf), conv16be(num)) |
| #define write16le(buf, num) write16ne((buf), conv16le(num)) |
| #define write32be(buf, num) write32ne((buf), conv32be(num)) |
| #define write32le(buf, num) write32ne((buf), conv32le(num)) |
| #define write64be(buf, num) write64ne((buf), conv64be(num)) |
| #define write64le(buf, num) write64ne((buf), conv64le(num)) |
| |
| |
| static inline void |
| write16ne(uint8_t *buf, uint16_t num) |
| { |
| *(uint16_t *)buf = num; |
| return; |
| } |
| |
| |
| static inline void |
| write32ne(uint8_t *buf, uint32_t num) |
| { |
| *(uint32_t *)buf = num; |
| return; |
| } |
| |
| |
| static inline void |
| write64ne(uint8_t *buf, uint64_t num) |
| { |
| *(uint64_t *)buf = num; |
| return; |
| } |
| |
| |
| //////////////////////////////// |
| // Unaligned reads and writes // |
| //////////////////////////////// |
| |
| // NOTE: TUKLIB_FAST_UNALIGNED_ACCESS indicates only support for 16-bit and |
| // 32-bit unaligned integer loads and stores. It's possible that 64-bit |
| // unaligned access doesn't work or is slower than byte-by-byte access. |
| // Since unaligned 64-bit is probably not needed as often as 16-bit or |
| // 32-bit, we simply don't support 64-bit unaligned access for now. |
| #ifdef TUKLIB_FAST_UNALIGNED_ACCESS |
| # define unaligned_read16be read16be |
| # define unaligned_read16le read16le |
| # define unaligned_read32be read32be |
| # define unaligned_read32le read32le |
| # define unaligned_write16be write16be |
| # define unaligned_write16le write16le |
| # define unaligned_write32be write32be |
| # define unaligned_write32le write32le |
| |
| #else |
| |
| static inline uint16_t |
| unaligned_read16be(const uint8_t *buf) |
| { |
| uint16_t num = ((uint16_t)buf[0] << 8) | (uint16_t)buf[1]; |
| return num; |
| } |
| |
| |
| static inline uint16_t |
| unaligned_read16le(const uint8_t *buf) |
| { |
| uint16_t num = ((uint16_t)buf[0]) | ((uint16_t)buf[1] << 8); |
| return num; |
| } |
| |
| |
| static inline uint32_t |
| unaligned_read32be(const uint8_t *buf) |
| { |
| uint32_t num = (uint32_t)buf[0] << 24; |
| num |= (uint32_t)buf[1] << 16; |
| num |= (uint32_t)buf[2] << 8; |
| num |= (uint32_t)buf[3]; |
| return num; |
| } |
| |
| |
| static inline uint32_t |
| unaligned_read32le(const uint8_t *buf) |
| { |
| uint32_t num = (uint32_t)buf[0]; |
| num |= (uint32_t)buf[1] << 8; |
| num |= (uint32_t)buf[2] << 16; |
| num |= (uint32_t)buf[3] << 24; |
| return num; |
| } |
| |
| |
| static inline void |
| unaligned_write16be(uint8_t *buf, uint16_t num) |
| { |
| buf[0] = num >> 8; |
| buf[1] = num; |
| return; |
| } |
| |
| |
| static inline void |
| unaligned_write16le(uint8_t *buf, uint16_t num) |
| { |
| buf[0] = num; |
| buf[1] = num >> 8; |
| return; |
| } |
| |
| |
| static inline void |
| unaligned_write32be(uint8_t *buf, uint32_t num) |
| { |
| buf[0] = num >> 24; |
| buf[1] = num >> 16; |
| buf[2] = num >> 8; |
| buf[3] = num; |
| return; |
| } |
| |
| |
| static inline void |
| unaligned_write32le(uint8_t *buf, uint32_t num) |
| { |
| buf[0] = num; |
| buf[1] = num >> 8; |
| buf[2] = num >> 16; |
| buf[3] = num >> 24; |
| return; |
| } |
| |
| #endif |
| |
| |
| static inline uint32_t |
| bsr32(uint32_t n) |
| { |
| // Check for ICC first, since it tends to define __GNUC__ too. |
| #if defined(__INTEL_COMPILER) |
| return _bit_scan_reverse(n); |
| |
| #elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX |
| // GCC >= 3.4 has __builtin_clz(), which gives good results on |
| // multiple architectures. On x86, __builtin_clz() ^ 31U becomes |
| // either plain BSR (so the XOR gets optimized away) or LZCNT and |
| // XOR (if -march indicates that SSE4a instructions are supported). |
| return __builtin_clz(n) ^ 31U; |
| |
| #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) |
| uint32_t i; |
| __asm__("bsrl %1, %0" : "=r" (i) : "rm" (n)); |
| return i; |
| |
| #elif defined(_MSC_VER) && _MSC_VER >= 1400 |
| // MSVC isn't supported by tuklib, but since this code exists, |
| // it doesn't hurt to have it here anyway. |
| uint32_t i; |
| _BitScanReverse((DWORD *)&i, n); |
| return i; |
| |
| #else |
| uint32_t i = 31; |
| |
| if ((n & UINT32_C(0xFFFF0000)) == 0) { |
| n <<= 16; |
| i = 15; |
| } |
| |
| if ((n & UINT32_C(0xFF000000)) == 0) { |
| n <<= 8; |
| i -= 8; |
| } |
| |
| if ((n & UINT32_C(0xF0000000)) == 0) { |
| n <<= 4; |
| i -= 4; |
| } |
| |
| if ((n & UINT32_C(0xC0000000)) == 0) { |
| n <<= 2; |
| i -= 2; |
| } |
| |
| if ((n & UINT32_C(0x80000000)) == 0) |
| --i; |
| |
| return i; |
| #endif |
| } |
| |
| |
| static inline uint32_t |
| clz32(uint32_t n) |
| { |
| #if defined(__INTEL_COMPILER) |
| return _bit_scan_reverse(n) ^ 31U; |
| |
| #elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX |
| return __builtin_clz(n); |
| |
| #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) |
| uint32_t i; |
| __asm__("bsrl %1, %0\n\t" |
| "xorl $31, %0" |
| : "=r" (i) : "rm" (n)); |
| return i; |
| |
| #elif defined(_MSC_VER) && _MSC_VER >= 1400 |
| uint32_t i; |
| _BitScanReverse((DWORD *)&i, n); |
| return i ^ 31U; |
| |
| #else |
| uint32_t i = 0; |
| |
| if ((n & UINT32_C(0xFFFF0000)) == 0) { |
| n <<= 16; |
| i = 16; |
| } |
| |
| if ((n & UINT32_C(0xFF000000)) == 0) { |
| n <<= 8; |
| i += 8; |
| } |
| |
| if ((n & UINT32_C(0xF0000000)) == 0) { |
| n <<= 4; |
| i += 4; |
| } |
| |
| if ((n & UINT32_C(0xC0000000)) == 0) { |
| n <<= 2; |
| i += 2; |
| } |
| |
| if ((n & UINT32_C(0x80000000)) == 0) |
| ++i; |
| |
| return i; |
| #endif |
| } |
| |
| |
| static inline uint32_t |
| ctz32(uint32_t n) |
| { |
| #if defined(__INTEL_COMPILER) |
| return _bit_scan_forward(n); |
| |
| #elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX >= UINT32_MAX |
| return __builtin_ctz(n); |
| |
| #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) |
| uint32_t i; |
| __asm__("bsfl %1, %0" : "=r" (i) : "rm" (n)); |
| return i; |
| |
| #elif defined(_MSC_VER) && _MSC_VER >= 1400 |
| uint32_t i; |
| _BitScanForward((DWORD *)&i, n); |
| return i; |
| |
| #else |
| uint32_t i = 0; |
| |
| if ((n & UINT32_C(0x0000FFFF)) == 0) { |
| n >>= 16; |
| i = 16; |
| } |
| |
| if ((n & UINT32_C(0x000000FF)) == 0) { |
| n >>= 8; |
| i += 8; |
| } |
| |
| if ((n & UINT32_C(0x0000000F)) == 0) { |
| n >>= 4; |
| i += 4; |
| } |
| |
| if ((n & UINT32_C(0x00000003)) == 0) { |
| n >>= 2; |
| i += 2; |
| } |
| |
| if ((n & UINT32_C(0x00000001)) == 0) |
| ++i; |
| |
| return i; |
| #endif |
| } |
| |
| #define bsf32 ctz32 |
| |
| #endif |