| /* |
| * Speed-optimized CRC32 using slicing-by-eight algorithm |
| * |
| * This uses only i386 instructions, but it is optimized for i686 and later |
| * (including e.g. Pentium II/III/IV, Athlon XP, and Core 2). For i586 |
| * (e.g. Pentium), slicing-by-four would be better, and even the C version |
| * of slicing-by-eight built with gcc -march=i586 tends to be a little bit |
| * better than this. Very few probably run this code on i586 or older x86 |
| * so this shouldn't be a problem in practice. |
| * |
| * Authors: Igor Pavlov (original version) |
| * Lasse Collin (AT&T syntax, PIC support, better portability) |
| * |
| * This file has been put into the public domain. |
| * You can do whatever you want with this file. |
| * |
| * This code needs lzma_crc32_table, which can be created using the |
| * following C code: |
| |
| uint32_t lzma_crc32_table[8][256]; |
| |
| void |
| init_table(void) |
| { |
| // IEEE-802.3 |
| static const uint32_t poly32 = UINT32_C(0xEDB88320); |
| |
| // Castagnoli |
| // static const uint32_t poly32 = UINT32_C(0x82F63B78); |
| |
| // Koopman |
| // static const uint32_t poly32 = UINT32_C(0xEB31D82E); |
| |
| for (size_t s = 0; s < 8; ++s) { |
| for (size_t b = 0; b < 256; ++b) { |
| uint32_t r = s == 0 ? b : lzma_crc32_table[s - 1][b]; |
| |
| for (size_t i = 0; i < 8; ++i) { |
| if (r & 1) |
| r = (r >> 1) ^ poly32; |
| else |
| r >>= 1; |
| } |
| |
| lzma_crc32_table[s][b] = r; |
| } |
| } |
| } |
| |
| * The prototype of the CRC32 function: |
| * extern uint32_t lzma_crc32(const uint8_t *buf, size_t size, uint32_t crc); |
| */ |
| |
| /* |
| * On some systems, the functions need to be prefixed. The prefix is |
| * usually an underscore. |
| */ |
| #ifndef __USER_LABEL_PREFIX__ |
| # define __USER_LABEL_PREFIX__ |
| #endif |
| #define MAKE_SYM_CAT(prefix, sym) prefix ## sym |
| #define MAKE_SYM(prefix, sym) MAKE_SYM_CAT(prefix, sym) |
| #define LZMA_CRC32 MAKE_SYM(__USER_LABEL_PREFIX__, lzma_crc32) |
| #define LZMA_CRC32_TABLE MAKE_SYM(__USER_LABEL_PREFIX__, lzma_crc32_table) |
| |
| /* |
| * Solaris assembler doesn't have .p2align, and Darwin uses .align |
| * differently than GNU/Linux and Solaris. |
| */ |
| #if defined(__MACH__) || defined(__MSDOS__) |
| # define ALIGN(pow2, abs) .align pow2 |
| #else |
| # define ALIGN(pow2, abs) .align abs |
| #endif |
| |
| .text |
| .globl LZMA_CRC32 |
| |
| #if !defined(__MACH__) && !defined(_WIN32) && !defined(__MSDOS__) |
| .type LZMA_CRC32, @function |
| #endif |
| |
| ALIGN(4, 16) |
| LZMA_CRC32: |
| /* |
| * Register usage: |
| * %eax crc |
| * %esi buf |
| * %edi size or buf + size |
| * %ebx lzma_crc32_table |
| * %ebp Table index |
| * %ecx Temporary |
| * %edx Temporary |
| */ |
| pushl %ebx |
| pushl %esi |
| pushl %edi |
| pushl %ebp |
| movl 0x14(%esp), %esi /* buf */ |
| movl 0x18(%esp), %edi /* size */ |
| movl 0x1C(%esp), %eax /* crc */ |
| |
| /* |
| * Store the address of lzma_crc32_table to %ebx. This is needed to |
| * get position-independent code (PIC). |
| * |
| * The PIC macro is defined by libtool, while __PIC__ is defined |
| * by GCC but only on some systems. Testing for both makes it simpler |
| * to test this code without libtool, and keeps the code working also |
| * when built with libtool but using something else than GCC. |
| */ |
| #if !defined(PIC) && !defined(__PIC__) |
| /* Not PIC */ |
| movl $LZMA_CRC32_TABLE, %ebx |
| #elif defined(__MACH__) |
| /* Mach-O */ |
| call .L_get_pc |
| .L_pic: |
| leal .L_lzma_crc32_table$non_lazy_ptr-.L_pic(%ebx), %ebx |
| movl (%ebx), %ebx |
| #else |
| /* ELF */ |
| call .L_get_pc |
| addl $_GLOBAL_OFFSET_TABLE_, %ebx |
| movl LZMA_CRC32_TABLE@GOT(%ebx), %ebx |
| #endif |
| |
| /* Complement the initial value. */ |
| notl %eax |
| |
| ALIGN(4, 16) |
| .L_align: |
| /* |
| * Check if there is enough input to use slicing-by-eight. |
| * We need 16 bytes, because the loop pre-reads eight bytes. |
| */ |
| cmpl $16, %edi |
| jl .L_rest |
| |
| /* Check if we have reached alignment of eight bytes. */ |
| testl $7, %esi |
| jz .L_slice |
| |
| /* Calculate CRC of the next input byte. */ |
| movzbl (%esi), %ebp |
| incl %esi |
| movzbl %al, %ecx |
| xorl %ecx, %ebp |
| shrl $8, %eax |
| xorl (%ebx, %ebp, 4), %eax |
| decl %edi |
| jmp .L_align |
| |
| ALIGN(2, 4) |
| .L_slice: |
| /* |
| * If we get here, there's at least 16 bytes of aligned input |
| * available. Make %edi multiple of eight bytes. Store the possible |
| * remainder over the "size" variable in the argument stack. |
| */ |
| movl %edi, 0x18(%esp) |
| andl $-8, %edi |
| subl %edi, 0x18(%esp) |
| |
| /* |
| * Let %edi be buf + size - 8 while running the main loop. This way |
| * we can compare for equality to determine when exit the loop. |
| */ |
| addl %esi, %edi |
| subl $8, %edi |
| |
| /* Read in the first eight aligned bytes. */ |
| xorl (%esi), %eax |
| movl 4(%esi), %ecx |
| movzbl %cl, %ebp |
| |
| .L_loop: |
| movl 0x0C00(%ebx, %ebp, 4), %edx |
| movzbl %ch, %ebp |
| xorl 0x0800(%ebx, %ebp, 4), %edx |
| shrl $16, %ecx |
| xorl 8(%esi), %edx |
| movzbl %cl, %ebp |
| xorl 0x0400(%ebx, %ebp, 4), %edx |
| movzbl %ch, %ebp |
| xorl (%ebx, %ebp, 4), %edx |
| movzbl %al, %ebp |
| |
| /* |
| * Read the next four bytes, for which the CRC is calculated |
| * on the next interation of the loop. |
| */ |
| movl 12(%esi), %ecx |
| |
| xorl 0x1C00(%ebx, %ebp, 4), %edx |
| movzbl %ah, %ebp |
| shrl $16, %eax |
| xorl 0x1800(%ebx, %ebp, 4), %edx |
| movzbl %ah, %ebp |
| movzbl %al, %eax |
| movl 0x1400(%ebx, %eax, 4), %eax |
| addl $8, %esi |
| xorl %edx, %eax |
| xorl 0x1000(%ebx, %ebp, 4), %eax |
| |
| /* Check for end of aligned input. */ |
| cmpl %edi, %esi |
| movzbl %cl, %ebp |
| jne .L_loop |
| |
| /* |
| * Process the remaining eight bytes, which we have already |
| * copied to %ecx and %edx. |
| */ |
| movl 0x0C00(%ebx, %ebp, 4), %edx |
| movzbl %ch, %ebp |
| xorl 0x0800(%ebx, %ebp, 4), %edx |
| shrl $16, %ecx |
| movzbl %cl, %ebp |
| xorl 0x0400(%ebx, %ebp, 4), %edx |
| movzbl %ch, %ebp |
| xorl (%ebx, %ebp, 4), %edx |
| movzbl %al, %ebp |
| |
| xorl 0x1C00(%ebx, %ebp, 4), %edx |
| movzbl %ah, %ebp |
| shrl $16, %eax |
| xorl 0x1800(%ebx, %ebp, 4), %edx |
| movzbl %ah, %ebp |
| movzbl %al, %eax |
| movl 0x1400(%ebx, %eax, 4), %eax |
| addl $8, %esi |
| xorl %edx, %eax |
| xorl 0x1000(%ebx, %ebp, 4), %eax |
| |
| /* Copy the number of remaining bytes to %edi. */ |
| movl 0x18(%esp), %edi |
| |
| .L_rest: |
| /* Check for end of input. */ |
| testl %edi, %edi |
| jz .L_return |
| |
| /* Calculate CRC of the next input byte. */ |
| movzbl (%esi), %ebp |
| incl %esi |
| movzbl %al, %ecx |
| xorl %ecx, %ebp |
| shrl $8, %eax |
| xorl (%ebx, %ebp, 4), %eax |
| decl %edi |
| jmp .L_rest |
| |
| .L_return: |
| /* Complement the final value. */ |
| notl %eax |
| |
| popl %ebp |
| popl %edi |
| popl %esi |
| popl %ebx |
| ret |
| |
| #if defined(PIC) || defined(__PIC__) |
| ALIGN(4, 16) |
| .L_get_pc: |
| movl (%esp), %ebx |
| ret |
| #endif |
| |
| #if defined(__MACH__) && (defined(PIC) || defined(__PIC__)) |
| /* Mach-O PIC */ |
| .section __IMPORT,__pointers,non_lazy_symbol_pointers |
| .L_lzma_crc32_table$non_lazy_ptr: |
| .indirect_symbol LZMA_CRC32_TABLE |
| .long 0 |
| |
| #elif defined(_WIN32) |
| # ifndef LZMA_API_STATIC |
| /* This is equivalent of __declspec(dllexport). */ |
| .section .drectve |
| .ascii " -export:lzma_crc32" |
| # endif |
| |
| #elif !defined(__MSDOS__) |
| /* ELF */ |
| .size LZMA_CRC32, .-LZMA_CRC32 |
| #endif |
| |
| /* |
| * This is needed to support non-executable stack. It's ugly to |
| * use __linux__ here, but I don't know a way to detect when |
| * we are using GNU assembler. |
| */ |
| #if defined(__ELF__) && defined(__linux__) |
| .section .note.GNU-stack,"",@progbits |
| #endif |