Ævar Arnfjörð Bjarmason | d18f76d | 2010-08-17 09:24:38 +0000 | [diff] [blame] | 1 | /* Extended regular expression matching and search library. |
| 2 | Copyright (C) 2002-2007,2009,2010 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, write to the Free |
| 18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 19 | 02110-1301 USA. */ |
| 20 | |
| 21 | static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, |
| 22 | size_t length, reg_syntax_t syntax); |
| 23 | static void re_compile_fastmap_iter (regex_t *bufp, |
| 24 | const re_dfastate_t *init_state, |
| 25 | char *fastmap); |
| 26 | static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len); |
| 27 | #ifdef RE_ENABLE_I18N |
| 28 | static void free_charset (re_charset_t *cset); |
| 29 | #endif /* RE_ENABLE_I18N */ |
| 30 | static void free_workarea_compile (regex_t *preg); |
| 31 | static reg_errcode_t create_initial_state (re_dfa_t *dfa); |
| 32 | #ifdef RE_ENABLE_I18N |
| 33 | static void optimize_utf8 (re_dfa_t *dfa); |
| 34 | #endif |
| 35 | static reg_errcode_t analyze (regex_t *preg); |
| 36 | static reg_errcode_t preorder (bin_tree_t *root, |
| 37 | reg_errcode_t (fn (void *, bin_tree_t *)), |
| 38 | void *extra); |
| 39 | static reg_errcode_t postorder (bin_tree_t *root, |
| 40 | reg_errcode_t (fn (void *, bin_tree_t *)), |
| 41 | void *extra); |
| 42 | static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); |
| 43 | static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); |
| 44 | static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, |
| 45 | bin_tree_t *node); |
| 46 | static reg_errcode_t calc_first (void *extra, bin_tree_t *node); |
| 47 | static reg_errcode_t calc_next (void *extra, bin_tree_t *node); |
| 48 | static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); |
| 49 | static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint); |
| 50 | static int search_duplicated_node (const re_dfa_t *dfa, int org_node, |
| 51 | unsigned int constraint); |
| 52 | static reg_errcode_t calc_eclosure (re_dfa_t *dfa); |
| 53 | static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, |
| 54 | int node, int root); |
| 55 | static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); |
| 56 | static int fetch_number (re_string_t *input, re_token_t *token, |
| 57 | reg_syntax_t syntax); |
| 58 | static int peek_token (re_token_t *token, re_string_t *input, |
| 59 | reg_syntax_t syntax) internal_function; |
| 60 | static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, |
| 61 | reg_syntax_t syntax, reg_errcode_t *err); |
| 62 | static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, |
| 63 | re_token_t *token, reg_syntax_t syntax, |
| 64 | int nest, reg_errcode_t *err); |
| 65 | static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, |
| 66 | re_token_t *token, reg_syntax_t syntax, |
| 67 | int nest, reg_errcode_t *err); |
| 68 | static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, |
| 69 | re_token_t *token, reg_syntax_t syntax, |
| 70 | int nest, reg_errcode_t *err); |
| 71 | static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, |
| 72 | re_token_t *token, reg_syntax_t syntax, |
| 73 | int nest, reg_errcode_t *err); |
| 74 | static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, |
| 75 | re_dfa_t *dfa, re_token_t *token, |
| 76 | reg_syntax_t syntax, reg_errcode_t *err); |
| 77 | static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, |
| 78 | re_token_t *token, reg_syntax_t syntax, |
| 79 | reg_errcode_t *err); |
| 80 | static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, |
| 81 | re_string_t *regexp, |
| 82 | re_token_t *token, int token_len, |
| 83 | re_dfa_t *dfa, |
| 84 | reg_syntax_t syntax, |
| 85 | int accept_hyphen); |
| 86 | static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, |
| 87 | re_string_t *regexp, |
| 88 | re_token_t *token); |
| 89 | #ifdef RE_ENABLE_I18N |
| 90 | static reg_errcode_t build_equiv_class (bitset_t sbcset, |
| 91 | re_charset_t *mbcset, |
| 92 | int *equiv_class_alloc, |
| 93 | const unsigned char *name); |
| 94 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, |
| 95 | bitset_t sbcset, |
| 96 | re_charset_t *mbcset, |
| 97 | int *char_class_alloc, |
| 98 | const char *class_name, |
| 99 | reg_syntax_t syntax); |
| 100 | #else /* not RE_ENABLE_I18N */ |
| 101 | static reg_errcode_t build_equiv_class (bitset_t sbcset, |
| 102 | const unsigned char *name); |
| 103 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, |
| 104 | bitset_t sbcset, |
| 105 | const char *class_name, |
| 106 | reg_syntax_t syntax); |
| 107 | #endif /* not RE_ENABLE_I18N */ |
| 108 | static bin_tree_t *build_charclass_op (re_dfa_t *dfa, |
| 109 | RE_TRANSLATE_TYPE trans, |
| 110 | const char *class_name, |
| 111 | const char *extra, |
| 112 | int non_match, reg_errcode_t *err); |
| 113 | static bin_tree_t *create_tree (re_dfa_t *dfa, |
| 114 | bin_tree_t *left, bin_tree_t *right, |
| 115 | re_token_type_t type); |
| 116 | static bin_tree_t *create_token_tree (re_dfa_t *dfa, |
| 117 | bin_tree_t *left, bin_tree_t *right, |
| 118 | const re_token_t *token); |
| 119 | static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); |
| 120 | static void free_token (re_token_t *node); |
| 121 | static reg_errcode_t free_tree (void *extra, bin_tree_t *node); |
| 122 | static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); |
| 123 | |
| 124 | /* This table gives an error message for each of the error codes listed |
| 125 | in regex.h. Obviously the order here has to be same as there. |
| 126 | POSIX doesn't require that we do anything for REG_NOERROR, |
| 127 | but why not be nice? */ |
| 128 | |
| 129 | const char __re_error_msgid[] attribute_hidden = |
| 130 | { |
| 131 | #define REG_NOERROR_IDX 0 |
| 132 | gettext_noop ("Success") /* REG_NOERROR */ |
| 133 | "\0" |
| 134 | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") |
| 135 | gettext_noop ("No match") /* REG_NOMATCH */ |
| 136 | "\0" |
| 137 | #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") |
| 138 | gettext_noop ("Invalid regular expression") /* REG_BADPAT */ |
| 139 | "\0" |
| 140 | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") |
| 141 | gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ |
| 142 | "\0" |
| 143 | #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") |
| 144 | gettext_noop ("Invalid character class name") /* REG_ECTYPE */ |
| 145 | "\0" |
| 146 | #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") |
| 147 | gettext_noop ("Trailing backslash") /* REG_EESCAPE */ |
| 148 | "\0" |
| 149 | #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") |
| 150 | gettext_noop ("Invalid back reference") /* REG_ESUBREG */ |
| 151 | "\0" |
| 152 | #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") |
| 153 | gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ |
| 154 | "\0" |
| 155 | #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") |
| 156 | gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ |
| 157 | "\0" |
| 158 | #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") |
| 159 | gettext_noop ("Unmatched \\{") /* REG_EBRACE */ |
| 160 | "\0" |
| 161 | #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") |
| 162 | gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ |
| 163 | "\0" |
| 164 | #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") |
| 165 | gettext_noop ("Invalid range end") /* REG_ERANGE */ |
| 166 | "\0" |
| 167 | #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") |
| 168 | gettext_noop ("Memory exhausted") /* REG_ESPACE */ |
| 169 | "\0" |
| 170 | #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") |
| 171 | gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ |
| 172 | "\0" |
| 173 | #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") |
| 174 | gettext_noop ("Premature end of regular expression") /* REG_EEND */ |
| 175 | "\0" |
| 176 | #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") |
| 177 | gettext_noop ("Regular expression too big") /* REG_ESIZE */ |
| 178 | "\0" |
| 179 | #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") |
| 180 | gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ |
| 181 | }; |
| 182 | |
| 183 | const size_t __re_error_msgid_idx[] attribute_hidden = |
| 184 | { |
| 185 | REG_NOERROR_IDX, |
| 186 | REG_NOMATCH_IDX, |
| 187 | REG_BADPAT_IDX, |
| 188 | REG_ECOLLATE_IDX, |
| 189 | REG_ECTYPE_IDX, |
| 190 | REG_EESCAPE_IDX, |
| 191 | REG_ESUBREG_IDX, |
| 192 | REG_EBRACK_IDX, |
| 193 | REG_EPAREN_IDX, |
| 194 | REG_EBRACE_IDX, |
| 195 | REG_BADBR_IDX, |
| 196 | REG_ERANGE_IDX, |
| 197 | REG_ESPACE_IDX, |
| 198 | REG_BADRPT_IDX, |
| 199 | REG_EEND_IDX, |
| 200 | REG_ESIZE_IDX, |
| 201 | REG_ERPAREN_IDX |
| 202 | }; |
| 203 | |
| 204 | /* Entry points for GNU code. */ |
| 205 | |
| 206 | |
| 207 | #ifdef ZOS_USS |
| 208 | |
| 209 | /* For ZOS USS we must define btowc */ |
| 210 | |
| 211 | wchar_t |
| 212 | btowc (int c) |
| 213 | { |
| 214 | wchar_t wtmp[2]; |
| 215 | char tmp[2]; |
| 216 | |
| 217 | tmp[0] = c; |
| 218 | tmp[1] = 0; |
| 219 | |
| 220 | mbtowc (wtmp, tmp, 1); |
| 221 | return wtmp[0]; |
| 222 | } |
| 223 | #endif |
| 224 | |
| 225 | /* re_compile_pattern is the GNU regular expression compiler: it |
| 226 | compiles PATTERN (of length LENGTH) and puts the result in BUFP. |
| 227 | Returns 0 if the pattern was valid, otherwise an error string. |
| 228 | |
| 229 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
| 230 | are set in BUFP on entry. */ |
| 231 | |
| 232 | const char * |
Junio C Hamano | 178b331 | 2010-08-19 15:31:30 -0700 | [diff] [blame^] | 233 | re_compile_pattern (const char *pattern, |
| 234 | size_t length, |
| 235 | struct re_pattern_buffer *bufp) |
Ævar Arnfjörð Bjarmason | d18f76d | 2010-08-17 09:24:38 +0000 | [diff] [blame] | 236 | { |
| 237 | reg_errcode_t ret; |
| 238 | |
| 239 | /* And GNU code determines whether or not to get register information |
| 240 | by passing null for the REGS argument to re_match, etc., not by |
| 241 | setting no_sub, unless RE_NO_SUB is set. */ |
| 242 | bufp->no_sub = !!(re_syntax_options & RE_NO_SUB); |
| 243 | |
| 244 | /* Match anchors at newline. */ |
| 245 | bufp->newline_anchor = 1; |
| 246 | |
| 247 | ret = re_compile_internal (bufp, pattern, length, re_syntax_options); |
| 248 | |
| 249 | if (!ret) |
| 250 | return NULL; |
| 251 | return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); |
| 252 | } |
| 253 | #ifdef _LIBC |
| 254 | weak_alias (__re_compile_pattern, re_compile_pattern) |
| 255 | #endif |
| 256 | |
| 257 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can |
| 258 | also be assigned to arbitrarily: each pattern buffer stores its own |
| 259 | syntax, so it can be changed between regex compilations. */ |
| 260 | /* This has no initializer because initialized variables in Emacs |
| 261 | become read-only after dumping. */ |
| 262 | reg_syntax_t re_syntax_options; |
| 263 | |
| 264 | |
| 265 | /* Specify the precise syntax of regexps for compilation. This provides |
| 266 | for compatibility for various utilities which historically have |
| 267 | different, incompatible syntaxes. |
| 268 | |
| 269 | The argument SYNTAX is a bit mask comprised of the various bits |
| 270 | defined in regex.h. We return the old syntax. */ |
| 271 | |
| 272 | reg_syntax_t |
Junio C Hamano | 178b331 | 2010-08-19 15:31:30 -0700 | [diff] [blame^] | 273 | re_set_syntax (reg_syntax_t syntax) |
Ævar Arnfjörð Bjarmason | d18f76d | 2010-08-17 09:24:38 +0000 | [diff] [blame] | 274 | { |
| 275 | reg_syntax_t ret = re_syntax_options; |
| 276 | |
| 277 | re_syntax_options = syntax; |
| 278 | return ret; |
| 279 | } |
| 280 | #ifdef _LIBC |
| 281 | weak_alias (__re_set_syntax, re_set_syntax) |
| 282 | #endif |
| 283 | |
| 284 | int |
Junio C Hamano | 178b331 | 2010-08-19 15:31:30 -0700 | [diff] [blame^] | 285 | re_compile_fastmap (struct re_pattern_buffer *bufp) |
Ævar Arnfjörð Bjarmason | d18f76d | 2010-08-17 09:24:38 +0000 | [diff] [blame] | 286 | { |
| 287 | re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; |
| 288 | char *fastmap = bufp->fastmap; |
| 289 | |
| 290 | memset (fastmap, '\0', sizeof (char) * SBC_MAX); |
| 291 | re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); |
| 292 | if (dfa->init_state != dfa->init_state_word) |
| 293 | re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); |
| 294 | if (dfa->init_state != dfa->init_state_nl) |
| 295 | re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); |
| 296 | if (dfa->init_state != dfa->init_state_begbuf) |
| 297 | re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); |
| 298 | bufp->fastmap_accurate = 1; |
| 299 | return 0; |
| 300 | } |
| 301 | #ifdef _LIBC |
| 302 | weak_alias (__re_compile_fastmap, re_compile_fastmap) |
| 303 | #endif |
| 304 | |
| 305 | static inline void |
| 306 | __attribute ((always_inline)) |
| 307 | re_set_fastmap (char *fastmap, int icase, int ch) |
| 308 | { |
| 309 | fastmap[ch] = 1; |
| 310 | if (icase) |
| 311 | fastmap[tolower (ch)] = 1; |
| 312 | } |
| 313 | |
| 314 | /* Helper function for re_compile_fastmap. |
| 315 | Compile fastmap for the initial_state INIT_STATE. */ |
| 316 | |
| 317 | static void |
| 318 | re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, |
| 319 | char *fastmap) |
| 320 | { |
| 321 | volatile re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; |
| 322 | int node_cnt; |
| 323 | int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE)); |
| 324 | for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) |
| 325 | { |
| 326 | int node = init_state->nodes.elems[node_cnt]; |
| 327 | re_token_type_t type = dfa->nodes[node].type; |
| 328 | |
| 329 | if (type == CHARACTER) |
| 330 | { |
| 331 | re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); |
| 332 | #ifdef RE_ENABLE_I18N |
| 333 | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) |
| 334 | { |
| 335 | unsigned char *buf = re_malloc (unsigned char, dfa->mb_cur_max), *p; |
| 336 | wchar_t wc; |
| 337 | mbstate_t state; |
| 338 | |
| 339 | p = buf; |
| 340 | *p++ = dfa->nodes[node].opr.c; |
| 341 | while (++node < dfa->nodes_len |
| 342 | && dfa->nodes[node].type == CHARACTER |
| 343 | && dfa->nodes[node].mb_partial) |
| 344 | *p++ = dfa->nodes[node].opr.c; |
| 345 | memset (&state, '\0', sizeof (state)); |
| 346 | if (__mbrtowc (&wc, (const char *) buf, p - buf, |
| 347 | &state) == p - buf |
| 348 | && (__wcrtomb ((char *) buf, towlower (wc), &state) |
| 349 | != (size_t) -1)) |
| 350 | re_set_fastmap (fastmap, 0, buf[0]); |
| 351 | re_free (buf); |
| 352 | } |
| 353 | #endif |
| 354 | } |
| 355 | else if (type == SIMPLE_BRACKET) |
| 356 | { |
| 357 | int i, ch; |
| 358 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
| 359 | { |
| 360 | int j; |
| 361 | bitset_word_t w = dfa->nodes[node].opr.sbcset[i]; |
| 362 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
| 363 | if (w & ((bitset_word_t) 1 << j)) |
| 364 | re_set_fastmap (fastmap, icase, ch); |
| 365 | } |
| 366 | } |
| 367 | #ifdef RE_ENABLE_I18N |
| 368 | else if (type == COMPLEX_BRACKET) |
| 369 | { |
| 370 | re_charset_t *cset = dfa->nodes[node].opr.mbcset; |
| 371 | int i; |
| 372 | |
| 373 | # ifdef _LIBC |
| 374 | /* See if we have to try all bytes which start multiple collation |
| 375 | elements. |
| 376 | e.g. In da_DK, we want to catch 'a' since "aa" is a valid |
| 377 | collation element, and don't catch 'b' since 'b' is |
| 378 | the only collation element which starts from 'b' (and |
| 379 | it is caught by SIMPLE_BRACKET). */ |
| 380 | if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0 |
| 381 | && (cset->ncoll_syms || cset->nranges)) |
| 382 | { |
| 383 | const int32_t *table = (const int32_t *) |
| 384 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
| 385 | for (i = 0; i < SBC_MAX; ++i) |
| 386 | if (table[i] < 0) |
| 387 | re_set_fastmap (fastmap, icase, i); |
| 388 | } |
| 389 | # endif /* _LIBC */ |
| 390 | |
| 391 | /* See if we have to start the match at all multibyte characters, |
| 392 | i.e. where we would not find an invalid sequence. This only |
| 393 | applies to multibyte character sets; for single byte character |
| 394 | sets, the SIMPLE_BRACKET again suffices. */ |
| 395 | if (dfa->mb_cur_max > 1 |
| 396 | && (cset->nchar_classes || cset->non_match || cset->nranges |
| 397 | # ifdef _LIBC |
| 398 | || cset->nequiv_classes |
| 399 | # endif /* _LIBC */ |
| 400 | )) |
| 401 | { |
| 402 | unsigned char c = 0; |
| 403 | do |
| 404 | { |
| 405 | mbstate_t mbs; |
| 406 | memset (&mbs, 0, sizeof (mbs)); |
| 407 | if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2) |
| 408 | re_set_fastmap (fastmap, false, (int) c); |
| 409 | } |
| 410 | while (++c != 0); |
| 411 | } |
| 412 | |
| 413 | else |
| 414 | { |
| 415 | /* ... Else catch all bytes which can start the mbchars. */ |
| 416 | for (i = 0; i < cset->nmbchars; ++i) |
| 417 | { |
| 418 | char buf[256]; |
| 419 | mbstate_t state; |
| 420 | memset (&state, '\0', sizeof (state)); |
| 421 | if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) |
| 422 | re_set_fastmap (fastmap, icase, *(unsigned char *) buf); |
| 423 | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) |
| 424 | { |
| 425 | if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) |
| 426 | != (size_t) -1) |
| 427 | re_set_fastmap (fastmap, false, *(unsigned char *) buf); |
| 428 | } |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | #endif /* RE_ENABLE_I18N */ |
| 433 | else if (type == OP_PERIOD |
| 434 | #ifdef RE_ENABLE_I18N |
| 435 | || type == OP_UTF8_PERIOD |
| 436 | #endif /* RE_ENABLE_I18N */ |
| 437 | || type == END_OF_RE) |
| 438 | { |
| 439 | memset (fastmap, '\1', sizeof (char) * SBC_MAX); |
| 440 | if (type == END_OF_RE) |
| 441 | bufp->can_be_null = 1; |
| 442 | return; |
| 443 | } |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | /* Entry point for POSIX code. */ |
| 448 | /* regcomp takes a regular expression as a string and compiles it. |
| 449 | |
| 450 | PREG is a regex_t *. We do not expect any fields to be initialized, |
| 451 | since POSIX says we shouldn't. Thus, we set |
| 452 | |
| 453 | `buffer' to the compiled pattern; |
| 454 | `used' to the length of the compiled pattern; |
| 455 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
| 456 | REG_EXTENDED bit in CFLAGS is set; otherwise, to |
| 457 | RE_SYNTAX_POSIX_BASIC; |
| 458 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; |
| 459 | `fastmap' to an allocated space for the fastmap; |
| 460 | `fastmap_accurate' to zero; |
| 461 | `re_nsub' to the number of subexpressions in PATTERN. |
| 462 | |
| 463 | PATTERN is the address of the pattern string. |
| 464 | |
| 465 | CFLAGS is a series of bits which affect compilation. |
| 466 | |
| 467 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we |
| 468 | use POSIX basic syntax. |
| 469 | |
| 470 | If REG_NEWLINE is set, then . and [^...] don't match newline. |
| 471 | Also, regexec will try a match beginning after every newline. |
| 472 | |
| 473 | If REG_ICASE is set, then we considers upper- and lowercase |
| 474 | versions of letters to be equivalent when matching. |
| 475 | |
| 476 | If REG_NOSUB is set, then when PREG is passed to regexec, that |
| 477 | routine will report only success or failure, and nothing about the |
| 478 | registers. |
| 479 | |
| 480 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
| 481 | the return codes and their meanings.) */ |
| 482 | |
| 483 | int |
Junio C Hamano | 178b331 | 2010-08-19 15:31:30 -0700 | [diff] [blame^] | 484 | regcomp (regex_t *__restrict preg, |
| 485 | const char *__restrict pattern, |
| 486 | int cflags) |
Ævar Arnfjörð Bjarmason | d18f76d | 2010-08-17 09:24:38 +0000 | [diff] [blame] | 487 | { |
| 488 | reg_errcode_t ret; |
| 489 | reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED |
| 490 | : RE_SYNTAX_POSIX_BASIC); |
| 491 | |
| 492 | preg->buffer = NULL; |
| 493 | preg->allocated = 0; |
| 494 | preg->used = 0; |
| 495 | |
| 496 | /* Try to allocate space for the fastmap. */ |
| 497 | preg->fastmap = re_malloc (char, SBC_MAX); |
| 498 | if (BE (preg->fastmap == NULL, 0)) |
| 499 | return REG_ESPACE; |
| 500 | |
| 501 | syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; |
| 502 | |
| 503 | /* If REG_NEWLINE is set, newlines are treated differently. */ |
| 504 | if (cflags & REG_NEWLINE) |
| 505 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
| 506 | syntax &= ~RE_DOT_NEWLINE; |
| 507 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
| 508 | /* It also changes the matching behavior. */ |
| 509 | preg->newline_anchor = 1; |
| 510 | } |
| 511 | else |
| 512 | preg->newline_anchor = 0; |
| 513 | preg->no_sub = !!(cflags & REG_NOSUB); |
| 514 | preg->translate = NULL; |
| 515 | |
| 516 | ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); |
| 517 | |
| 518 | /* POSIX doesn't distinguish between an unmatched open-group and an |
| 519 | unmatched close-group: both are REG_EPAREN. */ |
| 520 | if (ret == REG_ERPAREN) |
| 521 | ret = REG_EPAREN; |
| 522 | |
| 523 | /* We have already checked preg->fastmap != NULL. */ |
| 524 | if (BE (ret == REG_NOERROR, 1)) |
| 525 | /* Compute the fastmap now, since regexec cannot modify the pattern |
| 526 | buffer. This function never fails in this implementation. */ |
| 527 | (void) re_compile_fastmap (preg); |
| 528 | else |
| 529 | { |
| 530 | /* Some error occurred while compiling the expression. */ |
| 531 | re_free (preg->fastmap); |
| 532 | preg->fastmap = NULL; |
| 533 | } |
| 534 | |
| 535 | return (int) ret; |
| 536 | } |
| 537 | #ifdef _LIBC |
| 538 | weak_alias (__regcomp, regcomp) |
| 539 | #endif |
| 540 | |
| 541 | /* Returns a message corresponding to an error code, ERRCODE, returned |
| 542 | from either regcomp or regexec. We don't use PREG here. */ |
| 543 | |
| 544 | size_t |
Frank Li | de83172 | 2010-08-17 09:24:40 +0000 | [diff] [blame] | 545 | regerror(int errcode, const regex_t *__restrict preg, |
| 546 | char *__restrict errbuf, size_t errbuf_size) |
Ævar Arnfjörð Bjarmason | d18f76d | 2010-08-17 09:24:38 +0000 | [diff] [blame] | 547 | { |
| 548 | const char *msg; |
| 549 | size_t msg_size; |
| 550 | |
| 551 | if (BE (errcode < 0 |
| 552 | || errcode >= (int) (sizeof (__re_error_msgid_idx) |
| 553 | / sizeof (__re_error_msgid_idx[0])), 0)) |
| 554 | /* Only error codes returned by the rest of the code should be passed |
| 555 | to this routine. If we are given anything else, or if other regex |
| 556 | code generates an invalid error code, then the program has a bug. |
| 557 | Dump core so we can fix it. */ |
| 558 | abort (); |
| 559 | |
| 560 | msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); |
| 561 | |
| 562 | msg_size = strlen (msg) + 1; /* Includes the null. */ |
| 563 | |
| 564 | if (BE (errbuf_size != 0, 1)) |
| 565 | { |
| 566 | if (BE (msg_size > errbuf_size, 0)) |
| 567 | { |
| 568 | memcpy (errbuf, msg, errbuf_size - 1); |
| 569 | errbuf[errbuf_size - 1] = 0; |
| 570 | } |
| 571 | else |
| 572 | memcpy (errbuf, msg, msg_size); |
| 573 | } |
| 574 | |
| 575 | return msg_size; |
| 576 | } |
| 577 | #ifdef _LIBC |
| 578 | weak_alias (__regerror, regerror) |
| 579 | #endif |
| 580 | |
| 581 | |
| 582 | #ifdef RE_ENABLE_I18N |
| 583 | /* This static array is used for the map to single-byte characters when |
| 584 | UTF-8 is used. Otherwise we would allocate memory just to initialize |
| 585 | it the same all the time. UTF-8 is the preferred encoding so this is |
| 586 | a worthwhile optimization. */ |
| 587 | #if __GNUC__ >= 3 |
| 588 | static const bitset_t utf8_sb_map = { |
| 589 | /* Set the first 128 bits. */ |
| 590 | [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX |
| 591 | }; |
| 592 | #else /* ! (__GNUC__ >= 3) */ |
| 593 | static bitset_t utf8_sb_map; |
| 594 | #endif /* __GNUC__ >= 3 */ |
| 595 | #endif /* RE_ENABLE_I18N */ |
| 596 | |
| 597 | |
| 598 | static void |
| 599 | free_dfa_content (re_dfa_t *dfa) |
| 600 | { |
| 601 | int i, j; |
| 602 | |
| 603 | if (dfa->nodes) |
| 604 | for (i = 0; i < dfa->nodes_len; ++i) |
| 605 | free_token (dfa->nodes + i); |
| 606 | re_free (dfa->nexts); |
| 607 | for (i = 0; i < dfa->nodes_len; ++i) |
| 608 | { |
| 609 | if (dfa->eclosures != NULL) |
| 610 | re_node_set_free (dfa->eclosures + i); |
| 611 | if (dfa->inveclosures != NULL) |
| 612 | re_node_set_free (dfa->inveclosures + i); |
| 613 | if (dfa->edests != NULL) |
| 614 | re_node_set_free (dfa->edests + i); |
| 615 | } |
| 616 | re_free (dfa->edests); |
| 617 | re_free (dfa->eclosures); |
| 618 | re_free (dfa->inveclosures); |
| 619 | re_free (dfa->nodes); |
| 620 | |
| 621 | if (dfa->state_table) |
| 622 | for (i = 0; i <= dfa->state_hash_mask; ++i) |
| 623 | { |
| 624 | struct re_state_table_entry *entry = dfa->state_table + i; |
| 625 | for (j = 0; j < entry->num; ++j) |
| 626 | { |
| 627 | re_dfastate_t *state = entry->array[j]; |
| 628 | free_state (state); |
| 629 | } |
| 630 | re_free (entry->array); |
| 631 | } |
| 632 | re_free (dfa->state_table); |
| 633 | #ifdef RE_ENABLE_I18N |
| 634 | if (dfa->sb_char != utf8_sb_map) |
| 635 | re_free (dfa->sb_char); |
| 636 | #endif |
| 637 | re_free (dfa->subexp_map); |
| 638 | #ifdef DEBUG |
| 639 | re_free (dfa->re_str); |
| 640 | #endif |
| 641 | |
| 642 | re_free (dfa); |
| 643 | } |
| 644 | |
| 645 | |
| 646 | /* Free dynamically allocated space used by PREG. */ |
| 647 | |
| 648 | void |
Junio C Hamano | 178b331 | 2010-08-19 15:31:30 -0700 | [diff] [blame^] | 649 | regfree (regex_t *preg) |
Ævar Arnfjörð Bjarmason | d18f76d | 2010-08-17 09:24:38 +0000 | [diff] [blame] | 650 | { |
| 651 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 652 | if (BE (dfa != NULL, 1)) |
| 653 | free_dfa_content (dfa); |
| 654 | preg->buffer = NULL; |
| 655 | preg->allocated = 0; |
| 656 | |
| 657 | re_free (preg->fastmap); |
| 658 | preg->fastmap = NULL; |
| 659 | |
| 660 | re_free (preg->translate); |
| 661 | preg->translate = NULL; |
| 662 | } |
| 663 | #ifdef _LIBC |
| 664 | weak_alias (__regfree, regfree) |
| 665 | #endif |
| 666 | |
| 667 | /* Entry points compatible with 4.2 BSD regex library. We don't define |
| 668 | them unless specifically requested. */ |
| 669 | |
| 670 | #if defined _REGEX_RE_COMP || defined _LIBC |
| 671 | |
| 672 | /* BSD has one and only one pattern buffer. */ |
| 673 | static struct re_pattern_buffer re_comp_buf; |
| 674 | |
| 675 | char * |
| 676 | # ifdef _LIBC |
| 677 | /* Make these definitions weak in libc, so POSIX programs can redefine |
| 678 | these names if they don't use our functions, and still use |
| 679 | regcomp/regexec above without link errors. */ |
| 680 | weak_function |
| 681 | # endif |
| 682 | re_comp (s) |
| 683 | const char *s; |
| 684 | { |
| 685 | reg_errcode_t ret; |
| 686 | char *fastmap; |
| 687 | |
| 688 | if (!s) |
| 689 | { |
| 690 | if (!re_comp_buf.buffer) |
| 691 | return gettext ("No previous regular expression"); |
| 692 | return 0; |
| 693 | } |
| 694 | |
| 695 | if (re_comp_buf.buffer) |
| 696 | { |
| 697 | fastmap = re_comp_buf.fastmap; |
| 698 | re_comp_buf.fastmap = NULL; |
| 699 | __regfree (&re_comp_buf); |
| 700 | memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); |
| 701 | re_comp_buf.fastmap = fastmap; |
| 702 | } |
| 703 | |
| 704 | if (re_comp_buf.fastmap == NULL) |
| 705 | { |
| 706 | re_comp_buf.fastmap = (char *) malloc (SBC_MAX); |
| 707 | if (re_comp_buf.fastmap == NULL) |
| 708 | return (char *) gettext (__re_error_msgid |
| 709 | + __re_error_msgid_idx[(int) REG_ESPACE]); |
| 710 | } |
| 711 | |
| 712 | /* Since `re_exec' always passes NULL for the `regs' argument, we |
| 713 | don't need to initialize the pattern buffer fields which affect it. */ |
| 714 | |
| 715 | /* Match anchors at newlines. */ |
| 716 | re_comp_buf.newline_anchor = 1; |
| 717 | |
| 718 | ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); |
| 719 | |
| 720 | if (!ret) |
| 721 | return NULL; |
| 722 | |
| 723 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ |
| 724 | return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); |
| 725 | } |
| 726 | |
| 727 | #ifdef _LIBC |
| 728 | libc_freeres_fn (free_mem) |
| 729 | { |
| 730 | __regfree (&re_comp_buf); |
| 731 | } |
| 732 | #endif |
| 733 | |
| 734 | #endif /* _REGEX_RE_COMP */ |
| 735 | |
| 736 | /* Internal entry point. |
| 737 | Compile the regular expression PATTERN, whose length is LENGTH. |
| 738 | SYNTAX indicate regular expression's syntax. */ |
| 739 | |
| 740 | static reg_errcode_t |
| 741 | re_compile_internal (regex_t *preg, const char * pattern, size_t length, |
| 742 | reg_syntax_t syntax) |
| 743 | { |
| 744 | reg_errcode_t err = REG_NOERROR; |
| 745 | re_dfa_t *dfa; |
| 746 | re_string_t regexp; |
| 747 | |
| 748 | /* Initialize the pattern buffer. */ |
| 749 | preg->fastmap_accurate = 0; |
| 750 | preg->syntax = syntax; |
| 751 | preg->not_bol = preg->not_eol = 0; |
| 752 | preg->used = 0; |
| 753 | preg->re_nsub = 0; |
| 754 | preg->can_be_null = 0; |
| 755 | preg->regs_allocated = REGS_UNALLOCATED; |
| 756 | |
| 757 | /* Initialize the dfa. */ |
| 758 | dfa = (re_dfa_t *) preg->buffer; |
| 759 | if (BE (preg->allocated < sizeof (re_dfa_t), 0)) |
| 760 | { |
| 761 | /* If zero allocated, but buffer is non-null, try to realloc |
| 762 | enough space. This loses if buffer's address is bogus, but |
| 763 | that is the user's responsibility. If ->buffer is NULL this |
| 764 | is a simple allocation. */ |
| 765 | dfa = re_realloc (preg->buffer, re_dfa_t, 1); |
| 766 | if (dfa == NULL) |
| 767 | return REG_ESPACE; |
| 768 | preg->allocated = sizeof (re_dfa_t); |
| 769 | preg->buffer = (unsigned char *) dfa; |
| 770 | } |
| 771 | preg->used = sizeof (re_dfa_t); |
| 772 | |
| 773 | err = init_dfa (dfa, length); |
| 774 | if (BE (err != REG_NOERROR, 0)) |
| 775 | { |
| 776 | free_dfa_content (dfa); |
| 777 | preg->buffer = NULL; |
| 778 | preg->allocated = 0; |
| 779 | return err; |
| 780 | } |
| 781 | #ifdef DEBUG |
| 782 | /* Note: length+1 will not overflow since it is checked in init_dfa. */ |
| 783 | dfa->re_str = re_malloc (char, length + 1); |
| 784 | strncpy (dfa->re_str, pattern, length + 1); |
| 785 | #endif |
| 786 | |
| 787 | __libc_lock_init (dfa->lock); |
| 788 | |
| 789 | err = re_string_construct (®exp, pattern, length, preg->translate, |
| 790 | syntax & RE_ICASE, dfa); |
| 791 | if (BE (err != REG_NOERROR, 0)) |
| 792 | { |
| 793 | re_compile_internal_free_return: |
| 794 | free_workarea_compile (preg); |
| 795 | re_string_destruct (®exp); |
| 796 | free_dfa_content (dfa); |
| 797 | preg->buffer = NULL; |
| 798 | preg->allocated = 0; |
| 799 | return err; |
| 800 | } |
| 801 | |
| 802 | /* Parse the regular expression, and build a structure tree. */ |
| 803 | preg->re_nsub = 0; |
| 804 | dfa->str_tree = parse (®exp, preg, syntax, &err); |
| 805 | if (BE (dfa->str_tree == NULL, 0)) |
| 806 | goto re_compile_internal_free_return; |
| 807 | |
| 808 | /* Analyze the tree and create the nfa. */ |
| 809 | err = analyze (preg); |
| 810 | if (BE (err != REG_NOERROR, 0)) |
| 811 | goto re_compile_internal_free_return; |
| 812 | |
| 813 | #ifdef RE_ENABLE_I18N |
| 814 | /* If possible, do searching in single byte encoding to speed things up. */ |
| 815 | if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL) |
| 816 | optimize_utf8 (dfa); |
| 817 | #endif |
| 818 | |
| 819 | /* Then create the initial state of the dfa. */ |
| 820 | err = create_initial_state (dfa); |
| 821 | |
| 822 | /* Release work areas. */ |
| 823 | free_workarea_compile (preg); |
| 824 | re_string_destruct (®exp); |
| 825 | |
| 826 | if (BE (err != REG_NOERROR, 0)) |
| 827 | { |
| 828 | free_dfa_content (dfa); |
| 829 | preg->buffer = NULL; |
| 830 | preg->allocated = 0; |
| 831 | } |
| 832 | |
| 833 | return err; |
| 834 | } |
| 835 | |
| 836 | /* Initialize DFA. We use the length of the regular expression PAT_LEN |
| 837 | as the initial length of some arrays. */ |
| 838 | |
| 839 | static reg_errcode_t |
| 840 | init_dfa (re_dfa_t *dfa, size_t pat_len) |
| 841 | { |
| 842 | unsigned int table_size; |
| 843 | #ifndef _LIBC |
| 844 | char *codeset_name; |
| 845 | #endif |
| 846 | |
| 847 | memset (dfa, '\0', sizeof (re_dfa_t)); |
| 848 | |
| 849 | /* Force allocation of str_tree_storage the first time. */ |
| 850 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; |
| 851 | |
| 852 | /* Avoid overflows. */ |
| 853 | if (pat_len == SIZE_MAX) |
| 854 | return REG_ESPACE; |
| 855 | |
| 856 | dfa->nodes_alloc = pat_len + 1; |
| 857 | dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); |
| 858 | |
| 859 | /* table_size = 2 ^ ceil(log pat_len) */ |
| 860 | for (table_size = 1; ; table_size <<= 1) |
| 861 | if (table_size > pat_len) |
| 862 | break; |
| 863 | |
| 864 | dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size); |
| 865 | dfa->state_hash_mask = table_size - 1; |
| 866 | |
| 867 | dfa->mb_cur_max = MB_CUR_MAX; |
| 868 | #ifdef _LIBC |
| 869 | if (dfa->mb_cur_max == 6 |
| 870 | && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) |
| 871 | dfa->is_utf8 = 1; |
| 872 | dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) |
| 873 | != 0); |
| 874 | #else |
| 875 | # ifdef HAVE_LANGINFO_CODESET |
| 876 | codeset_name = nl_langinfo (CODESET); |
| 877 | # else |
| 878 | codeset_name = getenv ("LC_ALL"); |
| 879 | if (codeset_name == NULL || codeset_name[0] == '\0') |
| 880 | codeset_name = getenv ("LC_CTYPE"); |
| 881 | if (codeset_name == NULL || codeset_name[0] == '\0') |
| 882 | codeset_name = getenv ("LANG"); |
| 883 | if (codeset_name == NULL) |
| 884 | codeset_name = ""; |
| 885 | else if (strchr (codeset_name, '.') != NULL) |
| 886 | codeset_name = strchr (codeset_name, '.') + 1; |
| 887 | # endif |
| 888 | |
| 889 | /* strcasecmp isn't a standard interface. brute force check */ |
| 890 | #if 0 |
| 891 | if (strcasecmp (codeset_name, "UTF-8") == 0 |
| 892 | || strcasecmp (codeset_name, "UTF8") == 0) |
| 893 | dfa->is_utf8 = 1; |
| 894 | #else |
| 895 | if ( (codeset_name[0] == 'U' || codeset_name[0] == 'u') |
| 896 | && (codeset_name[1] == 'T' || codeset_name[1] == 't') |
| 897 | && (codeset_name[2] == 'F' || codeset_name[2] == 'f') |
| 898 | && (codeset_name[3] == '-' |
| 899 | ? codeset_name[4] == '8' && codeset_name[5] == '\0' |
| 900 | : codeset_name[3] == '8' && codeset_name[4] == '\0')) |
| 901 | dfa->is_utf8 = 1; |
| 902 | #endif |
| 903 | |
| 904 | /* We check exhaustively in the loop below if this charset is a |
| 905 | superset of ASCII. */ |
| 906 | dfa->map_notascii = 0; |
| 907 | #endif |
| 908 | |
| 909 | #ifdef RE_ENABLE_I18N |
| 910 | if (dfa->mb_cur_max > 1) |
| 911 | { |
| 912 | if (dfa->is_utf8) |
| 913 | { |
| 914 | #if !defined(__GNUC__) || __GNUC__ < 3 |
| 915 | static short utf8_sb_map_inited = 0; |
| 916 | |
| 917 | if (! utf8_sb_map_inited) |
| 918 | { |
| 919 | int i; |
| 920 | |
| 921 | utf8_sb_map_inited = 0; |
| 922 | for (i = 0; i <= 0x80 / BITSET_WORD_BITS - 1; i++) |
| 923 | utf8_sb_map[i] = BITSET_WORD_MAX; |
| 924 | } |
| 925 | #endif |
| 926 | dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; |
| 927 | } |
| 928 | else |
| 929 | { |
| 930 | int i, j, ch; |
| 931 | |
| 932 | dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
| 933 | if (BE (dfa->sb_char == NULL, 0)) |
| 934 | return REG_ESPACE; |
| 935 | |
| 936 | /* Set the bits corresponding to single byte chars. */ |
| 937 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
| 938 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
| 939 | { |
| 940 | wint_t wch = __btowc (ch); |
| 941 | if (wch != WEOF) |
| 942 | dfa->sb_char[i] |= (bitset_word_t) 1 << j; |
| 943 | # ifndef _LIBC |
| 944 | if (isascii (ch) && wch != ch) |
| 945 | dfa->map_notascii = 1; |
| 946 | # endif |
| 947 | } |
| 948 | } |
| 949 | } |
| 950 | #endif |
| 951 | |
| 952 | if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) |
| 953 | return REG_ESPACE; |
| 954 | return REG_NOERROR; |
| 955 | } |
| 956 | |
| 957 | /* Initialize WORD_CHAR table, which indicate which character is |
| 958 | "word". In this case "word" means that it is the word construction |
| 959 | character used by some operators like "\<", "\>", etc. */ |
| 960 | |
| 961 | static void |
| 962 | internal_function |
| 963 | init_word_char (re_dfa_t *dfa) |
| 964 | { |
| 965 | int i, j, ch; |
| 966 | dfa->word_ops_used = 1; |
| 967 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
| 968 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
| 969 | if (isalnum (ch) || ch == '_') |
| 970 | dfa->word_char[i] |= (bitset_word_t) 1 << j; |
| 971 | } |
| 972 | |
| 973 | /* Free the work area which are only used while compiling. */ |
| 974 | |
| 975 | static void |
| 976 | free_workarea_compile (regex_t *preg) |
| 977 | { |
| 978 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 979 | bin_tree_storage_t *storage, *next; |
| 980 | for (storage = dfa->str_tree_storage; storage; storage = next) |
| 981 | { |
| 982 | next = storage->next; |
| 983 | re_free (storage); |
| 984 | } |
| 985 | dfa->str_tree_storage = NULL; |
| 986 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; |
| 987 | dfa->str_tree = NULL; |
| 988 | re_free (dfa->org_indices); |
| 989 | dfa->org_indices = NULL; |
| 990 | } |
| 991 | |
| 992 | /* Create initial states for all contexts. */ |
| 993 | |
| 994 | static reg_errcode_t |
| 995 | create_initial_state (re_dfa_t *dfa) |
| 996 | { |
| 997 | int first, i; |
| 998 | reg_errcode_t err; |
| 999 | re_node_set init_nodes; |
| 1000 | |
| 1001 | /* Initial states have the epsilon closure of the node which is |
| 1002 | the first node of the regular expression. */ |
| 1003 | first = dfa->str_tree->first->node_idx; |
| 1004 | dfa->init_node = first; |
| 1005 | err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); |
| 1006 | if (BE (err != REG_NOERROR, 0)) |
| 1007 | return err; |
| 1008 | |
| 1009 | /* The back-references which are in initial states can epsilon transit, |
| 1010 | since in this case all of the subexpressions can be null. |
| 1011 | Then we add epsilon closures of the nodes which are the next nodes of |
| 1012 | the back-references. */ |
| 1013 | if (dfa->nbackref > 0) |
| 1014 | for (i = 0; i < init_nodes.nelem; ++i) |
| 1015 | { |
| 1016 | int node_idx = init_nodes.elems[i]; |
| 1017 | re_token_type_t type = dfa->nodes[node_idx].type; |
| 1018 | |
| 1019 | int clexp_idx; |
| 1020 | if (type != OP_BACK_REF) |
| 1021 | continue; |
| 1022 | for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) |
| 1023 | { |
| 1024 | re_token_t *clexp_node; |
| 1025 | clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; |
| 1026 | if (clexp_node->type == OP_CLOSE_SUBEXP |
| 1027 | && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) |
| 1028 | break; |
| 1029 | } |
| 1030 | if (clexp_idx == init_nodes.nelem) |
| 1031 | continue; |
| 1032 | |
| 1033 | if (type == OP_BACK_REF) |
| 1034 | { |
| 1035 | int dest_idx = dfa->edests[node_idx].elems[0]; |
| 1036 | if (!re_node_set_contains (&init_nodes, dest_idx)) |
| 1037 | { |
| 1038 | reg_errcode_t err = re_node_set_merge (&init_nodes, |
| 1039 | dfa->eclosures |
| 1040 | + dest_idx); |
| 1041 | if (err != REG_NOERROR) |
| 1042 | return err; |
| 1043 | i = 0; |
| 1044 | } |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | /* It must be the first time to invoke acquire_state. */ |
| 1049 | dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); |
| 1050 | /* We don't check ERR here, since the initial state must not be NULL. */ |
| 1051 | if (BE (dfa->init_state == NULL, 0)) |
| 1052 | return err; |
| 1053 | if (dfa->init_state->has_constraint) |
| 1054 | { |
| 1055 | dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, |
| 1056 | CONTEXT_WORD); |
| 1057 | dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, |
| 1058 | CONTEXT_NEWLINE); |
| 1059 | dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, |
| 1060 | &init_nodes, |
| 1061 | CONTEXT_NEWLINE |
| 1062 | | CONTEXT_BEGBUF); |
| 1063 | if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL |
| 1064 | || dfa->init_state_begbuf == NULL, 0)) |
| 1065 | return err; |
| 1066 | } |
| 1067 | else |
| 1068 | dfa->init_state_word = dfa->init_state_nl |
| 1069 | = dfa->init_state_begbuf = dfa->init_state; |
| 1070 | |
| 1071 | re_node_set_free (&init_nodes); |
| 1072 | return REG_NOERROR; |
| 1073 | } |
| 1074 | |
| 1075 | #ifdef RE_ENABLE_I18N |
| 1076 | /* If it is possible to do searching in single byte encoding instead of UTF-8 |
| 1077 | to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change |
| 1078 | DFA nodes where needed. */ |
| 1079 | |
| 1080 | static void |
| 1081 | optimize_utf8 (re_dfa_t *dfa) |
| 1082 | { |
| 1083 | int node, i, mb_chars = 0, has_period = 0; |
| 1084 | |
| 1085 | for (node = 0; node < dfa->nodes_len; ++node) |
| 1086 | switch (dfa->nodes[node].type) |
| 1087 | { |
| 1088 | case CHARACTER: |
| 1089 | if (dfa->nodes[node].opr.c >= 0x80) |
| 1090 | mb_chars = 1; |
| 1091 | break; |
| 1092 | case ANCHOR: |
| 1093 | switch (dfa->nodes[node].opr.ctx_type) |
| 1094 | { |
| 1095 | case LINE_FIRST: |
| 1096 | case LINE_LAST: |
| 1097 | case BUF_FIRST: |
| 1098 | case BUF_LAST: |
| 1099 | break; |
| 1100 | default: |
| 1101 | /* Word anchors etc. cannot be handled. It's okay to test |
| 1102 | opr.ctx_type since constraints (for all DFA nodes) are |
| 1103 | created by ORing one or more opr.ctx_type values. */ |
| 1104 | return; |
| 1105 | } |
| 1106 | break; |
| 1107 | case OP_PERIOD: |
| 1108 | has_period = 1; |
| 1109 | break; |
| 1110 | case OP_BACK_REF: |
| 1111 | case OP_ALT: |
| 1112 | case END_OF_RE: |
| 1113 | case OP_DUP_ASTERISK: |
| 1114 | case OP_OPEN_SUBEXP: |
| 1115 | case OP_CLOSE_SUBEXP: |
| 1116 | break; |
| 1117 | case COMPLEX_BRACKET: |
| 1118 | return; |
| 1119 | case SIMPLE_BRACKET: |
| 1120 | /* Just double check. The non-ASCII range starts at 0x80. */ |
| 1121 | assert (0x80 % BITSET_WORD_BITS == 0); |
| 1122 | for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) |
| 1123 | if (dfa->nodes[node].opr.sbcset[i]) |
| 1124 | return; |
| 1125 | break; |
| 1126 | default: |
| 1127 | abort (); |
| 1128 | } |
| 1129 | |
| 1130 | if (mb_chars || has_period) |
| 1131 | for (node = 0; node < dfa->nodes_len; ++node) |
| 1132 | { |
| 1133 | if (dfa->nodes[node].type == CHARACTER |
| 1134 | && dfa->nodes[node].opr.c >= 0x80) |
| 1135 | dfa->nodes[node].mb_partial = 0; |
| 1136 | else if (dfa->nodes[node].type == OP_PERIOD) |
| 1137 | dfa->nodes[node].type = OP_UTF8_PERIOD; |
| 1138 | } |
| 1139 | |
| 1140 | /* The search can be in single byte locale. */ |
| 1141 | dfa->mb_cur_max = 1; |
| 1142 | dfa->is_utf8 = 0; |
| 1143 | dfa->has_mb_node = dfa->nbackref > 0 || has_period; |
| 1144 | } |
| 1145 | #endif |
| 1146 | |
| 1147 | /* Analyze the structure tree, and calculate "first", "next", "edest", |
| 1148 | "eclosure", and "inveclosure". */ |
| 1149 | |
| 1150 | static reg_errcode_t |
| 1151 | analyze (regex_t *preg) |
| 1152 | { |
| 1153 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 1154 | reg_errcode_t ret; |
| 1155 | |
| 1156 | /* Allocate arrays. */ |
| 1157 | dfa->nexts = re_malloc (int, dfa->nodes_alloc); |
| 1158 | dfa->org_indices = re_malloc (int, dfa->nodes_alloc); |
| 1159 | dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); |
| 1160 | dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); |
| 1161 | if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL |
| 1162 | || dfa->eclosures == NULL, 0)) |
| 1163 | return REG_ESPACE; |
| 1164 | |
| 1165 | dfa->subexp_map = re_malloc (int, preg->re_nsub); |
| 1166 | if (dfa->subexp_map != NULL) |
| 1167 | { |
| 1168 | int i; |
| 1169 | for (i = 0; i < preg->re_nsub; i++) |
| 1170 | dfa->subexp_map[i] = i; |
| 1171 | preorder (dfa->str_tree, optimize_subexps, dfa); |
| 1172 | for (i = 0; i < preg->re_nsub; i++) |
| 1173 | if (dfa->subexp_map[i] != i) |
| 1174 | break; |
| 1175 | if (i == preg->re_nsub) |
| 1176 | { |
| 1177 | free (dfa->subexp_map); |
| 1178 | dfa->subexp_map = NULL; |
| 1179 | } |
| 1180 | } |
| 1181 | |
| 1182 | ret = postorder (dfa->str_tree, lower_subexps, preg); |
| 1183 | if (BE (ret != REG_NOERROR, 0)) |
| 1184 | return ret; |
| 1185 | ret = postorder (dfa->str_tree, calc_first, dfa); |
| 1186 | if (BE (ret != REG_NOERROR, 0)) |
| 1187 | return ret; |
| 1188 | preorder (dfa->str_tree, calc_next, dfa); |
| 1189 | ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); |
| 1190 | if (BE (ret != REG_NOERROR, 0)) |
| 1191 | return ret; |
| 1192 | ret = calc_eclosure (dfa); |
| 1193 | if (BE (ret != REG_NOERROR, 0)) |
| 1194 | return ret; |
| 1195 | |
| 1196 | /* We only need this during the prune_impossible_nodes pass in regexec.c; |
| 1197 | skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */ |
| 1198 | if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match) |
| 1199 | || dfa->nbackref) |
| 1200 | { |
| 1201 | dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len); |
| 1202 | if (BE (dfa->inveclosures == NULL, 0)) |
| 1203 | return REG_ESPACE; |
| 1204 | ret = calc_inveclosure (dfa); |
| 1205 | } |
| 1206 | |
| 1207 | return ret; |
| 1208 | } |
| 1209 | |
| 1210 | /* Our parse trees are very unbalanced, so we cannot use a stack to |
| 1211 | implement parse tree visits. Instead, we use parent pointers and |
| 1212 | some hairy code in these two functions. */ |
| 1213 | static reg_errcode_t |
| 1214 | postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), |
| 1215 | void *extra) |
| 1216 | { |
| 1217 | bin_tree_t *node, *prev; |
| 1218 | |
| 1219 | for (node = root; ; ) |
| 1220 | { |
| 1221 | /* Descend down the tree, preferably to the left (or to the right |
| 1222 | if that's the only child). */ |
| 1223 | while (node->left || node->right) |
| 1224 | if (node->left) |
| 1225 | node = node->left; |
| 1226 | else |
| 1227 | node = node->right; |
| 1228 | |
| 1229 | do |
| 1230 | { |
| 1231 | reg_errcode_t err = fn (extra, node); |
| 1232 | if (BE (err != REG_NOERROR, 0)) |
| 1233 | return err; |
| 1234 | if (node->parent == NULL) |
| 1235 | return REG_NOERROR; |
| 1236 | prev = node; |
| 1237 | node = node->parent; |
| 1238 | } |
| 1239 | /* Go up while we have a node that is reached from the right. */ |
| 1240 | while (node->right == prev || node->right == NULL); |
| 1241 | node = node->right; |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | static reg_errcode_t |
| 1246 | preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), |
| 1247 | void *extra) |
| 1248 | { |
| 1249 | bin_tree_t *node; |
| 1250 | |
| 1251 | for (node = root; ; ) |
| 1252 | { |
| 1253 | reg_errcode_t err = fn (extra, node); |
| 1254 | if (BE (err != REG_NOERROR, 0)) |
| 1255 | return err; |
| 1256 | |
| 1257 | /* Go to the left node, or up and to the right. */ |
| 1258 | if (node->left) |
| 1259 | node = node->left; |
| 1260 | else |
| 1261 | { |
| 1262 | bin_tree_t *prev = NULL; |
| 1263 | while (node->right == prev || node->right == NULL) |
| 1264 | { |
| 1265 | prev = node; |
| 1266 | node = node->parent; |
| 1267 | if (!node) |
| 1268 | return REG_NOERROR; |
| 1269 | } |
| 1270 | node = node->right; |
| 1271 | } |
| 1272 | } |
| 1273 | } |
| 1274 | |
| 1275 | /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell |
| 1276 | re_search_internal to map the inner one's opr.idx to this one's. Adjust |
| 1277 | backreferences as well. Requires a preorder visit. */ |
| 1278 | static reg_errcode_t |
| 1279 | optimize_subexps (void *extra, bin_tree_t *node) |
| 1280 | { |
| 1281 | re_dfa_t *dfa = (re_dfa_t *) extra; |
| 1282 | |
| 1283 | if (node->token.type == OP_BACK_REF && dfa->subexp_map) |
| 1284 | { |
| 1285 | int idx = node->token.opr.idx; |
| 1286 | node->token.opr.idx = dfa->subexp_map[idx]; |
| 1287 | dfa->used_bkref_map |= 1 << node->token.opr.idx; |
| 1288 | } |
| 1289 | |
| 1290 | else if (node->token.type == SUBEXP |
| 1291 | && node->left && node->left->token.type == SUBEXP) |
| 1292 | { |
| 1293 | int other_idx = node->left->token.opr.idx; |
| 1294 | |
| 1295 | node->left = node->left->left; |
| 1296 | if (node->left) |
| 1297 | node->left->parent = node; |
| 1298 | |
| 1299 | dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; |
| 1300 | if (other_idx < BITSET_WORD_BITS) |
| 1301 | dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx); |
| 1302 | } |
| 1303 | |
| 1304 | return REG_NOERROR; |
| 1305 | } |
| 1306 | |
| 1307 | /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation |
| 1308 | of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */ |
| 1309 | static reg_errcode_t |
| 1310 | lower_subexps (void *extra, bin_tree_t *node) |
| 1311 | { |
| 1312 | regex_t *preg = (regex_t *) extra; |
| 1313 | reg_errcode_t err = REG_NOERROR; |
| 1314 | |
| 1315 | if (node->left && node->left->token.type == SUBEXP) |
| 1316 | { |
| 1317 | node->left = lower_subexp (&err, preg, node->left); |
| 1318 | if (node->left) |
| 1319 | node->left->parent = node; |
| 1320 | } |
| 1321 | if (node->right && node->right->token.type == SUBEXP) |
| 1322 | { |
| 1323 | node->right = lower_subexp (&err, preg, node->right); |
| 1324 | if (node->right) |
| 1325 | node->right->parent = node; |
| 1326 | } |
| 1327 | |
| 1328 | return err; |
| 1329 | } |
| 1330 | |
| 1331 | static bin_tree_t * |
| 1332 | lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) |
| 1333 | { |
| 1334 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 1335 | bin_tree_t *body = node->left; |
| 1336 | bin_tree_t *op, *cls, *tree1, *tree; |
| 1337 | |
| 1338 | if (preg->no_sub |
| 1339 | /* We do not optimize empty subexpressions, because otherwise we may |
| 1340 | have bad CONCAT nodes with NULL children. This is obviously not |
| 1341 | very common, so we do not lose much. An example that triggers |
| 1342 | this case is the sed "script" /\(\)/x. */ |
| 1343 | && node->left != NULL |
| 1344 | && (node->token.opr.idx >= BITSET_WORD_BITS |
| 1345 | || !(dfa->used_bkref_map |
| 1346 | & ((bitset_word_t) 1 << node->token.opr.idx)))) |
| 1347 | return node->left; |
| 1348 | |
| 1349 | /* Convert the SUBEXP node to the concatenation of an |
| 1350 | OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */ |
| 1351 | op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); |
| 1352 | cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); |
| 1353 | tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; |
| 1354 | tree = create_tree (dfa, op, tree1, CONCAT); |
| 1355 | if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) |
| 1356 | { |
| 1357 | *err = REG_ESPACE; |
| 1358 | return NULL; |
| 1359 | } |
| 1360 | |
| 1361 | op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; |
| 1362 | op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; |
| 1363 | return tree; |
| 1364 | } |
| 1365 | |
| 1366 | /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton |
| 1367 | nodes. Requires a postorder visit. */ |
| 1368 | static reg_errcode_t |
| 1369 | calc_first (void *extra, bin_tree_t *node) |
| 1370 | { |
| 1371 | re_dfa_t *dfa = (re_dfa_t *) extra; |
| 1372 | if (node->token.type == CONCAT) |
| 1373 | { |
| 1374 | node->first = node->left->first; |
| 1375 | node->node_idx = node->left->node_idx; |
| 1376 | } |
| 1377 | else |
| 1378 | { |
| 1379 | node->first = node; |
| 1380 | node->node_idx = re_dfa_add_node (dfa, node->token); |
| 1381 | if (BE (node->node_idx == -1, 0)) |
| 1382 | return REG_ESPACE; |
| 1383 | if (node->token.type == ANCHOR) |
| 1384 | dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type; |
| 1385 | } |
| 1386 | return REG_NOERROR; |
| 1387 | } |
| 1388 | |
| 1389 | /* Pass 2: compute NEXT on the tree. Preorder visit. */ |
| 1390 | static reg_errcode_t |
| 1391 | calc_next (void *extra, bin_tree_t *node) |
| 1392 | { |
| 1393 | switch (node->token.type) |
| 1394 | { |
| 1395 | case OP_DUP_ASTERISK: |
| 1396 | node->left->next = node; |
| 1397 | break; |
| 1398 | case CONCAT: |
| 1399 | node->left->next = node->right->first; |
| 1400 | node->right->next = node->next; |
| 1401 | break; |
| 1402 | default: |
| 1403 | if (node->left) |
| 1404 | node->left->next = node->next; |
| 1405 | if (node->right) |
| 1406 | node->right->next = node->next; |
| 1407 | break; |
| 1408 | } |
| 1409 | return REG_NOERROR; |
| 1410 | } |
| 1411 | |
| 1412 | /* Pass 3: link all DFA nodes to their NEXT node (any order will do). */ |
| 1413 | static reg_errcode_t |
| 1414 | link_nfa_nodes (void *extra, bin_tree_t *node) |
| 1415 | { |
| 1416 | re_dfa_t *dfa = (re_dfa_t *) extra; |
| 1417 | int idx = node->node_idx; |
| 1418 | reg_errcode_t err = REG_NOERROR; |
| 1419 | |
| 1420 | switch (node->token.type) |
| 1421 | { |
| 1422 | case CONCAT: |
| 1423 | break; |
| 1424 | |
| 1425 | case END_OF_RE: |
| 1426 | assert (node->next == NULL); |
| 1427 | break; |
| 1428 | |
| 1429 | case OP_DUP_ASTERISK: |
| 1430 | case OP_ALT: |
| 1431 | { |
| 1432 | int left, right; |
| 1433 | dfa->has_plural_match = 1; |
| 1434 | if (node->left != NULL) |
| 1435 | left = node->left->first->node_idx; |
| 1436 | else |
| 1437 | left = node->next->node_idx; |
| 1438 | if (node->right != NULL) |
| 1439 | right = node->right->first->node_idx; |
| 1440 | else |
| 1441 | right = node->next->node_idx; |
| 1442 | assert (left > -1); |
| 1443 | assert (right > -1); |
| 1444 | err = re_node_set_init_2 (dfa->edests + idx, left, right); |
| 1445 | } |
| 1446 | break; |
| 1447 | |
| 1448 | case ANCHOR: |
| 1449 | case OP_OPEN_SUBEXP: |
| 1450 | case OP_CLOSE_SUBEXP: |
| 1451 | err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); |
| 1452 | break; |
| 1453 | |
| 1454 | case OP_BACK_REF: |
| 1455 | dfa->nexts[idx] = node->next->node_idx; |
| 1456 | if (node->token.type == OP_BACK_REF) |
| 1457 | err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); |
| 1458 | break; |
| 1459 | |
| 1460 | default: |
| 1461 | assert (!IS_EPSILON_NODE (node->token.type)); |
| 1462 | dfa->nexts[idx] = node->next->node_idx; |
| 1463 | break; |
| 1464 | } |
| 1465 | |
| 1466 | return err; |
| 1467 | } |
| 1468 | |
| 1469 | /* Duplicate the epsilon closure of the node ROOT_NODE. |
| 1470 | Note that duplicated nodes have constraint INIT_CONSTRAINT in addition |
| 1471 | to their own constraint. */ |
| 1472 | |
| 1473 | static reg_errcode_t |
| 1474 | internal_function |
| 1475 | duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node, |
| 1476 | int root_node, unsigned int init_constraint) |
| 1477 | { |
| 1478 | int org_node, clone_node, ret; |
| 1479 | unsigned int constraint = init_constraint; |
| 1480 | for (org_node = top_org_node, clone_node = top_clone_node;;) |
| 1481 | { |
| 1482 | int org_dest, clone_dest; |
| 1483 | if (dfa->nodes[org_node].type == OP_BACK_REF) |
| 1484 | { |
| 1485 | /* If the back reference epsilon-transit, its destination must |
| 1486 | also have the constraint. Then duplicate the epsilon closure |
| 1487 | of the destination of the back reference, and store it in |
| 1488 | edests of the back reference. */ |
| 1489 | org_dest = dfa->nexts[org_node]; |
| 1490 | re_node_set_empty (dfa->edests + clone_node); |
| 1491 | clone_dest = duplicate_node (dfa, org_dest, constraint); |
| 1492 | if (BE (clone_dest == -1, 0)) |
| 1493 | return REG_ESPACE; |
| 1494 | dfa->nexts[clone_node] = dfa->nexts[org_node]; |
| 1495 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| 1496 | if (BE (ret < 0, 0)) |
| 1497 | return REG_ESPACE; |
| 1498 | } |
| 1499 | else if (dfa->edests[org_node].nelem == 0) |
| 1500 | { |
| 1501 | /* In case of the node can't epsilon-transit, don't duplicate the |
| 1502 | destination and store the original destination as the |
| 1503 | destination of the node. */ |
| 1504 | dfa->nexts[clone_node] = dfa->nexts[org_node]; |
| 1505 | break; |
| 1506 | } |
| 1507 | else if (dfa->edests[org_node].nelem == 1) |
| 1508 | { |
| 1509 | /* In case of the node can epsilon-transit, and it has only one |
| 1510 | destination. */ |
| 1511 | org_dest = dfa->edests[org_node].elems[0]; |
| 1512 | re_node_set_empty (dfa->edests + clone_node); |
| 1513 | /* If the node is root_node itself, it means the epsilon clsoure |
| 1514 | has a loop. Then tie it to the destination of the root_node. */ |
| 1515 | if (org_node == root_node && clone_node != org_node) |
| 1516 | { |
| 1517 | ret = re_node_set_insert (dfa->edests + clone_node, org_dest); |
| 1518 | if (BE (ret < 0, 0)) |
| 1519 | return REG_ESPACE; |
| 1520 | break; |
| 1521 | } |
| 1522 | /* In case of the node has another constraint, add it. */ |
| 1523 | constraint |= dfa->nodes[org_node].constraint; |
| 1524 | clone_dest = duplicate_node (dfa, org_dest, constraint); |
| 1525 | if (BE (clone_dest == -1, 0)) |
| 1526 | return REG_ESPACE; |
| 1527 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| 1528 | if (BE (ret < 0, 0)) |
| 1529 | return REG_ESPACE; |
| 1530 | } |
| 1531 | else /* dfa->edests[org_node].nelem == 2 */ |
| 1532 | { |
| 1533 | /* In case of the node can epsilon-transit, and it has two |
| 1534 | destinations. In the bin_tree_t and DFA, that's '|' and '*'. */ |
| 1535 | org_dest = dfa->edests[org_node].elems[0]; |
| 1536 | re_node_set_empty (dfa->edests + clone_node); |
| 1537 | /* Search for a duplicated node which satisfies the constraint. */ |
| 1538 | clone_dest = search_duplicated_node (dfa, org_dest, constraint); |
| 1539 | if (clone_dest == -1) |
| 1540 | { |
| 1541 | /* There is no such duplicated node, create a new one. */ |
| 1542 | reg_errcode_t err; |
| 1543 | clone_dest = duplicate_node (dfa, org_dest, constraint); |
| 1544 | if (BE (clone_dest == -1, 0)) |
| 1545 | return REG_ESPACE; |
| 1546 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| 1547 | if (BE (ret < 0, 0)) |
| 1548 | return REG_ESPACE; |
| 1549 | err = duplicate_node_closure (dfa, org_dest, clone_dest, |
| 1550 | root_node, constraint); |
| 1551 | if (BE (err != REG_NOERROR, 0)) |
| 1552 | return err; |
| 1553 | } |
| 1554 | else |
| 1555 | { |
| 1556 | /* There is a duplicated node which satisfies the constraint, |
| 1557 | use it to avoid infinite loop. */ |
| 1558 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| 1559 | if (BE (ret < 0, 0)) |
| 1560 | return REG_ESPACE; |
| 1561 | } |
| 1562 | |
| 1563 | org_dest = dfa->edests[org_node].elems[1]; |
| 1564 | clone_dest = duplicate_node (dfa, org_dest, constraint); |
| 1565 | if (BE (clone_dest == -1, 0)) |
| 1566 | return REG_ESPACE; |
| 1567 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| 1568 | if (BE (ret < 0, 0)) |
| 1569 | return REG_ESPACE; |
| 1570 | } |
| 1571 | org_node = org_dest; |
| 1572 | clone_node = clone_dest; |
| 1573 | } |
| 1574 | return REG_NOERROR; |
| 1575 | } |
| 1576 | |
| 1577 | /* Search for a node which is duplicated from the node ORG_NODE, and |
| 1578 | satisfies the constraint CONSTRAINT. */ |
| 1579 | |
| 1580 | static int |
| 1581 | search_duplicated_node (const re_dfa_t *dfa, int org_node, |
| 1582 | unsigned int constraint) |
| 1583 | { |
| 1584 | int idx; |
| 1585 | for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) |
| 1586 | { |
| 1587 | if (org_node == dfa->org_indices[idx] |
| 1588 | && constraint == dfa->nodes[idx].constraint) |
| 1589 | return idx; /* Found. */ |
| 1590 | } |
| 1591 | return -1; /* Not found. */ |
| 1592 | } |
| 1593 | |
| 1594 | /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. |
| 1595 | Return the index of the new node, or -1 if insufficient storage is |
| 1596 | available. */ |
| 1597 | |
| 1598 | static int |
| 1599 | duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint) |
| 1600 | { |
| 1601 | int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); |
| 1602 | if (BE (dup_idx != -1, 1)) |
| 1603 | { |
| 1604 | dfa->nodes[dup_idx].constraint = constraint; |
| 1605 | dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint; |
| 1606 | dfa->nodes[dup_idx].duplicated = 1; |
| 1607 | |
| 1608 | /* Store the index of the original node. */ |
| 1609 | dfa->org_indices[dup_idx] = org_idx; |
| 1610 | } |
| 1611 | return dup_idx; |
| 1612 | } |
| 1613 | |
| 1614 | static reg_errcode_t |
| 1615 | calc_inveclosure (re_dfa_t *dfa) |
| 1616 | { |
| 1617 | int src, idx, ret; |
| 1618 | for (idx = 0; idx < dfa->nodes_len; ++idx) |
| 1619 | re_node_set_init_empty (dfa->inveclosures + idx); |
| 1620 | |
| 1621 | for (src = 0; src < dfa->nodes_len; ++src) |
| 1622 | { |
| 1623 | int *elems = dfa->eclosures[src].elems; |
| 1624 | for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) |
| 1625 | { |
| 1626 | ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); |
| 1627 | if (BE (ret == -1, 0)) |
| 1628 | return REG_ESPACE; |
| 1629 | } |
| 1630 | } |
| 1631 | |
| 1632 | return REG_NOERROR; |
| 1633 | } |
| 1634 | |
| 1635 | /* Calculate "eclosure" for all the node in DFA. */ |
| 1636 | |
| 1637 | static reg_errcode_t |
| 1638 | calc_eclosure (re_dfa_t *dfa) |
| 1639 | { |
| 1640 | int node_idx, incomplete; |
| 1641 | #ifdef DEBUG |
| 1642 | assert (dfa->nodes_len > 0); |
| 1643 | #endif |
| 1644 | incomplete = 0; |
| 1645 | /* For each nodes, calculate epsilon closure. */ |
| 1646 | for (node_idx = 0; ; ++node_idx) |
| 1647 | { |
| 1648 | reg_errcode_t err; |
| 1649 | re_node_set eclosure_elem; |
| 1650 | if (node_idx == dfa->nodes_len) |
| 1651 | { |
| 1652 | if (!incomplete) |
| 1653 | break; |
| 1654 | incomplete = 0; |
| 1655 | node_idx = 0; |
| 1656 | } |
| 1657 | |
| 1658 | #ifdef DEBUG |
| 1659 | assert (dfa->eclosures[node_idx].nelem != -1); |
| 1660 | #endif |
| 1661 | |
| 1662 | /* If we have already calculated, skip it. */ |
| 1663 | if (dfa->eclosures[node_idx].nelem != 0) |
| 1664 | continue; |
| 1665 | /* Calculate epsilon closure of `node_idx'. */ |
| 1666 | err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1); |
| 1667 | if (BE (err != REG_NOERROR, 0)) |
| 1668 | return err; |
| 1669 | |
| 1670 | if (dfa->eclosures[node_idx].nelem == 0) |
| 1671 | { |
| 1672 | incomplete = 1; |
| 1673 | re_node_set_free (&eclosure_elem); |
| 1674 | } |
| 1675 | } |
| 1676 | return REG_NOERROR; |
| 1677 | } |
| 1678 | |
| 1679 | /* Calculate epsilon closure of NODE. */ |
| 1680 | |
| 1681 | static reg_errcode_t |
| 1682 | calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root) |
| 1683 | { |
| 1684 | reg_errcode_t err; |
| 1685 | int i; |
| 1686 | re_node_set eclosure; |
| 1687 | int ret; |
| 1688 | int incomplete = 0; |
| 1689 | err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); |
| 1690 | if (BE (err != REG_NOERROR, 0)) |
| 1691 | return err; |
| 1692 | |
| 1693 | /* This indicates that we are calculating this node now. |
| 1694 | We reference this value to avoid infinite loop. */ |
| 1695 | dfa->eclosures[node].nelem = -1; |
| 1696 | |
| 1697 | /* If the current node has constraints, duplicate all nodes |
| 1698 | since they must inherit the constraints. */ |
| 1699 | if (dfa->nodes[node].constraint |
| 1700 | && dfa->edests[node].nelem |
| 1701 | && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) |
| 1702 | { |
| 1703 | err = duplicate_node_closure (dfa, node, node, node, |
| 1704 | dfa->nodes[node].constraint); |
| 1705 | if (BE (err != REG_NOERROR, 0)) |
| 1706 | return err; |
| 1707 | } |
| 1708 | |
| 1709 | /* Expand each epsilon destination nodes. */ |
| 1710 | if (IS_EPSILON_NODE(dfa->nodes[node].type)) |
| 1711 | for (i = 0; i < dfa->edests[node].nelem; ++i) |
| 1712 | { |
| 1713 | re_node_set eclosure_elem; |
| 1714 | int edest = dfa->edests[node].elems[i]; |
| 1715 | /* If calculating the epsilon closure of `edest' is in progress, |
| 1716 | return intermediate result. */ |
| 1717 | if (dfa->eclosures[edest].nelem == -1) |
| 1718 | { |
| 1719 | incomplete = 1; |
| 1720 | continue; |
| 1721 | } |
| 1722 | /* If we haven't calculated the epsilon closure of `edest' yet, |
| 1723 | calculate now. Otherwise use calculated epsilon closure. */ |
| 1724 | if (dfa->eclosures[edest].nelem == 0) |
| 1725 | { |
| 1726 | err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0); |
| 1727 | if (BE (err != REG_NOERROR, 0)) |
| 1728 | return err; |
| 1729 | } |
| 1730 | else |
| 1731 | eclosure_elem = dfa->eclosures[edest]; |
| 1732 | /* Merge the epsilon closure of `edest'. */ |
| 1733 | err = re_node_set_merge (&eclosure, &eclosure_elem); |
| 1734 | if (BE (err != REG_NOERROR, 0)) |
| 1735 | return err; |
| 1736 | /* If the epsilon closure of `edest' is incomplete, |
| 1737 | the epsilon closure of this node is also incomplete. */ |
| 1738 | if (dfa->eclosures[edest].nelem == 0) |
| 1739 | { |
| 1740 | incomplete = 1; |
| 1741 | re_node_set_free (&eclosure_elem); |
| 1742 | } |
| 1743 | } |
| 1744 | |
| 1745 | /* An epsilon closure includes itself. */ |
| 1746 | ret = re_node_set_insert (&eclosure, node); |
| 1747 | if (BE (ret < 0, 0)) |
| 1748 | return REG_ESPACE; |
| 1749 | if (incomplete && !root) |
| 1750 | dfa->eclosures[node].nelem = 0; |
| 1751 | else |
| 1752 | dfa->eclosures[node] = eclosure; |
| 1753 | *new_set = eclosure; |
| 1754 | return REG_NOERROR; |
| 1755 | } |
| 1756 | |
| 1757 | /* Functions for token which are used in the parser. */ |
| 1758 | |
| 1759 | /* Fetch a token from INPUT. |
| 1760 | We must not use this function inside bracket expressions. */ |
| 1761 | |
| 1762 | static void |
| 1763 | internal_function |
| 1764 | fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) |
| 1765 | { |
| 1766 | re_string_skip_bytes (input, peek_token (result, input, syntax)); |
| 1767 | } |
| 1768 | |
| 1769 | /* Peek a token from INPUT, and return the length of the token. |
| 1770 | We must not use this function inside bracket expressions. */ |
| 1771 | |
| 1772 | static int |
| 1773 | internal_function |
| 1774 | peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) |
| 1775 | { |
| 1776 | unsigned char c; |
| 1777 | |
| 1778 | if (re_string_eoi (input)) |
| 1779 | { |
| 1780 | token->type = END_OF_RE; |
| 1781 | return 0; |
| 1782 | } |
| 1783 | |
| 1784 | c = re_string_peek_byte (input, 0); |
| 1785 | token->opr.c = c; |
| 1786 | |
| 1787 | token->word_char = 0; |
| 1788 | #ifdef RE_ENABLE_I18N |
| 1789 | token->mb_partial = 0; |
| 1790 | if (input->mb_cur_max > 1 && |
| 1791 | !re_string_first_byte (input, re_string_cur_idx (input))) |
| 1792 | { |
| 1793 | token->type = CHARACTER; |
| 1794 | token->mb_partial = 1; |
| 1795 | return 1; |
| 1796 | } |
| 1797 | #endif |
| 1798 | if (c == '\\') |
| 1799 | { |
| 1800 | unsigned char c2; |
| 1801 | if (re_string_cur_idx (input) + 1 >= re_string_length (input)) |
| 1802 | { |
| 1803 | token->type = BACK_SLASH; |
| 1804 | return 1; |
| 1805 | } |
| 1806 | |
| 1807 | c2 = re_string_peek_byte_case (input, 1); |
| 1808 | token->opr.c = c2; |
| 1809 | token->type = CHARACTER; |
| 1810 | #ifdef RE_ENABLE_I18N |
| 1811 | if (input->mb_cur_max > 1) |
| 1812 | { |
| 1813 | wint_t wc = re_string_wchar_at (input, |
| 1814 | re_string_cur_idx (input) + 1); |
| 1815 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; |
| 1816 | } |
| 1817 | else |
| 1818 | #endif |
| 1819 | token->word_char = IS_WORD_CHAR (c2) != 0; |
| 1820 | |
| 1821 | switch (c2) |
| 1822 | { |
| 1823 | case '|': |
| 1824 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) |
| 1825 | token->type = OP_ALT; |
| 1826 | break; |
| 1827 | case '1': case '2': case '3': case '4': case '5': |
| 1828 | case '6': case '7': case '8': case '9': |
| 1829 | if (!(syntax & RE_NO_BK_REFS)) |
| 1830 | { |
| 1831 | token->type = OP_BACK_REF; |
| 1832 | token->opr.idx = c2 - '1'; |
| 1833 | } |
| 1834 | break; |
| 1835 | case '<': |
| 1836 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1837 | { |
| 1838 | token->type = ANCHOR; |
| 1839 | token->opr.ctx_type = WORD_FIRST; |
| 1840 | } |
| 1841 | break; |
| 1842 | case '>': |
| 1843 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1844 | { |
| 1845 | token->type = ANCHOR; |
| 1846 | token->opr.ctx_type = WORD_LAST; |
| 1847 | } |
| 1848 | break; |
| 1849 | case 'b': |
| 1850 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1851 | { |
| 1852 | token->type = ANCHOR; |
| 1853 | token->opr.ctx_type = WORD_DELIM; |
| 1854 | } |
| 1855 | break; |
| 1856 | case 'B': |
| 1857 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1858 | { |
| 1859 | token->type = ANCHOR; |
| 1860 | token->opr.ctx_type = NOT_WORD_DELIM; |
| 1861 | } |
| 1862 | break; |
| 1863 | case 'w': |
| 1864 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1865 | token->type = OP_WORD; |
| 1866 | break; |
| 1867 | case 'W': |
| 1868 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1869 | token->type = OP_NOTWORD; |
| 1870 | break; |
| 1871 | case 's': |
| 1872 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1873 | token->type = OP_SPACE; |
| 1874 | break; |
| 1875 | case 'S': |
| 1876 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1877 | token->type = OP_NOTSPACE; |
| 1878 | break; |
| 1879 | case '`': |
| 1880 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1881 | { |
| 1882 | token->type = ANCHOR; |
| 1883 | token->opr.ctx_type = BUF_FIRST; |
| 1884 | } |
| 1885 | break; |
| 1886 | case '\'': |
| 1887 | if (!(syntax & RE_NO_GNU_OPS)) |
| 1888 | { |
| 1889 | token->type = ANCHOR; |
| 1890 | token->opr.ctx_type = BUF_LAST; |
| 1891 | } |
| 1892 | break; |
| 1893 | case '(': |
| 1894 | if (!(syntax & RE_NO_BK_PARENS)) |
| 1895 | token->type = OP_OPEN_SUBEXP; |
| 1896 | break; |
| 1897 | case ')': |
| 1898 | if (!(syntax & RE_NO_BK_PARENS)) |
| 1899 | token->type = OP_CLOSE_SUBEXP; |
| 1900 | break; |
| 1901 | case '+': |
| 1902 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) |
| 1903 | token->type = OP_DUP_PLUS; |
| 1904 | break; |
| 1905 | case '?': |
| 1906 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) |
| 1907 | token->type = OP_DUP_QUESTION; |
| 1908 | break; |
| 1909 | case '{': |
| 1910 | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) |
| 1911 | token->type = OP_OPEN_DUP_NUM; |
| 1912 | break; |
| 1913 | case '}': |
| 1914 | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) |
| 1915 | token->type = OP_CLOSE_DUP_NUM; |
| 1916 | break; |
| 1917 | default: |
| 1918 | break; |
| 1919 | } |
| 1920 | return 2; |
| 1921 | } |
| 1922 | |
| 1923 | token->type = CHARACTER; |
| 1924 | #ifdef RE_ENABLE_I18N |
| 1925 | if (input->mb_cur_max > 1) |
| 1926 | { |
| 1927 | wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); |
| 1928 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; |
| 1929 | } |
| 1930 | else |
| 1931 | #endif |
| 1932 | token->word_char = IS_WORD_CHAR (token->opr.c); |
| 1933 | |
| 1934 | switch (c) |
| 1935 | { |
| 1936 | case '\n': |
| 1937 | if (syntax & RE_NEWLINE_ALT) |
| 1938 | token->type = OP_ALT; |
| 1939 | break; |
| 1940 | case '|': |
| 1941 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) |
| 1942 | token->type = OP_ALT; |
| 1943 | break; |
| 1944 | case '*': |
| 1945 | token->type = OP_DUP_ASTERISK; |
| 1946 | break; |
| 1947 | case '+': |
| 1948 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) |
| 1949 | token->type = OP_DUP_PLUS; |
| 1950 | break; |
| 1951 | case '?': |
| 1952 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) |
| 1953 | token->type = OP_DUP_QUESTION; |
| 1954 | break; |
| 1955 | case '{': |
| 1956 | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
| 1957 | token->type = OP_OPEN_DUP_NUM; |
| 1958 | break; |
| 1959 | case '}': |
| 1960 | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
| 1961 | token->type = OP_CLOSE_DUP_NUM; |
| 1962 | break; |
| 1963 | case '(': |
| 1964 | if (syntax & RE_NO_BK_PARENS) |
| 1965 | token->type = OP_OPEN_SUBEXP; |
| 1966 | break; |
| 1967 | case ')': |
| 1968 | if (syntax & RE_NO_BK_PARENS) |
| 1969 | token->type = OP_CLOSE_SUBEXP; |
| 1970 | break; |
| 1971 | case '[': |
| 1972 | token->type = OP_OPEN_BRACKET; |
| 1973 | break; |
| 1974 | case '.': |
| 1975 | token->type = OP_PERIOD; |
| 1976 | break; |
| 1977 | case '^': |
| 1978 | if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) && |
| 1979 | re_string_cur_idx (input) != 0) |
| 1980 | { |
| 1981 | char prev = re_string_peek_byte (input, -1); |
| 1982 | if (!(syntax & RE_NEWLINE_ALT) || prev != '\n') |
| 1983 | break; |
| 1984 | } |
| 1985 | token->type = ANCHOR; |
| 1986 | token->opr.ctx_type = LINE_FIRST; |
| 1987 | break; |
| 1988 | case '$': |
| 1989 | if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && |
| 1990 | re_string_cur_idx (input) + 1 != re_string_length (input)) |
| 1991 | { |
| 1992 | re_token_t next; |
| 1993 | re_string_skip_bytes (input, 1); |
| 1994 | peek_token (&next, input, syntax); |
| 1995 | re_string_skip_bytes (input, -1); |
| 1996 | if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) |
| 1997 | break; |
| 1998 | } |
| 1999 | token->type = ANCHOR; |
| 2000 | token->opr.ctx_type = LINE_LAST; |
| 2001 | break; |
| 2002 | default: |
| 2003 | break; |
| 2004 | } |
| 2005 | return 1; |
| 2006 | } |
| 2007 | |
| 2008 | /* Peek a token from INPUT, and return the length of the token. |
| 2009 | We must not use this function out of bracket expressions. */ |
| 2010 | |
| 2011 | static int |
| 2012 | internal_function |
| 2013 | peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) |
| 2014 | { |
| 2015 | unsigned char c; |
| 2016 | if (re_string_eoi (input)) |
| 2017 | { |
| 2018 | token->type = END_OF_RE; |
| 2019 | return 0; |
| 2020 | } |
| 2021 | c = re_string_peek_byte (input, 0); |
| 2022 | token->opr.c = c; |
| 2023 | |
| 2024 | #ifdef RE_ENABLE_I18N |
| 2025 | if (input->mb_cur_max > 1 && |
| 2026 | !re_string_first_byte (input, re_string_cur_idx (input))) |
| 2027 | { |
| 2028 | token->type = CHARACTER; |
| 2029 | return 1; |
| 2030 | } |
| 2031 | #endif /* RE_ENABLE_I18N */ |
| 2032 | |
| 2033 | if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) |
| 2034 | && re_string_cur_idx (input) + 1 < re_string_length (input)) |
| 2035 | { |
| 2036 | /* In this case, '\' escape a character. */ |
| 2037 | unsigned char c2; |
| 2038 | re_string_skip_bytes (input, 1); |
| 2039 | c2 = re_string_peek_byte (input, 0); |
| 2040 | token->opr.c = c2; |
| 2041 | token->type = CHARACTER; |
| 2042 | return 1; |
| 2043 | } |
| 2044 | if (c == '[') /* '[' is a special char in a bracket exps. */ |
| 2045 | { |
| 2046 | unsigned char c2; |
| 2047 | int token_len; |
| 2048 | if (re_string_cur_idx (input) + 1 < re_string_length (input)) |
| 2049 | c2 = re_string_peek_byte (input, 1); |
| 2050 | else |
| 2051 | c2 = 0; |
| 2052 | token->opr.c = c2; |
| 2053 | token_len = 2; |
| 2054 | switch (c2) |
| 2055 | { |
| 2056 | case '.': |
| 2057 | token->type = OP_OPEN_COLL_ELEM; |
| 2058 | break; |
| 2059 | case '=': |
| 2060 | token->type = OP_OPEN_EQUIV_CLASS; |
| 2061 | break; |
| 2062 | case ':': |
| 2063 | if (syntax & RE_CHAR_CLASSES) |
| 2064 | { |
| 2065 | token->type = OP_OPEN_CHAR_CLASS; |
| 2066 | break; |
| 2067 | } |
| 2068 | /* else fall through. */ |
| 2069 | default: |
| 2070 | token->type = CHARACTER; |
| 2071 | token->opr.c = c; |
| 2072 | token_len = 1; |
| 2073 | break; |
| 2074 | } |
| 2075 | return token_len; |
| 2076 | } |
| 2077 | switch (c) |
| 2078 | { |
| 2079 | case '-': |
| 2080 | token->type = OP_CHARSET_RANGE; |
| 2081 | break; |
| 2082 | case ']': |
| 2083 | token->type = OP_CLOSE_BRACKET; |
| 2084 | break; |
| 2085 | case '^': |
| 2086 | token->type = OP_NON_MATCH_LIST; |
| 2087 | break; |
| 2088 | default: |
| 2089 | token->type = CHARACTER; |
| 2090 | } |
| 2091 | return 1; |
| 2092 | } |
| 2093 | |
| 2094 | /* Functions for parser. */ |
| 2095 | |
| 2096 | /* Entry point of the parser. |
| 2097 | Parse the regular expression REGEXP and return the structure tree. |
| 2098 | If an error is occured, ERR is set by error code, and return NULL. |
| 2099 | This function build the following tree, from regular expression <reg_exp>: |
| 2100 | CAT |
| 2101 | / \ |
| 2102 | / \ |
| 2103 | <reg_exp> EOR |
| 2104 | |
| 2105 | CAT means concatenation. |
| 2106 | EOR means end of regular expression. */ |
| 2107 | |
| 2108 | static bin_tree_t * |
| 2109 | parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, |
| 2110 | reg_errcode_t *err) |
| 2111 | { |
| 2112 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 2113 | bin_tree_t *tree, *eor, *root; |
| 2114 | re_token_t current_token; |
| 2115 | dfa->syntax = syntax; |
| 2116 | fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
| 2117 | tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); |
| 2118 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| 2119 | return NULL; |
| 2120 | eor = create_tree (dfa, NULL, NULL, END_OF_RE); |
| 2121 | if (tree != NULL) |
| 2122 | root = create_tree (dfa, tree, eor, CONCAT); |
| 2123 | else |
| 2124 | root = eor; |
| 2125 | if (BE (eor == NULL || root == NULL, 0)) |
| 2126 | { |
| 2127 | *err = REG_ESPACE; |
| 2128 | return NULL; |
| 2129 | } |
| 2130 | return root; |
| 2131 | } |
| 2132 | |
| 2133 | /* This function build the following tree, from regular expression |
| 2134 | <branch1>|<branch2>: |
| 2135 | ALT |
| 2136 | / \ |
| 2137 | / \ |
| 2138 | <branch1> <branch2> |
| 2139 | |
| 2140 | ALT means alternative, which represents the operator `|'. */ |
| 2141 | |
| 2142 | static bin_tree_t * |
| 2143 | parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, |
| 2144 | reg_syntax_t syntax, int nest, reg_errcode_t *err) |
| 2145 | { |
| 2146 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 2147 | bin_tree_t *tree, *branch = NULL; |
| 2148 | tree = parse_branch (regexp, preg, token, syntax, nest, err); |
| 2149 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| 2150 | return NULL; |
| 2151 | |
| 2152 | while (token->type == OP_ALT) |
| 2153 | { |
| 2154 | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
| 2155 | if (token->type != OP_ALT && token->type != END_OF_RE |
| 2156 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) |
| 2157 | { |
| 2158 | branch = parse_branch (regexp, preg, token, syntax, nest, err); |
| 2159 | if (BE (*err != REG_NOERROR && branch == NULL, 0)) |
| 2160 | return NULL; |
| 2161 | } |
| 2162 | else |
| 2163 | branch = NULL; |
| 2164 | tree = create_tree (dfa, tree, branch, OP_ALT); |
| 2165 | if (BE (tree == NULL, 0)) |
| 2166 | { |
| 2167 | *err = REG_ESPACE; |
| 2168 | return NULL; |
| 2169 | } |
| 2170 | } |
| 2171 | return tree; |
| 2172 | } |
| 2173 | |
| 2174 | /* This function build the following tree, from regular expression |
| 2175 | <exp1><exp2>: |
| 2176 | CAT |
| 2177 | / \ |
| 2178 | / \ |
| 2179 | <exp1> <exp2> |
| 2180 | |
| 2181 | CAT means concatenation. */ |
| 2182 | |
| 2183 | static bin_tree_t * |
| 2184 | parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, |
| 2185 | reg_syntax_t syntax, int nest, reg_errcode_t *err) |
| 2186 | { |
| 2187 | bin_tree_t *tree, *exp; |
| 2188 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 2189 | tree = parse_expression (regexp, preg, token, syntax, nest, err); |
| 2190 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| 2191 | return NULL; |
| 2192 | |
| 2193 | while (token->type != OP_ALT && token->type != END_OF_RE |
| 2194 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) |
| 2195 | { |
| 2196 | exp = parse_expression (regexp, preg, token, syntax, nest, err); |
| 2197 | if (BE (*err != REG_NOERROR && exp == NULL, 0)) |
| 2198 | { |
| 2199 | return NULL; |
| 2200 | } |
| 2201 | if (tree != NULL && exp != NULL) |
| 2202 | { |
| 2203 | tree = create_tree (dfa, tree, exp, CONCAT); |
| 2204 | if (tree == NULL) |
| 2205 | { |
| 2206 | *err = REG_ESPACE; |
| 2207 | return NULL; |
| 2208 | } |
| 2209 | } |
| 2210 | else if (tree == NULL) |
| 2211 | tree = exp; |
| 2212 | /* Otherwise exp == NULL, we don't need to create new tree. */ |
| 2213 | } |
| 2214 | return tree; |
| 2215 | } |
| 2216 | |
| 2217 | /* This function build the following tree, from regular expression a*: |
| 2218 | * |
| 2219 | | |
| 2220 | a |
| 2221 | */ |
| 2222 | |
| 2223 | static bin_tree_t * |
| 2224 | parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, |
| 2225 | reg_syntax_t syntax, int nest, reg_errcode_t *err) |
| 2226 | { |
| 2227 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 2228 | bin_tree_t *tree; |
| 2229 | switch (token->type) |
| 2230 | { |
| 2231 | case CHARACTER: |
| 2232 | tree = create_token_tree (dfa, NULL, NULL, token); |
| 2233 | if (BE (tree == NULL, 0)) |
| 2234 | { |
| 2235 | *err = REG_ESPACE; |
| 2236 | return NULL; |
| 2237 | } |
| 2238 | #ifdef RE_ENABLE_I18N |
| 2239 | if (dfa->mb_cur_max > 1) |
| 2240 | { |
| 2241 | while (!re_string_eoi (regexp) |
| 2242 | && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) |
| 2243 | { |
| 2244 | bin_tree_t *mbc_remain; |
| 2245 | fetch_token (token, regexp, syntax); |
| 2246 | mbc_remain = create_token_tree (dfa, NULL, NULL, token); |
| 2247 | tree = create_tree (dfa, tree, mbc_remain, CONCAT); |
| 2248 | if (BE (mbc_remain == NULL || tree == NULL, 0)) |
| 2249 | { |
| 2250 | *err = REG_ESPACE; |
| 2251 | return NULL; |
| 2252 | } |
| 2253 | } |
| 2254 | } |
| 2255 | #endif |
| 2256 | break; |
| 2257 | case OP_OPEN_SUBEXP: |
| 2258 | tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); |
| 2259 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| 2260 | return NULL; |
| 2261 | break; |
| 2262 | case OP_OPEN_BRACKET: |
| 2263 | tree = parse_bracket_exp (regexp, dfa, token, syntax, err); |
| 2264 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| 2265 | return NULL; |
| 2266 | break; |
| 2267 | case OP_BACK_REF: |
| 2268 | if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) |
| 2269 | { |
| 2270 | *err = REG_ESUBREG; |
| 2271 | return NULL; |
| 2272 | } |
| 2273 | dfa->used_bkref_map |= 1 << token->opr.idx; |
| 2274 | tree = create_token_tree (dfa, NULL, NULL, token); |
| 2275 | if (BE (tree == NULL, 0)) |
| 2276 | { |
| 2277 | *err = REG_ESPACE; |
| 2278 | return NULL; |
| 2279 | } |
| 2280 | ++dfa->nbackref; |
| 2281 | dfa->has_mb_node = 1; |
| 2282 | break; |
| 2283 | case OP_OPEN_DUP_NUM: |
| 2284 | if (syntax & RE_CONTEXT_INVALID_DUP) |
| 2285 | { |
| 2286 | *err = REG_BADRPT; |
| 2287 | return NULL; |
| 2288 | } |
| 2289 | /* FALLTHROUGH */ |
| 2290 | case OP_DUP_ASTERISK: |
| 2291 | case OP_DUP_PLUS: |
| 2292 | case OP_DUP_QUESTION: |
| 2293 | if (syntax & RE_CONTEXT_INVALID_OPS) |
| 2294 | { |
| 2295 | *err = REG_BADRPT; |
| 2296 | return NULL; |
| 2297 | } |
| 2298 | else if (syntax & RE_CONTEXT_INDEP_OPS) |
| 2299 | { |
| 2300 | fetch_token (token, regexp, syntax); |
| 2301 | return parse_expression (regexp, preg, token, syntax, nest, err); |
| 2302 | } |
| 2303 | /* else fall through */ |
| 2304 | case OP_CLOSE_SUBEXP: |
| 2305 | if ((token->type == OP_CLOSE_SUBEXP) && |
| 2306 | !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) |
| 2307 | { |
| 2308 | *err = REG_ERPAREN; |
| 2309 | return NULL; |
| 2310 | } |
| 2311 | /* else fall through */ |
| 2312 | case OP_CLOSE_DUP_NUM: |
| 2313 | /* We treat it as a normal character. */ |
| 2314 | |
| 2315 | /* Then we can these characters as normal characters. */ |
| 2316 | token->type = CHARACTER; |
| 2317 | /* mb_partial and word_char bits should be initialized already |
| 2318 | by peek_token. */ |
| 2319 | tree = create_token_tree (dfa, NULL, NULL, token); |
| 2320 | if (BE (tree == NULL, 0)) |
| 2321 | { |
| 2322 | *err = REG_ESPACE; |
| 2323 | return NULL; |
| 2324 | } |
| 2325 | break; |
| 2326 | case ANCHOR: |
| 2327 | if ((token->opr.ctx_type |
| 2328 | & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) |
| 2329 | && dfa->word_ops_used == 0) |
| 2330 | init_word_char (dfa); |
| 2331 | if (token->opr.ctx_type == WORD_DELIM |
| 2332 | || token->opr.ctx_type == NOT_WORD_DELIM) |
| 2333 | { |
| 2334 | bin_tree_t *tree_first, *tree_last; |
| 2335 | if (token->opr.ctx_type == WORD_DELIM) |
| 2336 | { |
| 2337 | token->opr.ctx_type = WORD_FIRST; |
| 2338 | tree_first = create_token_tree (dfa, NULL, NULL, token); |
| 2339 | token->opr.ctx_type = WORD_LAST; |
| 2340 | } |
| 2341 | else |
| 2342 | { |
| 2343 | token->opr.ctx_type = INSIDE_WORD; |
| 2344 | tree_first = create_token_tree (dfa, NULL, NULL, token); |
| 2345 | token->opr.ctx_type = INSIDE_NOTWORD; |
| 2346 | } |
| 2347 | tree_last = create_token_tree (dfa, NULL, NULL, token); |
| 2348 | tree = create_tree (dfa, tree_first, tree_last, OP_ALT); |
| 2349 | if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) |
| 2350 | { |
| 2351 | *err = REG_ESPACE; |
| 2352 | return NULL; |
| 2353 | } |
| 2354 | } |
| 2355 | else |
| 2356 | { |
| 2357 | tree = create_token_tree (dfa, NULL, NULL, token); |
| 2358 | if (BE (tree == NULL, 0)) |
| 2359 | { |
| 2360 | *err = REG_ESPACE; |
| 2361 | return NULL; |
| 2362 | } |
| 2363 | } |
| 2364 | /* We must return here, since ANCHORs can't be followed |
| 2365 | by repetition operators. |
| 2366 | eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", |
| 2367 | it must not be "<ANCHOR(^)><REPEAT(*)>". */ |
| 2368 | fetch_token (token, regexp, syntax); |
| 2369 | return tree; |
| 2370 | case OP_PERIOD: |
| 2371 | tree = create_token_tree (dfa, NULL, NULL, token); |
| 2372 | if (BE (tree == NULL, 0)) |
| 2373 | { |
| 2374 | *err = REG_ESPACE; |
| 2375 | return NULL; |
| 2376 | } |
| 2377 | if (dfa->mb_cur_max > 1) |
| 2378 | dfa->has_mb_node = 1; |
| 2379 | break; |
| 2380 | case OP_WORD: |
| 2381 | case OP_NOTWORD: |
| 2382 | tree = build_charclass_op (dfa, regexp->trans, |
| 2383 | "alnum", |
| 2384 | "_", |
| 2385 | token->type == OP_NOTWORD, err); |
| 2386 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| 2387 | return NULL; |
| 2388 | break; |
| 2389 | case OP_SPACE: |
| 2390 | case OP_NOTSPACE: |
| 2391 | tree = build_charclass_op (dfa, regexp->trans, |
| 2392 | "space", |
| 2393 | "", |
| 2394 | token->type == OP_NOTSPACE, err); |
| 2395 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| 2396 | return NULL; |
| 2397 | break; |
| 2398 | case OP_ALT: |
| 2399 | case END_OF_RE: |
| 2400 | return NULL; |
| 2401 | case BACK_SLASH: |
| 2402 | *err = REG_EESCAPE; |
| 2403 | return NULL; |
| 2404 | default: |
| 2405 | /* Must not happen? */ |
| 2406 | #ifdef DEBUG |
| 2407 | assert (0); |
| 2408 | #endif |
| 2409 | return NULL; |
| 2410 | } |
| 2411 | fetch_token (token, regexp, syntax); |
| 2412 | |
| 2413 | while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS |
| 2414 | || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) |
| 2415 | { |
| 2416 | tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); |
| 2417 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| 2418 | return NULL; |
| 2419 | /* In BRE consecutive duplications are not allowed. */ |
| 2420 | if ((syntax & RE_CONTEXT_INVALID_DUP) |
| 2421 | && (token->type == OP_DUP_ASTERISK |
| 2422 | || token->type == OP_OPEN_DUP_NUM)) |
| 2423 | { |
| 2424 | *err = REG_BADRPT; |
| 2425 | return NULL; |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | return tree; |
| 2430 | } |
| 2431 | |
| 2432 | /* This function build the following tree, from regular expression |
| 2433 | (<reg_exp>): |
| 2434 | SUBEXP |
| 2435 | | |
| 2436 | <reg_exp> |
| 2437 | */ |
| 2438 | |
| 2439 | static bin_tree_t * |
| 2440 | parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, |
| 2441 | reg_syntax_t syntax, int nest, reg_errcode_t *err) |
| 2442 | { |
| 2443 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| 2444 | bin_tree_t *tree; |
| 2445 | size_t cur_nsub; |
| 2446 | cur_nsub = preg->re_nsub++; |
| 2447 | |
| 2448 | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
| 2449 | |
| 2450 | /* The subexpression may be a null string. */ |
| 2451 | if (token->type == OP_CLOSE_SUBEXP) |
| 2452 | tree = NULL; |
| 2453 | else |
| 2454 | { |
| 2455 | tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); |
| 2456 | if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) |
| 2457 | *err = REG_EPAREN; |
| 2458 | if (BE (*err != REG_NOERROR, 0)) |
| 2459 | return NULL; |
| 2460 | } |
| 2461 | |
| 2462 | if (cur_nsub <= '9' - '1') |
| 2463 | dfa->completed_bkref_map |= 1 << cur_nsub; |
| 2464 | |
| 2465 | tree = create_tree (dfa, tree, NULL, SUBEXP); |
| 2466 | if (BE (tree == NULL, 0)) |
| 2467 | { |
| 2468 | *err = REG_ESPACE; |
| 2469 | return NULL; |
| 2470 | } |
| 2471 | tree->token.opr.idx = cur_nsub; |
| 2472 | return tree; |
| 2473 | } |
| 2474 | |
| 2475 | /* This function parse repetition operators like "*", "+", "{1,3}" etc. */ |
| 2476 | |
| 2477 | static bin_tree_t * |
| 2478 | parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, |
| 2479 | re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) |
| 2480 | { |
| 2481 | bin_tree_t *tree = NULL, *old_tree = NULL; |
| 2482 | int i, start, end, start_idx = re_string_cur_idx (regexp); |
| 2483 | #ifndef RE_TOKEN_INIT_BUG |
| 2484 | re_token_t start_token = *token; |
| 2485 | #else |
| 2486 | re_token_t start_token; |
| 2487 | |
| 2488 | memcpy ((void *) &start_token, (void *) token, sizeof start_token); |
| 2489 | #endif |
| 2490 | |
| 2491 | if (token->type == OP_OPEN_DUP_NUM) |
| 2492 | { |
| 2493 | end = 0; |
| 2494 | start = fetch_number (regexp, token, syntax); |
| 2495 | if (start == -1) |
| 2496 | { |
| 2497 | if (token->type == CHARACTER && token->opr.c == ',') |
| 2498 | start = 0; /* We treat "{,m}" as "{0,m}". */ |
| 2499 | else |
| 2500 | { |
| 2501 | *err = REG_BADBR; /* <re>{} is invalid. */ |
| 2502 | return NULL; |
| 2503 | } |
| 2504 | } |
| 2505 | if (BE (start != -2, 1)) |
| 2506 | { |
| 2507 | /* We treat "{n}" as "{n,n}". */ |
| 2508 | end = ((token->type == OP_CLOSE_DUP_NUM) ? start |
| 2509 | : ((token->type == CHARACTER && token->opr.c == ',') |
| 2510 | ? fetch_number (regexp, token, syntax) : -2)); |
| 2511 | } |
| 2512 | if (BE (start == -2 || end == -2, 0)) |
| 2513 | { |
| 2514 | /* Invalid sequence. */ |
| 2515 | if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0)) |
| 2516 | { |
| 2517 | if (token->type == END_OF_RE) |
| 2518 | *err = REG_EBRACE; |
| 2519 | else |
| 2520 | *err = REG_BADBR; |
| 2521 | |
| 2522 | return NULL; |
| 2523 | } |
| 2524 | |
| 2525 | /* If the syntax bit is set, rollback. */ |
| 2526 | re_string_set_index (regexp, start_idx); |
| 2527 | *token = start_token; |
| 2528 | token->type = CHARACTER; |
| 2529 | /* mb_partial and word_char bits should be already initialized by |
| 2530 | peek_token. */ |
| 2531 | return elem; |
| 2532 | } |
| 2533 | |
| 2534 | if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0)) |
| 2535 | { |
| 2536 | /* First number greater than second. */ |
| 2537 | *err = REG_BADBR; |
| 2538 | return NULL; |
| 2539 | } |
| 2540 | } |
| 2541 | else |
| 2542 | { |
| 2543 | start = (token->type == OP_DUP_PLUS) ? 1 : 0; |
| 2544 | end = (token->type == OP_DUP_QUESTION) ? 1 : -1; |
| 2545 | } |
| 2546 | |
| 2547 | fetch_token (token, regexp, syntax); |
| 2548 | |
| 2549 | if (BE (elem == NULL, 0)) |
| 2550 | return NULL; |
| 2551 | if (BE (start == 0 && end == 0, 0)) |
| 2552 | { |
| 2553 | postorder (elem, free_tree, NULL); |
| 2554 | return NULL; |
| 2555 | } |
| 2556 | |
| 2557 | /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */ |
| 2558 | if (BE (start > 0, 0)) |
| 2559 | { |
| 2560 | tree = elem; |
| 2561 | for (i = 2; i <= start; ++i) |
| 2562 | { |
| 2563 | elem = duplicate_tree (elem, dfa); |
| 2564 | tree = create_tree (dfa, tree, elem, CONCAT); |
| 2565 | if (BE (elem == NULL || tree == NULL, 0)) |
| 2566 | goto parse_dup_op_espace; |
| 2567 | } |
| 2568 | |
| 2569 | if (start == end) |
| 2570 | return tree; |
| 2571 | |
| 2572 | /* Duplicate ELEM before it is marked optional. */ |
| 2573 | elem = duplicate_tree (elem, dfa); |
| 2574 | old_tree = tree; |
| 2575 | } |
| 2576 | else |
| 2577 | old_tree = NULL; |
| 2578 | |
| 2579 | if (elem->token.type == SUBEXP) |
| 2580 | postorder (elem, mark_opt_subexp, (void *) (long) elem->token.opr.idx); |
| 2581 | |
| 2582 | tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT)); |
| 2583 | if (BE (tree == NULL, 0)) |
| 2584 | goto parse_dup_op_espace; |
| 2585 | |
| 2586 | /* This loop is actually executed only when end != -1, |
| 2587 | to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have |
| 2588 | already created the start+1-th copy. */ |
| 2589 | for (i = start + 2; i <= end; ++i) |
| 2590 | { |
| 2591 | elem = duplicate_tree (elem, dfa); |
| 2592 | tree = create_tree (dfa, tree, elem, CONCAT); |
| 2593 | if (BE (elem == NULL || tree == NULL, 0)) |
| 2594 | goto parse_dup_op_espace; |
| 2595 | |
| 2596 | tree = create_tree (dfa, tree, NULL, OP_ALT); |
| 2597 | if (BE (tree == NULL, 0)) |
| 2598 | goto parse_dup_op_espace; |
| 2599 | } |
| 2600 | |
| 2601 | if (old_tree) |
| 2602 | tree = create_tree (dfa, old_tree, tree, CONCAT); |
| 2603 | |
| 2604 | return tree; |
| 2605 | |
| 2606 | parse_dup_op_espace: |
| 2607 | *err = REG_ESPACE; |
| 2608 | return NULL; |
| 2609 | } |
| 2610 | |
| 2611 | /* Size of the names for collating symbol/equivalence_class/character_class. |
| 2612 | I'm not sure, but maybe enough. */ |
| 2613 | #define BRACKET_NAME_BUF_SIZE 32 |
| 2614 | |
| 2615 | #ifndef _LIBC |
| 2616 | /* Local function for parse_bracket_exp only used in case of NOT _LIBC. |
| 2617 | Build the range expression which starts from START_ELEM, and ends |
| 2618 | at END_ELEM. The result are written to MBCSET and SBCSET. |
| 2619 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and |
| 2620 | mbcset->range_ends, is a pointer argument sinse we may |
| 2621 | update it. */ |
| 2622 | |
| 2623 | static reg_errcode_t |
| 2624 | internal_function |
| 2625 | # ifdef RE_ENABLE_I18N |
| 2626 | build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc, |
| 2627 | bracket_elem_t *start_elem, bracket_elem_t *end_elem) |
| 2628 | # else /* not RE_ENABLE_I18N */ |
| 2629 | build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem, |
| 2630 | bracket_elem_t *end_elem) |
| 2631 | # endif /* not RE_ENABLE_I18N */ |
| 2632 | { |
| 2633 | unsigned int start_ch, end_ch; |
| 2634 | /* Equivalence Classes and Character Classes can't be a range start/end. */ |
| 2635 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS |
| 2636 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, |
| 2637 | 0)) |
| 2638 | return REG_ERANGE; |
| 2639 | |
| 2640 | /* We can handle no multi character collating elements without libc |
| 2641 | support. */ |
| 2642 | if (BE ((start_elem->type == COLL_SYM |
| 2643 | && strlen ((char *) start_elem->opr.name) > 1) |
| 2644 | || (end_elem->type == COLL_SYM |
| 2645 | && strlen ((char *) end_elem->opr.name) > 1), 0)) |
| 2646 | return REG_ECOLLATE; |
| 2647 | |
| 2648 | # ifdef RE_ENABLE_I18N |
| 2649 | { |
| 2650 | wchar_t wc; |
| 2651 | wint_t start_wc; |
| 2652 | wint_t end_wc; |
| 2653 | wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; |
| 2654 | |
| 2655 | start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch |
| 2656 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] |
| 2657 | : 0)); |
| 2658 | end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch |
| 2659 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] |
| 2660 | : 0)); |
| 2661 | #ifdef GAWK |
| 2662 | /* |
| 2663 | * Fedora Core 2, maybe others, have broken `btowc' that returns -1 |
| 2664 | * for any value > 127. Sigh. Note that `start_ch' and `end_ch' are |
| 2665 | * unsigned, so we don't have sign extension problems. |
| 2666 | */ |
| 2667 | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) |
| 2668 | ? start_ch : start_elem->opr.wch); |
| 2669 | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) |
| 2670 | ? end_ch : end_elem->opr.wch); |
| 2671 | #else |
| 2672 | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) |
| 2673 | ? __btowc (start_ch) : start_elem->opr.wch); |
| 2674 | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) |
| 2675 | ? __btowc (end_ch) : end_elem->opr.wch); |
| 2676 | #endif |
| 2677 | if (start_wc == WEOF || end_wc == WEOF) |
| 2678 | return REG_ECOLLATE; |
| 2679 | cmp_buf[0] = start_wc; |
| 2680 | cmp_buf[4] = end_wc; |
| 2681 | if (wcscoll (cmp_buf, cmp_buf + 4) > 0) |
| 2682 | return REG_ERANGE; |
| 2683 | |
| 2684 | /* Got valid collation sequence values, add them as a new entry. |
| 2685 | However, for !_LIBC we have no collation elements: if the |
| 2686 | character set is single byte, the single byte character set |
| 2687 | that we build below suffices. parse_bracket_exp passes |
| 2688 | no MBCSET if dfa->mb_cur_max == 1. */ |
| 2689 | if (mbcset) |
| 2690 | { |
| 2691 | /* Check the space of the arrays. */ |
| 2692 | if (BE (*range_alloc == mbcset->nranges, 0)) |
| 2693 | { |
| 2694 | /* There is not enough space, need realloc. */ |
| 2695 | wchar_t *new_array_start, *new_array_end; |
| 2696 | int new_nranges; |
| 2697 | |
| 2698 | /* +1 in case of mbcset->nranges is 0. */ |
| 2699 | new_nranges = 2 * mbcset->nranges + 1; |
| 2700 | /* Use realloc since mbcset->range_starts and mbcset->range_ends |
| 2701 | are NULL if *range_alloc == 0. */ |
| 2702 | new_array_start = re_realloc (mbcset->range_starts, wchar_t, |
| 2703 | new_nranges); |
| 2704 | new_array_end = re_realloc (mbcset->range_ends, wchar_t, |
| 2705 | new_nranges); |
| 2706 | |
| 2707 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) |
| 2708 | return REG_ESPACE; |
| 2709 | |
| 2710 | mbcset->range_starts = new_array_start; |
| 2711 | mbcset->range_ends = new_array_end; |
| 2712 | *range_alloc = new_nranges; |
| 2713 | } |
| 2714 | |
| 2715 | mbcset->range_starts[mbcset->nranges] = start_wc; |
| 2716 | mbcset->range_ends[mbcset->nranges++] = end_wc; |
| 2717 | } |
| 2718 | |
| 2719 | /* Build the table for single byte characters. */ |
| 2720 | for (wc = 0; wc < SBC_MAX; ++wc) |
| 2721 | { |
| 2722 | cmp_buf[2] = wc; |
| 2723 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 |
| 2724 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) |
| 2725 | bitset_set (sbcset, wc); |
| 2726 | } |
| 2727 | } |
| 2728 | # else /* not RE_ENABLE_I18N */ |
| 2729 | { |
| 2730 | unsigned int ch; |
| 2731 | start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch |
| 2732 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] |
| 2733 | : 0)); |
| 2734 | end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch |
| 2735 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] |
| 2736 | : 0)); |
| 2737 | if (start_ch > end_ch) |
| 2738 | return REG_ERANGE; |
| 2739 | /* Build the table for single byte characters. */ |
| 2740 | for (ch = 0; ch < SBC_MAX; ++ch) |
| 2741 | if (start_ch <= ch && ch <= end_ch) |
| 2742 | bitset_set (sbcset, ch); |
| 2743 | } |
| 2744 | # endif /* not RE_ENABLE_I18N */ |
| 2745 | return REG_NOERROR; |
| 2746 | } |
| 2747 | #endif /* not _LIBC */ |
| 2748 | |
| 2749 | #ifndef _LIBC |
| 2750 | /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. |
| 2751 | Build the collating element which is represented by NAME. |
| 2752 | The result are written to MBCSET and SBCSET. |
| 2753 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a |
| 2754 | pointer argument since we may update it. */ |
| 2755 | |
| 2756 | static reg_errcode_t |
| 2757 | internal_function |
| 2758 | # ifdef RE_ENABLE_I18N |
| 2759 | build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset, |
| 2760 | int *coll_sym_alloc, const unsigned char *name) |
| 2761 | # else /* not RE_ENABLE_I18N */ |
| 2762 | build_collating_symbol (bitset_t sbcset, const unsigned char *name) |
| 2763 | # endif /* not RE_ENABLE_I18N */ |
| 2764 | { |
| 2765 | size_t name_len = strlen ((const char *) name); |
| 2766 | if (BE (name_len != 1, 0)) |
| 2767 | return REG_ECOLLATE; |
| 2768 | else |
| 2769 | { |
| 2770 | bitset_set (sbcset, name[0]); |
| 2771 | return REG_NOERROR; |
| 2772 | } |
| 2773 | } |
| 2774 | #endif /* not _LIBC */ |
| 2775 | |
| 2776 | /* This function parse bracket expression like "[abc]", "[a-c]", |
| 2777 | "[[.a-a.]]" etc. */ |
| 2778 | |
| 2779 | static bin_tree_t * |
| 2780 | parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, |
| 2781 | reg_syntax_t syntax, reg_errcode_t *err) |
| 2782 | { |
| 2783 | #ifdef _LIBC |
| 2784 | const unsigned char *collseqmb; |
| 2785 | const char *collseqwc; |
| 2786 | uint32_t nrules; |
| 2787 | int32_t table_size; |
| 2788 | const int32_t *symb_table; |
| 2789 | const unsigned char *extra; |
| 2790 | |
| 2791 | /* Local function for parse_bracket_exp used in _LIBC environement. |
| 2792 | Seek the collating symbol entry correspondings to NAME. |
| 2793 | Return the index of the symbol in the SYMB_TABLE. */ |
| 2794 | |
| 2795 | auto inline int32_t |
| 2796 | __attribute ((always_inline)) |
| 2797 | seek_collating_symbol_entry (name, name_len) |
| 2798 | const unsigned char *name; |
| 2799 | size_t name_len; |
| 2800 | { |
| 2801 | int32_t hash = elem_hash ((const char *) name, name_len); |
| 2802 | int32_t elem = hash % table_size; |
| 2803 | if (symb_table[2 * elem] != 0) |
| 2804 | { |
| 2805 | int32_t second = hash % (table_size - 2) + 1; |
| 2806 | |
| 2807 | do |
| 2808 | { |
| 2809 | /* First compare the hashing value. */ |
| 2810 | if (symb_table[2 * elem] == hash |
| 2811 | /* Compare the length of the name. */ |
| 2812 | && name_len == extra[symb_table[2 * elem + 1]] |
| 2813 | /* Compare the name. */ |
| 2814 | && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], |
| 2815 | name_len) == 0) |
| 2816 | { |
| 2817 | /* Yep, this is the entry. */ |
| 2818 | break; |
| 2819 | } |
| 2820 | |
| 2821 | /* Next entry. */ |
| 2822 | elem += second; |
| 2823 | } |
| 2824 | while (symb_table[2 * elem] != 0); |
| 2825 | } |
| 2826 | return elem; |
| 2827 | } |
| 2828 | |
| 2829 | /* Local function for parse_bracket_exp used in _LIBC environment. |
| 2830 | Look up the collation sequence value of BR_ELEM. |
| 2831 | Return the value if succeeded, UINT_MAX otherwise. */ |
| 2832 | |
| 2833 | auto inline unsigned int |
| 2834 | __attribute ((always_inline)) |
| 2835 | lookup_collation_sequence_value (br_elem) |
| 2836 | bracket_elem_t *br_elem; |
| 2837 | { |
| 2838 | if (br_elem->type == SB_CHAR) |
| 2839 | { |
| 2840 | /* |
| 2841 | if (MB_CUR_MAX == 1) |
| 2842 | */ |
| 2843 | if (nrules == 0) |
| 2844 | return collseqmb[br_elem->opr.ch]; |
| 2845 | else |
| 2846 | { |
| 2847 | wint_t wc = __btowc (br_elem->opr.ch); |
| 2848 | return __collseq_table_lookup (collseqwc, wc); |
| 2849 | } |
| 2850 | } |
| 2851 | else if (br_elem->type == MB_CHAR) |
| 2852 | { |
| 2853 | if (nrules != 0) |
| 2854 | return __collseq_table_lookup (collseqwc, br_elem->opr.wch); |
| 2855 | } |
| 2856 | else if (br_elem->type == COLL_SYM) |
| 2857 | { |
| 2858 | size_t sym_name_len = strlen ((char *) br_elem->opr.name); |
| 2859 | if (nrules != 0) |
| 2860 | { |
| 2861 | int32_t elem, idx; |
| 2862 | elem = seek_collating_symbol_entry (br_elem->opr.name, |
| 2863 | sym_name_len); |
| 2864 | if (symb_table[2 * elem] != 0) |
| 2865 | { |
| 2866 | /* We found the entry. */ |
| 2867 | idx = symb_table[2 * elem + 1]; |
| 2868 | /* Skip the name of collating element name. */ |
| 2869 | idx += 1 + extra[idx]; |
| 2870 | /* Skip the byte sequence of the collating element. */ |
| 2871 | idx += 1 + extra[idx]; |
| 2872 | /* Adjust for the alignment. */ |
| 2873 | idx = (idx + 3) & ~3; |
| 2874 | /* Skip the multibyte collation sequence value. */ |
| 2875 | idx += sizeof (unsigned int); |
| 2876 | /* Skip the wide char sequence of the collating element. */ |
| 2877 | idx += sizeof (unsigned int) * |
| 2878 | (1 + *(unsigned int *) (extra + idx)); |
| 2879 | /* Return the collation sequence value. */ |
| 2880 | return *(unsigned int *) (extra + idx); |
| 2881 | } |
| 2882 | else if (symb_table[2 * elem] == 0 && sym_name_len == 1) |
| 2883 | { |
| 2884 | /* No valid character. Match it as a single byte |
| 2885 | character. */ |
| 2886 | return collseqmb[br_elem->opr.name[0]]; |
| 2887 | } |
| 2888 | } |
| 2889 | else if (sym_name_len == 1) |
| 2890 | return collseqmb[br_elem->opr.name[0]]; |
| 2891 | } |
| 2892 | return UINT_MAX; |
| 2893 | } |
| 2894 | |
| 2895 | /* Local function for parse_bracket_exp used in _LIBC environement. |
| 2896 | Build the range expression which starts from START_ELEM, and ends |
| 2897 | at END_ELEM. The result are written to MBCSET and SBCSET. |
| 2898 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and |
| 2899 | mbcset->range_ends, is a pointer argument sinse we may |
| 2900 | update it. */ |
| 2901 | |
| 2902 | auto inline reg_errcode_t |
| 2903 | __attribute ((always_inline)) |
| 2904 | build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem) |
| 2905 | re_charset_t *mbcset; |
| 2906 | int *range_alloc; |
| 2907 | bitset_t sbcset; |
| 2908 | bracket_elem_t *start_elem, *end_elem; |
| 2909 | { |
| 2910 | unsigned int ch; |
| 2911 | uint32_t start_collseq; |
| 2912 | uint32_t end_collseq; |
| 2913 | |
| 2914 | /* Equivalence Classes and Character Classes can't be a range |
| 2915 | start/end. */ |
| 2916 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS |
| 2917 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, |
| 2918 | 0)) |
| 2919 | return REG_ERANGE; |
| 2920 | |
| 2921 | start_collseq = lookup_collation_sequence_value (start_elem); |
| 2922 | end_collseq = lookup_collation_sequence_value (end_elem); |
| 2923 | /* Check start/end collation sequence values. */ |
| 2924 | if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) |
| 2925 | return REG_ECOLLATE; |
| 2926 | if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) |
| 2927 | return REG_ERANGE; |
| 2928 | |
| 2929 | /* Got valid collation sequence values, add them as a new entry. |
| 2930 | However, if we have no collation elements, and the character set |
| 2931 | is single byte, the single byte character set that we |
| 2932 | build below suffices. */ |
| 2933 | if (nrules > 0 || dfa->mb_cur_max > 1) |
| 2934 | { |
| 2935 | /* Check the space of the arrays. */ |
| 2936 | if (BE (*range_alloc == mbcset->nranges, 0)) |
| 2937 | { |
| 2938 | /* There is not enough space, need realloc. */ |
| 2939 | uint32_t *new_array_start; |
| 2940 | uint32_t *new_array_end; |
| 2941 | int new_nranges; |
| 2942 | |
| 2943 | /* +1 in case of mbcset->nranges is 0. */ |
| 2944 | new_nranges = 2 * mbcset->nranges + 1; |
| 2945 | new_array_start = re_realloc (mbcset->range_starts, uint32_t, |
| 2946 | new_nranges); |
| 2947 | new_array_end = re_realloc (mbcset->range_ends, uint32_t, |
| 2948 | new_nranges); |
| 2949 | |
| 2950 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) |
| 2951 | return REG_ESPACE; |
| 2952 | |
| 2953 | mbcset->range_starts = new_array_start; |
| 2954 | mbcset->range_ends = new_array_end; |
| 2955 | *range_alloc = new_nranges; |
| 2956 | } |
| 2957 | |
| 2958 | mbcset->range_starts[mbcset->nranges] = start_collseq; |
| 2959 | mbcset->range_ends[mbcset->nranges++] = end_collseq; |
| 2960 | } |
| 2961 | |
| 2962 | /* Build the table for single byte characters. */ |
| 2963 | for (ch = 0; ch < SBC_MAX; ch++) |
| 2964 | { |
| 2965 | uint32_t ch_collseq; |
| 2966 | /* |
| 2967 | if (MB_CUR_MAX == 1) |
| 2968 | */ |
| 2969 | if (nrules == 0) |
| 2970 | ch_collseq = collseqmb[ch]; |
| 2971 | else |
| 2972 | ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); |
| 2973 | if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) |
| 2974 | bitset_set (sbcset, ch); |
| 2975 | } |
| 2976 | return REG_NOERROR; |
| 2977 | } |
| 2978 | |
| 2979 | /* Local function for parse_bracket_exp used in _LIBC environement. |
| 2980 | Build the collating element which is represented by NAME. |
| 2981 | The result are written to MBCSET and SBCSET. |
| 2982 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a |
| 2983 | pointer argument sinse we may update it. */ |
| 2984 | |
| 2985 | auto inline reg_errcode_t |
| 2986 | __attribute ((always_inline)) |
| 2987 | build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name) |
| 2988 | re_charset_t *mbcset; |
| 2989 | int *coll_sym_alloc; |
| 2990 | bitset_t sbcset; |
| 2991 | const unsigned char *name; |
| 2992 | { |
| 2993 | int32_t elem, idx; |
| 2994 | size_t name_len = strlen ((const char *) name); |
| 2995 | if (nrules != 0) |
| 2996 | { |
| 2997 | elem = seek_collating_symbol_entry (name, name_len); |
| 2998 | if (symb_table[2 * elem] != 0) |
| 2999 | { |
| 3000 | /* We found the entry. */ |
| 3001 | idx = symb_table[2 * elem + 1]; |
| 3002 | /* Skip the name of collating element name. */ |
| 3003 | idx += 1 + extra[idx]; |
| 3004 | } |
| 3005 | else if (symb_table[2 * elem] == 0 && name_len == 1) |
| 3006 | { |
| 3007 | /* No valid character, treat it as a normal |
| 3008 | character. */ |
| 3009 | bitset_set (sbcset, name[0]); |
| 3010 | return REG_NOERROR; |
| 3011 | } |
| 3012 | else |
| 3013 | return REG_ECOLLATE; |
| 3014 | |
| 3015 | /* Got valid collation sequence, add it as a new entry. */ |
| 3016 | /* Check the space of the arrays. */ |
| 3017 | if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) |
| 3018 | { |
| 3019 | /* Not enough, realloc it. */ |
| 3020 | /* +1 in case of mbcset->ncoll_syms is 0. */ |
| 3021 | int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; |
| 3022 | /* Use realloc since mbcset->coll_syms is NULL |
| 3023 | if *alloc == 0. */ |
| 3024 | int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t, |
| 3025 | new_coll_sym_alloc); |
| 3026 | if (BE (new_coll_syms == NULL, 0)) |
| 3027 | return REG_ESPACE; |
| 3028 | mbcset->coll_syms = new_coll_syms; |
| 3029 | *coll_sym_alloc = new_coll_sym_alloc; |
| 3030 | } |
| 3031 | mbcset->coll_syms[mbcset->ncoll_syms++] = idx; |
| 3032 | return REG_NOERROR; |
| 3033 | } |
| 3034 | else |
| 3035 | { |
| 3036 | if (BE (name_len != 1, 0)) |
| 3037 | return REG_ECOLLATE; |
| 3038 | else |
| 3039 | { |
| 3040 | bitset_set (sbcset, name[0]); |
| 3041 | return REG_NOERROR; |
| 3042 | } |
| 3043 | } |
| 3044 | } |
| 3045 | #endif |
| 3046 | |
| 3047 | re_token_t br_token; |
| 3048 | re_bitset_ptr_t sbcset; |
| 3049 | #ifdef RE_ENABLE_I18N |
| 3050 | re_charset_t *mbcset; |
| 3051 | int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; |
| 3052 | int equiv_class_alloc = 0, char_class_alloc = 0; |
| 3053 | #endif /* not RE_ENABLE_I18N */ |
| 3054 | int non_match = 0; |
| 3055 | bin_tree_t *work_tree; |
| 3056 | int token_len; |
| 3057 | int first_round = 1; |
| 3058 | #ifdef _LIBC |
| 3059 | collseqmb = (const unsigned char *) |
| 3060 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
| 3061 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| 3062 | if (nrules) |
| 3063 | { |
| 3064 | /* |
| 3065 | if (MB_CUR_MAX > 1) |
| 3066 | */ |
| 3067 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
| 3068 | table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); |
| 3069 | symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, |
| 3070 | _NL_COLLATE_SYMB_TABLEMB); |
| 3071 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
| 3072 | _NL_COLLATE_SYMB_EXTRAMB); |
| 3073 | } |
| 3074 | #endif |
| 3075 | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
| 3076 | #ifdef RE_ENABLE_I18N |
| 3077 | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); |
| 3078 | #endif /* RE_ENABLE_I18N */ |
| 3079 | #ifdef RE_ENABLE_I18N |
| 3080 | if (BE (sbcset == NULL || mbcset == NULL, 0)) |
| 3081 | #else |
| 3082 | if (BE (sbcset == NULL, 0)) |
| 3083 | #endif /* RE_ENABLE_I18N */ |
| 3084 | { |
| 3085 | *err = REG_ESPACE; |
| 3086 | return NULL; |
| 3087 | } |
| 3088 | |
| 3089 | token_len = peek_token_bracket (token, regexp, syntax); |
| 3090 | if (BE (token->type == END_OF_RE, 0)) |
| 3091 | { |
| 3092 | *err = REG_BADPAT; |
| 3093 | goto parse_bracket_exp_free_return; |
| 3094 | } |
| 3095 | if (token->type == OP_NON_MATCH_LIST) |
| 3096 | { |
| 3097 | #ifdef RE_ENABLE_I18N |
| 3098 | mbcset->non_match = 1; |
| 3099 | #endif /* not RE_ENABLE_I18N */ |
| 3100 | non_match = 1; |
| 3101 | if (syntax & RE_HAT_LISTS_NOT_NEWLINE) |
| 3102 | bitset_set (sbcset, '\n'); |
| 3103 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
| 3104 | token_len = peek_token_bracket (token, regexp, syntax); |
| 3105 | if (BE (token->type == END_OF_RE, 0)) |
| 3106 | { |
| 3107 | *err = REG_BADPAT; |
| 3108 | goto parse_bracket_exp_free_return; |
| 3109 | } |
| 3110 | } |
| 3111 | |
| 3112 | /* We treat the first ']' as a normal character. */ |
| 3113 | if (token->type == OP_CLOSE_BRACKET) |
| 3114 | token->type = CHARACTER; |
| 3115 | |
| 3116 | while (1) |
| 3117 | { |
| 3118 | bracket_elem_t start_elem, end_elem; |
| 3119 | unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; |
| 3120 | unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; |
| 3121 | reg_errcode_t ret; |
| 3122 | int token_len2 = 0, is_range_exp = 0; |
| 3123 | re_token_t token2; |
| 3124 | |
| 3125 | start_elem.opr.name = start_name_buf; |
| 3126 | ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, |
| 3127 | syntax, first_round); |
| 3128 | if (BE (ret != REG_NOERROR, 0)) |
| 3129 | { |
| 3130 | *err = ret; |
| 3131 | goto parse_bracket_exp_free_return; |
| 3132 | } |
| 3133 | first_round = 0; |
| 3134 | |
| 3135 | /* Get information about the next token. We need it in any case. */ |
| 3136 | token_len = peek_token_bracket (token, regexp, syntax); |
| 3137 | |
| 3138 | /* Do not check for ranges if we know they are not allowed. */ |
| 3139 | if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) |
| 3140 | { |
| 3141 | if (BE (token->type == END_OF_RE, 0)) |
| 3142 | { |
| 3143 | *err = REG_EBRACK; |
| 3144 | goto parse_bracket_exp_free_return; |
| 3145 | } |
| 3146 | if (token->type == OP_CHARSET_RANGE) |
| 3147 | { |
| 3148 | re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ |
| 3149 | token_len2 = peek_token_bracket (&token2, regexp, syntax); |
| 3150 | if (BE (token2.type == END_OF_RE, 0)) |
| 3151 | { |
| 3152 | *err = REG_EBRACK; |
| 3153 | goto parse_bracket_exp_free_return; |
| 3154 | } |
| 3155 | if (token2.type == OP_CLOSE_BRACKET) |
| 3156 | { |
| 3157 | /* We treat the last '-' as a normal character. */ |
| 3158 | re_string_skip_bytes (regexp, -token_len); |
| 3159 | token->type = CHARACTER; |
| 3160 | } |
| 3161 | else |
| 3162 | is_range_exp = 1; |
| 3163 | } |
| 3164 | } |
| 3165 | |
| 3166 | if (is_range_exp == 1) |
| 3167 | { |
| 3168 | end_elem.opr.name = end_name_buf; |
| 3169 | ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, |
| 3170 | dfa, syntax, 1); |
| 3171 | if (BE (ret != REG_NOERROR, 0)) |
| 3172 | { |
| 3173 | *err = ret; |
| 3174 | goto parse_bracket_exp_free_return; |
| 3175 | } |
| 3176 | |
| 3177 | token_len = peek_token_bracket (token, regexp, syntax); |
| 3178 | |
| 3179 | #ifdef _LIBC |
| 3180 | *err = build_range_exp (sbcset, mbcset, &range_alloc, |
| 3181 | &start_elem, &end_elem); |
| 3182 | #else |
| 3183 | # ifdef RE_ENABLE_I18N |
| 3184 | *err = build_range_exp (sbcset, |
| 3185 | dfa->mb_cur_max > 1 ? mbcset : NULL, |
| 3186 | &range_alloc, &start_elem, &end_elem); |
| 3187 | # else |
| 3188 | *err = build_range_exp (sbcset, &start_elem, &end_elem); |
| 3189 | # endif |
| 3190 | #endif /* RE_ENABLE_I18N */ |
| 3191 | if (BE (*err != REG_NOERROR, 0)) |
| 3192 | goto parse_bracket_exp_free_return; |
| 3193 | } |
| 3194 | else |
| 3195 | { |
| 3196 | switch (start_elem.type) |
| 3197 | { |
| 3198 | case SB_CHAR: |
| 3199 | bitset_set (sbcset, start_elem.opr.ch); |
| 3200 | break; |
| 3201 | #ifdef RE_ENABLE_I18N |
| 3202 | case MB_CHAR: |
| 3203 | /* Check whether the array has enough space. */ |
| 3204 | if (BE (mbchar_alloc == mbcset->nmbchars, 0)) |
| 3205 | { |
| 3206 | wchar_t *new_mbchars; |
| 3207 | /* Not enough, realloc it. */ |
| 3208 | /* +1 in case of mbcset->nmbchars is 0. */ |
| 3209 | mbchar_alloc = 2 * mbcset->nmbchars + 1; |
| 3210 | /* Use realloc since array is NULL if *alloc == 0. */ |
| 3211 | new_mbchars = re_realloc (mbcset->mbchars, wchar_t, |
| 3212 | mbchar_alloc); |
| 3213 | if (BE (new_mbchars == NULL, 0)) |
| 3214 | goto parse_bracket_exp_espace; |
| 3215 | mbcset->mbchars = new_mbchars; |
| 3216 | } |
| 3217 | mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; |
| 3218 | break; |
| 3219 | #endif /* RE_ENABLE_I18N */ |
| 3220 | case EQUIV_CLASS: |
| 3221 | *err = build_equiv_class (sbcset, |
| 3222 | #ifdef RE_ENABLE_I18N |
| 3223 | mbcset, &equiv_class_alloc, |
| 3224 | #endif /* RE_ENABLE_I18N */ |
| 3225 | start_elem.opr.name); |
| 3226 | if (BE (*err != REG_NOERROR, 0)) |
| 3227 | goto parse_bracket_exp_free_return; |
| 3228 | break; |
| 3229 | case COLL_SYM: |
| 3230 | *err = build_collating_symbol (sbcset, |
| 3231 | #ifdef RE_ENABLE_I18N |
| 3232 | mbcset, &coll_sym_alloc, |
| 3233 | #endif /* RE_ENABLE_I18N */ |
| 3234 | start_elem.opr.name); |
| 3235 | if (BE (*err != REG_NOERROR, 0)) |
| 3236 | goto parse_bracket_exp_free_return; |
| 3237 | break; |
| 3238 | case CHAR_CLASS: |
| 3239 | *err = build_charclass (regexp->trans, sbcset, |
| 3240 | #ifdef RE_ENABLE_I18N |
| 3241 | mbcset, &char_class_alloc, |
| 3242 | #endif /* RE_ENABLE_I18N */ |
| 3243 | (const char *) start_elem.opr.name, syntax); |
| 3244 | if (BE (*err != REG_NOERROR, 0)) |
| 3245 | goto parse_bracket_exp_free_return; |
| 3246 | break; |
| 3247 | default: |
| 3248 | assert (0); |
| 3249 | break; |
| 3250 | } |
| 3251 | } |
| 3252 | if (BE (token->type == END_OF_RE, 0)) |
| 3253 | { |
| 3254 | *err = REG_EBRACK; |
| 3255 | goto parse_bracket_exp_free_return; |
| 3256 | } |
| 3257 | if (token->type == OP_CLOSE_BRACKET) |
| 3258 | break; |
| 3259 | } |
| 3260 | |
| 3261 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
| 3262 | |
| 3263 | /* If it is non-matching list. */ |
| 3264 | if (non_match) |
| 3265 | bitset_not (sbcset); |
| 3266 | |
| 3267 | #ifdef RE_ENABLE_I18N |
| 3268 | /* Ensure only single byte characters are set. */ |
| 3269 | if (dfa->mb_cur_max > 1) |
| 3270 | bitset_mask (sbcset, dfa->sb_char); |
| 3271 | |
| 3272 | if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes |
| 3273 | || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes |
| 3274 | || mbcset->non_match))) |
| 3275 | { |
| 3276 | bin_tree_t *mbc_tree; |
| 3277 | int sbc_idx; |
| 3278 | /* Build a tree for complex bracket. */ |
| 3279 | dfa->has_mb_node = 1; |
| 3280 | br_token.type = COMPLEX_BRACKET; |
| 3281 | br_token.opr.mbcset = mbcset; |
| 3282 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| 3283 | if (BE (mbc_tree == NULL, 0)) |
| 3284 | goto parse_bracket_exp_espace; |
| 3285 | for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) |
| 3286 | if (sbcset[sbc_idx]) |
| 3287 | break; |
| 3288 | /* If there are no bits set in sbcset, there is no point |
| 3289 | of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */ |
| 3290 | if (sbc_idx < BITSET_WORDS) |
| 3291 | { |
| 3292 | /* Build a tree for simple bracket. */ |
| 3293 | br_token.type = SIMPLE_BRACKET; |
| 3294 | br_token.opr.sbcset = sbcset; |
| 3295 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| 3296 | if (BE (work_tree == NULL, 0)) |
| 3297 | goto parse_bracket_exp_espace; |
| 3298 | |
| 3299 | /* Then join them by ALT node. */ |
| 3300 | work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); |
| 3301 | if (BE (work_tree == NULL, 0)) |
| 3302 | goto parse_bracket_exp_espace; |
| 3303 | } |
| 3304 | else |
| 3305 | { |
| 3306 | re_free (sbcset); |
| 3307 | work_tree = mbc_tree; |
| 3308 | } |
| 3309 | } |
| 3310 | else |
| 3311 | #endif /* not RE_ENABLE_I18N */ |
| 3312 | { |
| 3313 | #ifdef RE_ENABLE_I18N |
| 3314 | free_charset (mbcset); |
| 3315 | #endif |
| 3316 | /* Build a tree for simple bracket. */ |
| 3317 | br_token.type = SIMPLE_BRACKET; |
| 3318 | br_token.opr.sbcset = sbcset; |
| 3319 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| 3320 | if (BE (work_tree == NULL, 0)) |
| 3321 | goto parse_bracket_exp_espace; |
| 3322 | } |
| 3323 | return work_tree; |
| 3324 | |
| 3325 | parse_bracket_exp_espace: |
| 3326 | *err = REG_ESPACE; |
| 3327 | parse_bracket_exp_free_return: |
| 3328 | re_free (sbcset); |
| 3329 | #ifdef RE_ENABLE_I18N |
| 3330 | free_charset (mbcset); |
| 3331 | #endif /* RE_ENABLE_I18N */ |
| 3332 | return NULL; |
| 3333 | } |
| 3334 | |
| 3335 | /* Parse an element in the bracket expression. */ |
| 3336 | |
| 3337 | static reg_errcode_t |
| 3338 | parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, |
| 3339 | re_token_t *token, int token_len, re_dfa_t *dfa, |
| 3340 | reg_syntax_t syntax, int accept_hyphen) |
| 3341 | { |
| 3342 | #ifdef RE_ENABLE_I18N |
| 3343 | int cur_char_size; |
| 3344 | cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); |
| 3345 | if (cur_char_size > 1) |
| 3346 | { |
| 3347 | elem->type = MB_CHAR; |
| 3348 | elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); |
| 3349 | re_string_skip_bytes (regexp, cur_char_size); |
| 3350 | return REG_NOERROR; |
| 3351 | } |
| 3352 | #endif /* RE_ENABLE_I18N */ |
| 3353 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
| 3354 | if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS |
| 3355 | || token->type == OP_OPEN_EQUIV_CLASS) |
| 3356 | return parse_bracket_symbol (elem, regexp, token); |
| 3357 | if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) |
| 3358 | { |
| 3359 | /* A '-' must only appear as anything but a range indicator before |
| 3360 | the closing bracket. Everything else is an error. */ |
| 3361 | re_token_t token2; |
| 3362 | (void) peek_token_bracket (&token2, regexp, syntax); |
| 3363 | if (token2.type != OP_CLOSE_BRACKET) |
| 3364 | /* The actual error value is not standardized since this whole |
| 3365 | case is undefined. But ERANGE makes good sense. */ |
| 3366 | return REG_ERANGE; |
| 3367 | } |
| 3368 | elem->type = SB_CHAR; |
| 3369 | elem->opr.ch = token->opr.c; |
| 3370 | return REG_NOERROR; |
| 3371 | } |
| 3372 | |
| 3373 | /* Parse a bracket symbol in the bracket expression. Bracket symbols are |
| 3374 | such as [:<character_class>:], [.<collating_element>.], and |
| 3375 | [=<equivalent_class>=]. */ |
| 3376 | |
| 3377 | static reg_errcode_t |
| 3378 | parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, |
| 3379 | re_token_t *token) |
| 3380 | { |
| 3381 | unsigned char ch, delim = token->opr.c; |
| 3382 | int i = 0; |
| 3383 | if (re_string_eoi(regexp)) |
| 3384 | return REG_EBRACK; |
| 3385 | for (;; ++i) |
| 3386 | { |
| 3387 | if (i >= BRACKET_NAME_BUF_SIZE) |
| 3388 | return REG_EBRACK; |
| 3389 | if (token->type == OP_OPEN_CHAR_CLASS) |
| 3390 | ch = re_string_fetch_byte_case (regexp); |
| 3391 | else |
| 3392 | ch = re_string_fetch_byte (regexp); |
| 3393 | if (re_string_eoi(regexp)) |
| 3394 | return REG_EBRACK; |
| 3395 | if (ch == delim && re_string_peek_byte (regexp, 0) == ']') |
| 3396 | break; |
| 3397 | elem->opr.name[i] = ch; |
| 3398 | } |
| 3399 | re_string_skip_bytes (regexp, 1); |
| 3400 | elem->opr.name[i] = '\0'; |
| 3401 | switch (token->type) |
| 3402 | { |
| 3403 | case OP_OPEN_COLL_ELEM: |
| 3404 | elem->type = COLL_SYM; |
| 3405 | break; |
| 3406 | case OP_OPEN_EQUIV_CLASS: |
| 3407 | elem->type = EQUIV_CLASS; |
| 3408 | break; |
| 3409 | case OP_OPEN_CHAR_CLASS: |
| 3410 | elem->type = CHAR_CLASS; |
| 3411 | break; |
| 3412 | default: |
| 3413 | break; |
| 3414 | } |
| 3415 | return REG_NOERROR; |
| 3416 | } |
| 3417 | |
| 3418 | /* Helper function for parse_bracket_exp. |
| 3419 | Build the equivalence class which is represented by NAME. |
| 3420 | The result are written to MBCSET and SBCSET. |
| 3421 | EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, |
| 3422 | is a pointer argument sinse we may update it. */ |
| 3423 | |
| 3424 | static reg_errcode_t |
| 3425 | #ifdef RE_ENABLE_I18N |
| 3426 | build_equiv_class (bitset_t sbcset, re_charset_t *mbcset, |
| 3427 | int *equiv_class_alloc, const unsigned char *name) |
| 3428 | #else /* not RE_ENABLE_I18N */ |
| 3429 | build_equiv_class (bitset_t sbcset, const unsigned char *name) |
| 3430 | #endif /* not RE_ENABLE_I18N */ |
| 3431 | { |
| 3432 | #ifdef _LIBC |
| 3433 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| 3434 | if (nrules != 0) |
| 3435 | { |
| 3436 | const int32_t *table, *indirect; |
| 3437 | const unsigned char *weights, *extra, *cp; |
| 3438 | unsigned char char_buf[2]; |
| 3439 | int32_t idx1, idx2; |
| 3440 | unsigned int ch; |
| 3441 | size_t len; |
| 3442 | /* This #include defines a local function! */ |
| 3443 | # include <locale/weight.h> |
| 3444 | /* Calculate the index for equivalence class. */ |
| 3445 | cp = name; |
| 3446 | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
| 3447 | weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
| 3448 | _NL_COLLATE_WEIGHTMB); |
| 3449 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
| 3450 | _NL_COLLATE_EXTRAMB); |
| 3451 | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, |
| 3452 | _NL_COLLATE_INDIRECTMB); |
| 3453 | idx1 = findidx (&cp); |
| 3454 | if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) |
| 3455 | /* This isn't a valid character. */ |
| 3456 | return REG_ECOLLATE; |
| 3457 | |
| 3458 | /* Build single byte matcing table for this equivalence class. */ |
| 3459 | char_buf[1] = (unsigned char) '\0'; |
| 3460 | len = weights[idx1 & 0xffffff]; |
| 3461 | for (ch = 0; ch < SBC_MAX; ++ch) |
| 3462 | { |
| 3463 | char_buf[0] = ch; |
| 3464 | cp = char_buf; |
| 3465 | idx2 = findidx (&cp); |
| 3466 | /* |
| 3467 | idx2 = table[ch]; |
| 3468 | */ |
| 3469 | if (idx2 == 0) |
| 3470 | /* This isn't a valid character. */ |
| 3471 | continue; |
| 3472 | /* Compare only if the length matches and the collation rule |
| 3473 | index is the same. */ |
| 3474 | if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24)) |
| 3475 | { |
| 3476 | int cnt = 0; |
| 3477 | |
| 3478 | while (cnt <= len && |
| 3479 | weights[(idx1 & 0xffffff) + 1 + cnt] |
| 3480 | == weights[(idx2 & 0xffffff) + 1 + cnt]) |
| 3481 | ++cnt; |
| 3482 | |
| 3483 | if (cnt > len) |
| 3484 | bitset_set (sbcset, ch); |
| 3485 | } |
| 3486 | } |
| 3487 | /* Check whether the array has enough space. */ |
| 3488 | if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) |
| 3489 | { |
| 3490 | /* Not enough, realloc it. */ |
| 3491 | /* +1 in case of mbcset->nequiv_classes is 0. */ |
| 3492 | int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; |
| 3493 | /* Use realloc since the array is NULL if *alloc == 0. */ |
| 3494 | int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes, |
| 3495 | int32_t, |
| 3496 | new_equiv_class_alloc); |
| 3497 | if (BE (new_equiv_classes == NULL, 0)) |
| 3498 | return REG_ESPACE; |
| 3499 | mbcset->equiv_classes = new_equiv_classes; |
| 3500 | *equiv_class_alloc = new_equiv_class_alloc; |
| 3501 | } |
| 3502 | mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; |
| 3503 | } |
| 3504 | else |
| 3505 | #endif /* _LIBC */ |
| 3506 | { |
| 3507 | if (BE (strlen ((const char *) name) != 1, 0)) |
| 3508 | return REG_ECOLLATE; |
| 3509 | bitset_set (sbcset, *name); |
| 3510 | } |
| 3511 | return REG_NOERROR; |
| 3512 | } |
| 3513 | |
| 3514 | /* Helper function for parse_bracket_exp. |
| 3515 | Build the character class which is represented by NAME. |
| 3516 | The result are written to MBCSET and SBCSET. |
| 3517 | CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, |
| 3518 | is a pointer argument sinse we may update it. */ |
| 3519 | |
| 3520 | static reg_errcode_t |
| 3521 | #ifdef RE_ENABLE_I18N |
| 3522 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, |
| 3523 | re_charset_t *mbcset, int *char_class_alloc, |
| 3524 | const char *class_name, reg_syntax_t syntax) |
| 3525 | #else /* not RE_ENABLE_I18N */ |
| 3526 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, |
| 3527 | const char *class_name, reg_syntax_t syntax) |
| 3528 | #endif /* not RE_ENABLE_I18N */ |
| 3529 | { |
| 3530 | int i; |
| 3531 | |
| 3532 | /* In case of REG_ICASE "upper" and "lower" match the both of |
| 3533 | upper and lower cases. */ |
| 3534 | if ((syntax & RE_ICASE) |
| 3535 | && (strcmp (class_name, "upper") == 0 || strcmp (class_name, "lower") == 0)) |
| 3536 | class_name = "alpha"; |
| 3537 | |
| 3538 | #ifdef RE_ENABLE_I18N |
| 3539 | /* Check the space of the arrays. */ |
| 3540 | if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) |
| 3541 | { |
| 3542 | /* Not enough, realloc it. */ |
| 3543 | /* +1 in case of mbcset->nchar_classes is 0. */ |
| 3544 | int new_char_class_alloc = 2 * mbcset->nchar_classes + 1; |
| 3545 | /* Use realloc since array is NULL if *alloc == 0. */ |
| 3546 | wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t, |
| 3547 | new_char_class_alloc); |
| 3548 | if (BE (new_char_classes == NULL, 0)) |
| 3549 | return REG_ESPACE; |
| 3550 | mbcset->char_classes = new_char_classes; |
| 3551 | *char_class_alloc = new_char_class_alloc; |
| 3552 | } |
| 3553 | mbcset->char_classes[mbcset->nchar_classes++] = __wctype (class_name); |
| 3554 | #endif /* RE_ENABLE_I18N */ |
| 3555 | |
| 3556 | #define BUILD_CHARCLASS_LOOP(ctype_func) \ |
| 3557 | do { \ |
| 3558 | if (BE (trans != NULL, 0)) \ |
| 3559 | { \ |
| 3560 | for (i = 0; i < SBC_MAX; ++i) \ |
| 3561 | if (ctype_func (i)) \ |
| 3562 | bitset_set (sbcset, trans[i]); \ |
| 3563 | } \ |
| 3564 | else \ |
| 3565 | { \ |
| 3566 | for (i = 0; i < SBC_MAX; ++i) \ |
| 3567 | if (ctype_func (i)) \ |
| 3568 | bitset_set (sbcset, i); \ |
| 3569 | } \ |
| 3570 | } while (0) |
| 3571 | |
| 3572 | if (strcmp (class_name, "alnum") == 0) |
| 3573 | BUILD_CHARCLASS_LOOP (isalnum); |
| 3574 | else if (strcmp (class_name, "cntrl") == 0) |
| 3575 | BUILD_CHARCLASS_LOOP (iscntrl); |
| 3576 | else if (strcmp (class_name, "lower") == 0) |
| 3577 | BUILD_CHARCLASS_LOOP (islower); |
| 3578 | else if (strcmp (class_name, "space") == 0) |
| 3579 | BUILD_CHARCLASS_LOOP (isspace); |
| 3580 | else if (strcmp (class_name, "alpha") == 0) |
| 3581 | BUILD_CHARCLASS_LOOP (isalpha); |
| 3582 | else if (strcmp (class_name, "digit") == 0) |
| 3583 | BUILD_CHARCLASS_LOOP (isdigit); |
| 3584 | else if (strcmp (class_name, "print") == 0) |
| 3585 | BUILD_CHARCLASS_LOOP (isprint); |
| 3586 | else if (strcmp (class_name, "upper") == 0) |
| 3587 | BUILD_CHARCLASS_LOOP (isupper); |
| 3588 | else if (strcmp (class_name, "blank") == 0) |
| 3589 | #ifndef GAWK |
| 3590 | BUILD_CHARCLASS_LOOP (isblank); |
| 3591 | #else |
| 3592 | /* see comments above */ |
| 3593 | BUILD_CHARCLASS_LOOP (is_blank); |
| 3594 | #endif |
| 3595 | else if (strcmp (class_name, "graph") == 0) |
| 3596 | BUILD_CHARCLASS_LOOP (isgraph); |
| 3597 | else if (strcmp (class_name, "punct") == 0) |
| 3598 | BUILD_CHARCLASS_LOOP (ispunct); |
| 3599 | else if (strcmp (class_name, "xdigit") == 0) |
| 3600 | BUILD_CHARCLASS_LOOP (isxdigit); |
| 3601 | else |
| 3602 | return REG_ECTYPE; |
| 3603 | |
| 3604 | return REG_NOERROR; |
| 3605 | } |
| 3606 | |
| 3607 | static bin_tree_t * |
| 3608 | build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans, |
| 3609 | const char *class_name, |
| 3610 | const char *extra, int non_match, |
| 3611 | reg_errcode_t *err) |
| 3612 | { |
| 3613 | re_bitset_ptr_t sbcset; |
| 3614 | #ifdef RE_ENABLE_I18N |
| 3615 | re_charset_t *mbcset; |
| 3616 | int alloc = 0; |
| 3617 | #endif /* not RE_ENABLE_I18N */ |
| 3618 | reg_errcode_t ret; |
| 3619 | re_token_t br_token; |
| 3620 | bin_tree_t *tree; |
| 3621 | |
| 3622 | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
| 3623 | #ifdef RE_ENABLE_I18N |
| 3624 | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); |
| 3625 | #endif /* RE_ENABLE_I18N */ |
| 3626 | |
| 3627 | #ifdef RE_ENABLE_I18N |
| 3628 | if (BE (sbcset == NULL || mbcset == NULL, 0)) |
| 3629 | #else /* not RE_ENABLE_I18N */ |
| 3630 | if (BE (sbcset == NULL, 0)) |
| 3631 | #endif /* not RE_ENABLE_I18N */ |
| 3632 | { |
| 3633 | *err = REG_ESPACE; |
| 3634 | return NULL; |
| 3635 | } |
| 3636 | |
| 3637 | if (non_match) |
| 3638 | { |
| 3639 | #ifdef RE_ENABLE_I18N |
| 3640 | mbcset->non_match = 1; |
| 3641 | #endif /* not RE_ENABLE_I18N */ |
| 3642 | } |
| 3643 | |
| 3644 | /* We don't care the syntax in this case. */ |
| 3645 | ret = build_charclass (trans, sbcset, |
| 3646 | #ifdef RE_ENABLE_I18N |
| 3647 | mbcset, &alloc, |
| 3648 | #endif /* RE_ENABLE_I18N */ |
| 3649 | class_name, 0); |
| 3650 | |
| 3651 | if (BE (ret != REG_NOERROR, 0)) |
| 3652 | { |
| 3653 | re_free (sbcset); |
| 3654 | #ifdef RE_ENABLE_I18N |
| 3655 | free_charset (mbcset); |
| 3656 | #endif /* RE_ENABLE_I18N */ |
| 3657 | *err = ret; |
| 3658 | return NULL; |
| 3659 | } |
| 3660 | /* \w match '_' also. */ |
| 3661 | for (; *extra; extra++) |
| 3662 | bitset_set (sbcset, *extra); |
| 3663 | |
| 3664 | /* If it is non-matching list. */ |
| 3665 | if (non_match) |
| 3666 | bitset_not (sbcset); |
| 3667 | |
| 3668 | #ifdef RE_ENABLE_I18N |
| 3669 | /* Ensure only single byte characters are set. */ |
| 3670 | if (dfa->mb_cur_max > 1) |
| 3671 | bitset_mask (sbcset, dfa->sb_char); |
| 3672 | #endif |
| 3673 | |
| 3674 | /* Build a tree for simple bracket. */ |
| 3675 | br_token.type = SIMPLE_BRACKET; |
| 3676 | br_token.opr.sbcset = sbcset; |
| 3677 | tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| 3678 | if (BE (tree == NULL, 0)) |
| 3679 | goto build_word_op_espace; |
| 3680 | |
| 3681 | #ifdef RE_ENABLE_I18N |
| 3682 | if (dfa->mb_cur_max > 1) |
| 3683 | { |
| 3684 | bin_tree_t *mbc_tree; |
| 3685 | /* Build a tree for complex bracket. */ |
| 3686 | br_token.type = COMPLEX_BRACKET; |
| 3687 | br_token.opr.mbcset = mbcset; |
| 3688 | dfa->has_mb_node = 1; |
| 3689 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| 3690 | if (BE (mbc_tree == NULL, 0)) |
| 3691 | goto build_word_op_espace; |
| 3692 | /* Then join them by ALT node. */ |
| 3693 | tree = create_tree (dfa, tree, mbc_tree, OP_ALT); |
| 3694 | if (BE (mbc_tree != NULL, 1)) |
| 3695 | return tree; |
| 3696 | } |
| 3697 | else |
| 3698 | { |
| 3699 | free_charset (mbcset); |
| 3700 | return tree; |
| 3701 | } |
| 3702 | #else /* not RE_ENABLE_I18N */ |
| 3703 | return tree; |
| 3704 | #endif /* not RE_ENABLE_I18N */ |
| 3705 | |
| 3706 | build_word_op_espace: |
| 3707 | re_free (sbcset); |
| 3708 | #ifdef RE_ENABLE_I18N |
| 3709 | free_charset (mbcset); |
| 3710 | #endif /* RE_ENABLE_I18N */ |
| 3711 | *err = REG_ESPACE; |
| 3712 | return NULL; |
| 3713 | } |
| 3714 | |
| 3715 | /* This is intended for the expressions like "a{1,3}". |
| 3716 | Fetch a number from `input', and return the number. |
| 3717 | Return -1, if the number field is empty like "{,1}". |
| 3718 | Return -2, If an error is occured. */ |
| 3719 | |
| 3720 | static int |
| 3721 | fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) |
| 3722 | { |
| 3723 | int num = -1; |
| 3724 | unsigned char c; |
| 3725 | while (1) |
| 3726 | { |
| 3727 | fetch_token (token, input, syntax); |
| 3728 | c = token->opr.c; |
| 3729 | if (BE (token->type == END_OF_RE, 0)) |
| 3730 | return -2; |
| 3731 | if (token->type == OP_CLOSE_DUP_NUM || c == ',') |
| 3732 | break; |
| 3733 | num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2) |
| 3734 | ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0')); |
| 3735 | num = (num > RE_DUP_MAX) ? -2 : num; |
| 3736 | } |
| 3737 | return num; |
| 3738 | } |
| 3739 | |
| 3740 | #ifdef RE_ENABLE_I18N |
| 3741 | static void |
| 3742 | free_charset (re_charset_t *cset) |
| 3743 | { |
| 3744 | re_free (cset->mbchars); |
| 3745 | # ifdef _LIBC |
| 3746 | re_free (cset->coll_syms); |
| 3747 | re_free (cset->equiv_classes); |
| 3748 | re_free (cset->range_starts); |
| 3749 | re_free (cset->range_ends); |
| 3750 | # endif |
| 3751 | re_free (cset->char_classes); |
| 3752 | re_free (cset); |
| 3753 | } |
| 3754 | #endif /* RE_ENABLE_I18N */ |
| 3755 | |
| 3756 | /* Functions for binary tree operation. */ |
| 3757 | |
| 3758 | /* Create a tree node. */ |
| 3759 | |
| 3760 | static bin_tree_t * |
| 3761 | create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, |
| 3762 | re_token_type_t type) |
| 3763 | { |
| 3764 | re_token_t t; |
| 3765 | t.type = type; |
| 3766 | return create_token_tree (dfa, left, right, &t); |
| 3767 | } |
| 3768 | |
| 3769 | static bin_tree_t * |
| 3770 | create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, |
| 3771 | const re_token_t *token) |
| 3772 | { |
| 3773 | bin_tree_t *tree; |
| 3774 | if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) |
| 3775 | { |
| 3776 | bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); |
| 3777 | |
| 3778 | if (storage == NULL) |
| 3779 | return NULL; |
| 3780 | storage->next = dfa->str_tree_storage; |
| 3781 | dfa->str_tree_storage = storage; |
| 3782 | dfa->str_tree_storage_idx = 0; |
| 3783 | } |
| 3784 | tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; |
| 3785 | |
| 3786 | tree->parent = NULL; |
| 3787 | tree->left = left; |
| 3788 | tree->right = right; |
| 3789 | tree->token = *token; |
| 3790 | tree->token.duplicated = 0; |
| 3791 | tree->token.opt_subexp = 0; |
| 3792 | tree->first = NULL; |
| 3793 | tree->next = NULL; |
| 3794 | tree->node_idx = -1; |
| 3795 | |
| 3796 | if (left != NULL) |
| 3797 | left->parent = tree; |
| 3798 | if (right != NULL) |
| 3799 | right->parent = tree; |
| 3800 | return tree; |
| 3801 | } |
| 3802 | |
| 3803 | /* Mark the tree SRC as an optional subexpression. |
| 3804 | To be called from preorder or postorder. */ |
| 3805 | |
| 3806 | static reg_errcode_t |
| 3807 | mark_opt_subexp (void *extra, bin_tree_t *node) |
| 3808 | { |
| 3809 | int idx = (int) (long) extra; |
| 3810 | if (node->token.type == SUBEXP && node->token.opr.idx == idx) |
| 3811 | node->token.opt_subexp = 1; |
| 3812 | |
| 3813 | return REG_NOERROR; |
| 3814 | } |
| 3815 | |
| 3816 | /* Free the allocated memory inside NODE. */ |
| 3817 | |
| 3818 | static void |
| 3819 | free_token (re_token_t *node) |
| 3820 | { |
| 3821 | #ifdef RE_ENABLE_I18N |
| 3822 | if (node->type == COMPLEX_BRACKET && node->duplicated == 0) |
| 3823 | free_charset (node->opr.mbcset); |
| 3824 | else |
| 3825 | #endif /* RE_ENABLE_I18N */ |
| 3826 | if (node->type == SIMPLE_BRACKET && node->duplicated == 0) |
| 3827 | re_free (node->opr.sbcset); |
| 3828 | } |
| 3829 | |
| 3830 | /* Worker function for tree walking. Free the allocated memory inside NODE |
| 3831 | and its children. */ |
| 3832 | |
| 3833 | static reg_errcode_t |
| 3834 | free_tree (void *extra, bin_tree_t *node) |
| 3835 | { |
| 3836 | free_token (&node->token); |
| 3837 | return REG_NOERROR; |
| 3838 | } |
| 3839 | |
| 3840 | |
| 3841 | /* Duplicate the node SRC, and return new node. This is a preorder |
| 3842 | visit similar to the one implemented by the generic visitor, but |
| 3843 | we need more infrastructure to maintain two parallel trees --- so, |
| 3844 | it's easier to duplicate. */ |
| 3845 | |
| 3846 | static bin_tree_t * |
| 3847 | duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) |
| 3848 | { |
| 3849 | const bin_tree_t *node; |
| 3850 | bin_tree_t *dup_root; |
| 3851 | bin_tree_t **p_new = &dup_root, *dup_node = root->parent; |
| 3852 | |
| 3853 | for (node = root; ; ) |
| 3854 | { |
| 3855 | /* Create a new tree and link it back to the current parent. */ |
| 3856 | *p_new = create_token_tree (dfa, NULL, NULL, &node->token); |
| 3857 | if (*p_new == NULL) |
| 3858 | return NULL; |
| 3859 | (*p_new)->parent = dup_node; |
| 3860 | (*p_new)->token.duplicated = 1; |
| 3861 | dup_node = *p_new; |
| 3862 | |
| 3863 | /* Go to the left node, or up and to the right. */ |
| 3864 | if (node->left) |
| 3865 | { |
| 3866 | node = node->left; |
| 3867 | p_new = &dup_node->left; |
| 3868 | } |
| 3869 | else |
| 3870 | { |
| 3871 | const bin_tree_t *prev = NULL; |
| 3872 | while (node->right == prev || node->right == NULL) |
| 3873 | { |
| 3874 | prev = node; |
| 3875 | node = node->parent; |
| 3876 | dup_node = dup_node->parent; |
| 3877 | if (!node) |
| 3878 | return dup_root; |
| 3879 | } |
| 3880 | node = node->right; |
| 3881 | p_new = &dup_node->right; |
| 3882 | } |
| 3883 | } |
| 3884 | } |