| #include "../git-compat-util.h" |
| #include "../config.h" |
| #include "../dir.h" |
| #include "../gettext.h" |
| #include "../hash.h" |
| #include "../hex.h" |
| #include "../refs.h" |
| #include "refs-internal.h" |
| #include "packed-backend.h" |
| #include "../iterator.h" |
| #include "../lockfile.h" |
| #include "../chdir-notify.h" |
| #include "../statinfo.h" |
| #include "../wrapper.h" |
| #include "../write-or-die.h" |
| #include "../trace2.h" |
| |
| enum mmap_strategy { |
| /* |
| * Don't use mmap() at all for reading `packed-refs`. |
| */ |
| MMAP_NONE, |
| |
| /* |
| * Can use mmap() for reading `packed-refs`, but the file must |
| * not remain mmapped. This is the usual option on Windows, |
| * where you cannot rename a new version of a file onto a file |
| * that is currently mmapped. |
| */ |
| MMAP_TEMPORARY, |
| |
| /* |
| * It is OK to leave the `packed-refs` file mmapped while |
| * arbitrary other code is running. |
| */ |
| MMAP_OK |
| }; |
| |
| #if defined(NO_MMAP) |
| static enum mmap_strategy mmap_strategy = MMAP_NONE; |
| #elif defined(MMAP_PREVENTS_DELETE) |
| static enum mmap_strategy mmap_strategy = MMAP_TEMPORARY; |
| #else |
| static enum mmap_strategy mmap_strategy = MMAP_OK; |
| #endif |
| |
| struct packed_ref_store; |
| |
| /* |
| * A `snapshot` represents one snapshot of a `packed-refs` file. |
| * |
| * Normally, this will be a mmapped view of the contents of the |
| * `packed-refs` file at the time the snapshot was created. However, |
| * if the `packed-refs` file was not sorted, this might point at heap |
| * memory holding the contents of the `packed-refs` file with its |
| * records sorted by refname. |
| * |
| * `snapshot` instances are reference counted (via |
| * `acquire_snapshot()` and `release_snapshot()`). This is to prevent |
| * an instance from disappearing while an iterator is still iterating |
| * over it. Instances are garbage collected when their `referrers` |
| * count goes to zero. |
| * |
| * The most recent `snapshot`, if available, is referenced by the |
| * `packed_ref_store`. Its freshness is checked whenever |
| * `get_snapshot()` is called; if the existing snapshot is obsolete, a |
| * new snapshot is taken. |
| */ |
| struct snapshot { |
| /* |
| * A back-pointer to the packed_ref_store with which this |
| * snapshot is associated: |
| */ |
| struct packed_ref_store *refs; |
| |
| /* Is the `packed-refs` file currently mmapped? */ |
| int mmapped; |
| |
| /* |
| * The contents of the `packed-refs` file: |
| * |
| * - buf -- a pointer to the start of the memory |
| * - start -- a pointer to the first byte of actual references |
| * (i.e., after the header line, if one is present) |
| * - eof -- a pointer just past the end of the reference |
| * contents |
| * |
| * If the `packed-refs` file was already sorted, `buf` points |
| * at the mmapped contents of the file. If not, it points at |
| * heap-allocated memory containing the contents, sorted. If |
| * there were no contents (e.g., because the file didn't |
| * exist), `buf`, `start`, and `eof` are all NULL. |
| */ |
| char *buf, *start, *eof; |
| |
| /* |
| * What is the peeled state of the `packed-refs` file that |
| * this snapshot represents? (This is usually determined from |
| * the file's header.) |
| */ |
| enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled; |
| |
| /* |
| * Count of references to this instance, including the pointer |
| * from `packed_ref_store::snapshot`, if any. The instance |
| * will not be freed as long as the reference count is |
| * nonzero. |
| */ |
| unsigned int referrers; |
| |
| /* |
| * The metadata of the `packed-refs` file from which this |
| * snapshot was created, used to tell if the file has been |
| * replaced since we read it. |
| */ |
| struct stat_validity validity; |
| }; |
| |
| /* |
| * A `ref_store` representing references stored in a `packed-refs` |
| * file. It implements the `ref_store` interface, though it has some |
| * limitations: |
| * |
| * - It cannot store symbolic references. |
| * |
| * - It cannot store reflogs. |
| * |
| * - It does not support reference renaming (though it could). |
| * |
| * On the other hand, it can be locked outside of a reference |
| * transaction. In that case, it remains locked even after the |
| * transaction is done and the new `packed-refs` file is activated. |
| */ |
| struct packed_ref_store { |
| struct ref_store base; |
| |
| unsigned int store_flags; |
| |
| /* The path of the "packed-refs" file: */ |
| char *path; |
| |
| /* |
| * A snapshot of the values read from the `packed-refs` file, |
| * if it might still be current; otherwise, NULL. |
| */ |
| struct snapshot *snapshot; |
| |
| /* |
| * Lock used for the "packed-refs" file. Note that this (and |
| * thus the enclosing `packed_ref_store`) must not be freed. |
| */ |
| struct lock_file lock; |
| |
| /* |
| * Temporary file used when rewriting new contents to the |
| * "packed-refs" file. Note that this (and thus the enclosing |
| * `packed_ref_store`) must not be freed. |
| */ |
| struct tempfile *tempfile; |
| }; |
| |
| /* |
| * Increment the reference count of `*snapshot`. |
| */ |
| static void acquire_snapshot(struct snapshot *snapshot) |
| { |
| snapshot->referrers++; |
| } |
| |
| /* |
| * If the buffer in `snapshot` is active, then either munmap the |
| * memory and close the file, or free the memory. Then set the buffer |
| * pointers to NULL. |
| */ |
| static void clear_snapshot_buffer(struct snapshot *snapshot) |
| { |
| if (snapshot->mmapped) { |
| if (munmap(snapshot->buf, snapshot->eof - snapshot->buf)) |
| die_errno("error ummapping packed-refs file %s", |
| snapshot->refs->path); |
| snapshot->mmapped = 0; |
| } else { |
| free(snapshot->buf); |
| } |
| snapshot->buf = snapshot->start = snapshot->eof = NULL; |
| } |
| |
| /* |
| * Decrease the reference count of `*snapshot`. If it goes to zero, |
| * free `*snapshot` and return true; otherwise return false. |
| */ |
| static int release_snapshot(struct snapshot *snapshot) |
| { |
| if (!--snapshot->referrers) { |
| stat_validity_clear(&snapshot->validity); |
| clear_snapshot_buffer(snapshot); |
| free(snapshot); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static size_t snapshot_hexsz(const struct snapshot *snapshot) |
| { |
| return snapshot->refs->base.repo->hash_algo->hexsz; |
| } |
| |
| struct ref_store *packed_ref_store_init(struct repository *repo, |
| const char *gitdir, |
| unsigned int store_flags) |
| { |
| struct packed_ref_store *refs = xcalloc(1, sizeof(*refs)); |
| struct ref_store *ref_store = (struct ref_store *)refs; |
| struct strbuf sb = STRBUF_INIT; |
| |
| base_ref_store_init(ref_store, repo, gitdir, &refs_be_packed); |
| refs->store_flags = store_flags; |
| |
| strbuf_addf(&sb, "%s/packed-refs", gitdir); |
| refs->path = strbuf_detach(&sb, NULL); |
| chdir_notify_reparent("packed-refs", &refs->path); |
| return ref_store; |
| } |
| |
| /* |
| * Downcast `ref_store` to `packed_ref_store`. Die if `ref_store` is |
| * not a `packed_ref_store`. Also die if `packed_ref_store` doesn't |
| * support at least the flags specified in `required_flags`. `caller` |
| * is used in any necessary error messages. |
| */ |
| static struct packed_ref_store *packed_downcast(struct ref_store *ref_store, |
| unsigned int required_flags, |
| const char *caller) |
| { |
| struct packed_ref_store *refs; |
| |
| if (ref_store->be != &refs_be_packed) |
| BUG("ref_store is type \"%s\" not \"packed\" in %s", |
| ref_store->be->name, caller); |
| |
| refs = (struct packed_ref_store *)ref_store; |
| |
| if ((refs->store_flags & required_flags) != required_flags) |
| BUG("unallowed operation (%s), requires %x, has %x\n", |
| caller, required_flags, refs->store_flags); |
| |
| return refs; |
| } |
| |
| static void clear_snapshot(struct packed_ref_store *refs) |
| { |
| if (refs->snapshot) { |
| struct snapshot *snapshot = refs->snapshot; |
| |
| refs->snapshot = NULL; |
| release_snapshot(snapshot); |
| } |
| } |
| |
| static void packed_ref_store_release(struct ref_store *ref_store) |
| { |
| struct packed_ref_store *refs = packed_downcast(ref_store, 0, "release"); |
| clear_snapshot(refs); |
| rollback_lock_file(&refs->lock); |
| delete_tempfile(&refs->tempfile); |
| free(refs->path); |
| } |
| |
| static NORETURN void die_unterminated_line(const char *path, |
| const char *p, size_t len) |
| { |
| if (len < 80) |
| die("unterminated line in %s: %.*s", path, (int)len, p); |
| else |
| die("unterminated line in %s: %.75s...", path, p); |
| } |
| |
| static NORETURN void die_invalid_line(const char *path, |
| const char *p, size_t len) |
| { |
| const char *eol = memchr(p, '\n', len); |
| |
| if (!eol) |
| die_unterminated_line(path, p, len); |
| else if (eol - p < 80) |
| die("unexpected line in %s: %.*s", path, (int)(eol - p), p); |
| else |
| die("unexpected line in %s: %.75s...", path, p); |
| |
| } |
| |
| struct snapshot_record { |
| const char *start; |
| size_t len; |
| }; |
| |
| static int cmp_packed_ref_records(const void *v1, const void *v2, |
| void *cb_data) |
| { |
| const struct snapshot *snapshot = cb_data; |
| const struct snapshot_record *e1 = v1, *e2 = v2; |
| const char *r1 = e1->start + snapshot_hexsz(snapshot) + 1; |
| const char *r2 = e2->start + snapshot_hexsz(snapshot) + 1; |
| |
| while (1) { |
| if (*r1 == '\n') |
| return *r2 == '\n' ? 0 : -1; |
| if (*r1 != *r2) { |
| if (*r2 == '\n') |
| return 1; |
| else |
| return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1; |
| } |
| r1++; |
| r2++; |
| } |
| } |
| |
| /* |
| * Compare a snapshot record at `rec` to the specified NUL-terminated |
| * refname. |
| */ |
| static int cmp_record_to_refname(const char *rec, const char *refname, |
| int start, const struct snapshot *snapshot) |
| { |
| const char *r1 = rec + snapshot_hexsz(snapshot) + 1; |
| const char *r2 = refname; |
| |
| while (1) { |
| if (*r1 == '\n') |
| return *r2 ? -1 : 0; |
| if (!*r2) |
| return start ? 1 : -1; |
| if (*r1 != *r2) |
| return (unsigned char)*r1 < (unsigned char)*r2 ? -1 : +1; |
| r1++; |
| r2++; |
| } |
| } |
| |
| /* |
| * `snapshot->buf` is not known to be sorted. Check whether it is, and |
| * if not, sort it into new memory and munmap/free the old storage. |
| */ |
| static void sort_snapshot(struct snapshot *snapshot) |
| { |
| struct snapshot_record *records = NULL; |
| size_t alloc = 0, nr = 0; |
| int sorted = 1; |
| const char *pos, *eof, *eol; |
| size_t len, i; |
| char *new_buffer, *dst; |
| |
| pos = snapshot->start; |
| eof = snapshot->eof; |
| |
| if (pos == eof) |
| return; |
| |
| len = eof - pos; |
| |
| /* |
| * Initialize records based on a crude estimate of the number |
| * of references in the file (we'll grow it below if needed): |
| */ |
| ALLOC_GROW(records, len / 80 + 20, alloc); |
| |
| while (pos < eof) { |
| eol = memchr(pos, '\n', eof - pos); |
| if (!eol) |
| /* The safety check should prevent this. */ |
| BUG("unterminated line found in packed-refs"); |
| if (eol - pos < snapshot_hexsz(snapshot) + 2) |
| die_invalid_line(snapshot->refs->path, |
| pos, eof - pos); |
| eol++; |
| if (eol < eof && *eol == '^') { |
| /* |
| * Keep any peeled line together with its |
| * reference: |
| */ |
| const char *peeled_start = eol; |
| |
| eol = memchr(peeled_start, '\n', eof - peeled_start); |
| if (!eol) |
| /* The safety check should prevent this. */ |
| BUG("unterminated peeled line found in packed-refs"); |
| eol++; |
| } |
| |
| ALLOC_GROW(records, nr + 1, alloc); |
| records[nr].start = pos; |
| records[nr].len = eol - pos; |
| nr++; |
| |
| if (sorted && |
| nr > 1 && |
| cmp_packed_ref_records(&records[nr - 2], |
| &records[nr - 1], snapshot) >= 0) |
| sorted = 0; |
| |
| pos = eol; |
| } |
| |
| if (sorted) |
| goto cleanup; |
| |
| /* We need to sort the memory. First we sort the records array: */ |
| QSORT_S(records, nr, cmp_packed_ref_records, snapshot); |
| |
| /* |
| * Allocate a new chunk of memory, and copy the old memory to |
| * the new in the order indicated by `records` (not bothering |
| * with the header line): |
| */ |
| new_buffer = xmalloc(len); |
| for (dst = new_buffer, i = 0; i < nr; i++) { |
| memcpy(dst, records[i].start, records[i].len); |
| dst += records[i].len; |
| } |
| |
| /* |
| * Now munmap the old buffer and use the sorted buffer in its |
| * place: |
| */ |
| clear_snapshot_buffer(snapshot); |
| snapshot->buf = snapshot->start = new_buffer; |
| snapshot->eof = new_buffer + len; |
| |
| cleanup: |
| free(records); |
| } |
| |
| /* |
| * Return a pointer to the start of the record that contains the |
| * character `*p` (which must be within the buffer). If no other |
| * record start is found, return `buf`. |
| */ |
| static const char *find_start_of_record(const char *buf, const char *p) |
| { |
| while (p > buf && (p[-1] != '\n' || p[0] == '^')) |
| p--; |
| return p; |
| } |
| |
| /* |
| * Return a pointer to the start of the record following the record |
| * that contains `*p`. If none is found before `end`, return `end`. |
| */ |
| static const char *find_end_of_record(const char *p, const char *end) |
| { |
| while (++p < end && (p[-1] != '\n' || p[0] == '^')) |
| ; |
| return p; |
| } |
| |
| /* |
| * We want to be able to compare mmapped reference records quickly, |
| * without totally parsing them. We can do so because the records are |
| * LF-terminated, and the refname should start exactly (GIT_SHA1_HEXSZ |
| * + 1) bytes past the beginning of the record. |
| * |
| * But what if the `packed-refs` file contains garbage? We're willing |
| * to tolerate not detecting the problem, as long as we don't produce |
| * totally garbled output (we can't afford to check the integrity of |
| * the whole file during every Git invocation). But we do want to be |
| * sure that we never read past the end of the buffer in memory and |
| * perform an illegal memory access. |
| * |
| * Guarantee that minimum level of safety by verifying that the last |
| * record in the file is LF-terminated, and that it has at least |
| * (GIT_SHA1_HEXSZ + 1) characters before the LF. Die if either of |
| * these checks fails. |
| */ |
| static void verify_buffer_safe(struct snapshot *snapshot) |
| { |
| const char *start = snapshot->start; |
| const char *eof = snapshot->eof; |
| const char *last_line; |
| |
| if (start == eof) |
| return; |
| |
| last_line = find_start_of_record(start, eof - 1); |
| if (*(eof - 1) != '\n' || |
| eof - last_line < snapshot_hexsz(snapshot) + 2) |
| die_invalid_line(snapshot->refs->path, |
| last_line, eof - last_line); |
| } |
| |
| #define SMALL_FILE_SIZE (32*1024) |
| |
| /* |
| * Depending on `mmap_strategy`, either mmap or read the contents of |
| * the `packed-refs` file into the snapshot. Return 1 if the file |
| * existed and was read, or 0 if the file was absent or empty. Die on |
| * errors. |
| */ |
| static int load_contents(struct snapshot *snapshot) |
| { |
| int fd; |
| struct stat st; |
| size_t size; |
| ssize_t bytes_read; |
| |
| fd = open(snapshot->refs->path, O_RDONLY); |
| if (fd < 0) { |
| if (errno == ENOENT) { |
| /* |
| * This is OK; it just means that no |
| * "packed-refs" file has been written yet, |
| * which is equivalent to it being empty, |
| * which is its state when initialized with |
| * zeros. |
| */ |
| return 0; |
| } else { |
| die_errno("couldn't read %s", snapshot->refs->path); |
| } |
| } |
| |
| stat_validity_update(&snapshot->validity, fd); |
| |
| if (fstat(fd, &st) < 0) |
| die_errno("couldn't stat %s", snapshot->refs->path); |
| size = xsize_t(st.st_size); |
| |
| if (!size) { |
| close(fd); |
| return 0; |
| } else if (mmap_strategy == MMAP_NONE || size <= SMALL_FILE_SIZE) { |
| snapshot->buf = xmalloc(size); |
| bytes_read = read_in_full(fd, snapshot->buf, size); |
| if (bytes_read < 0 || bytes_read != size) |
| die_errno("couldn't read %s", snapshot->refs->path); |
| snapshot->mmapped = 0; |
| } else { |
| snapshot->buf = xmmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0); |
| snapshot->mmapped = 1; |
| } |
| close(fd); |
| |
| snapshot->start = snapshot->buf; |
| snapshot->eof = snapshot->buf + size; |
| |
| return 1; |
| } |
| |
| static const char *find_reference_location_1(struct snapshot *snapshot, |
| const char *refname, int mustexist, |
| int start) |
| { |
| /* |
| * This is not *quite* a garden-variety binary search, because |
| * the data we're searching is made up of records, and we |
| * always need to find the beginning of a record to do a |
| * comparison. A "record" here is one line for the reference |
| * itself and zero or one peel lines that start with '^'. Our |
| * loop invariant is described in the next two comments. |
| */ |
| |
| /* |
| * A pointer to the character at the start of a record whose |
| * preceding records all have reference names that come |
| * *before* `refname`. |
| */ |
| const char *lo = snapshot->start; |
| |
| /* |
| * A pointer to a the first character of a record whose |
| * reference name comes *after* `refname`. |
| */ |
| const char *hi = snapshot->eof; |
| |
| while (lo != hi) { |
| const char *mid, *rec; |
| int cmp; |
| |
| mid = lo + (hi - lo) / 2; |
| rec = find_start_of_record(lo, mid); |
| cmp = cmp_record_to_refname(rec, refname, start, snapshot); |
| if (cmp < 0) { |
| lo = find_end_of_record(mid, hi); |
| } else if (cmp > 0) { |
| hi = rec; |
| } else { |
| return rec; |
| } |
| } |
| |
| if (mustexist) |
| return NULL; |
| else |
| return lo; |
| } |
| |
| /* |
| * Find the place in `snapshot->buf` where the start of the record for |
| * `refname` starts. If `mustexist` is true and the reference doesn't |
| * exist, then return NULL. If `mustexist` is false and the reference |
| * doesn't exist, then return the point where that reference would be |
| * inserted, or `snapshot->eof` (which might be NULL) if it would be |
| * inserted at the end of the file. In the latter mode, `refname` |
| * doesn't have to be a proper reference name; for example, one could |
| * search for "refs/replace/" to find the start of any replace |
| * references. |
| * |
| * The record is sought using a binary search, so `snapshot->buf` must |
| * be sorted. |
| */ |
| static const char *find_reference_location(struct snapshot *snapshot, |
| const char *refname, int mustexist) |
| { |
| return find_reference_location_1(snapshot, refname, mustexist, 1); |
| } |
| |
| /* |
| * Find the place in `snapshot->buf` after the end of the record for |
| * `refname`. In other words, find the location of first thing *after* |
| * `refname`. |
| * |
| * Other semantics are identical to the ones in |
| * `find_reference_location()`. |
| */ |
| static const char *find_reference_location_end(struct snapshot *snapshot, |
| const char *refname, |
| int mustexist) |
| { |
| return find_reference_location_1(snapshot, refname, mustexist, 0); |
| } |
| |
| /* |
| * Create a newly-allocated `snapshot` of the `packed-refs` file in |
| * its current state and return it. The return value will already have |
| * its reference count incremented. |
| * |
| * A comment line of the form "# pack-refs with: " may contain zero or |
| * more traits. We interpret the traits as follows: |
| * |
| * Neither `peeled` nor `fully-peeled`: |
| * |
| * Probably no references are peeled. But if the file contains a |
| * peeled value for a reference, we will use it. |
| * |
| * `peeled`: |
| * |
| * References under "refs/tags/", if they *can* be peeled, *are* |
| * peeled in this file. References outside of "refs/tags/" are |
| * probably not peeled even if they could have been, but if we find |
| * a peeled value for such a reference we will use it. |
| * |
| * `fully-peeled`: |
| * |
| * All references in the file that can be peeled are peeled. |
| * Inversely (and this is more important), any references in the |
| * file for which no peeled value is recorded is not peelable. This |
| * trait should typically be written alongside "peeled" for |
| * compatibility with older clients, but we do not require it |
| * (i.e., "peeled" is a no-op if "fully-peeled" is set). |
| * |
| * `sorted`: |
| * |
| * The references in this file are known to be sorted by refname. |
| */ |
| static struct snapshot *create_snapshot(struct packed_ref_store *refs) |
| { |
| struct snapshot *snapshot = xcalloc(1, sizeof(*snapshot)); |
| int sorted = 0; |
| |
| snapshot->refs = refs; |
| acquire_snapshot(snapshot); |
| snapshot->peeled = PEELED_NONE; |
| |
| if (!load_contents(snapshot)) |
| return snapshot; |
| |
| /* If the file has a header line, process it: */ |
| if (snapshot->buf < snapshot->eof && *snapshot->buf == '#') { |
| char *tmp, *p, *eol; |
| struct string_list traits = STRING_LIST_INIT_NODUP; |
| |
| eol = memchr(snapshot->buf, '\n', |
| snapshot->eof - snapshot->buf); |
| if (!eol) |
| die_unterminated_line(refs->path, |
| snapshot->buf, |
| snapshot->eof - snapshot->buf); |
| |
| tmp = xmemdupz(snapshot->buf, eol - snapshot->buf); |
| |
| if (!skip_prefix(tmp, "# pack-refs with:", (const char **)&p)) |
| die_invalid_line(refs->path, |
| snapshot->buf, |
| snapshot->eof - snapshot->buf); |
| |
| string_list_split_in_place(&traits, p, " ", -1); |
| |
| if (unsorted_string_list_has_string(&traits, "fully-peeled")) |
| snapshot->peeled = PEELED_FULLY; |
| else if (unsorted_string_list_has_string(&traits, "peeled")) |
| snapshot->peeled = PEELED_TAGS; |
| |
| sorted = unsorted_string_list_has_string(&traits, "sorted"); |
| |
| /* perhaps other traits later as well */ |
| |
| /* The "+ 1" is for the LF character. */ |
| snapshot->start = eol + 1; |
| |
| string_list_clear(&traits, 0); |
| free(tmp); |
| } |
| |
| verify_buffer_safe(snapshot); |
| |
| if (!sorted) { |
| sort_snapshot(snapshot); |
| |
| /* |
| * Reordering the records might have moved a short one |
| * to the end of the buffer, so verify the buffer's |
| * safety again: |
| */ |
| verify_buffer_safe(snapshot); |
| } |
| |
| if (mmap_strategy != MMAP_OK && snapshot->mmapped) { |
| /* |
| * We don't want to leave the file mmapped, so we are |
| * forced to make a copy now: |
| */ |
| size_t size = snapshot->eof - snapshot->start; |
| char *buf_copy = xmalloc(size); |
| |
| memcpy(buf_copy, snapshot->start, size); |
| clear_snapshot_buffer(snapshot); |
| snapshot->buf = snapshot->start = buf_copy; |
| snapshot->eof = buf_copy + size; |
| } |
| |
| return snapshot; |
| } |
| |
| /* |
| * Check that `refs->snapshot` (if present) still reflects the |
| * contents of the `packed-refs` file. If not, clear the snapshot. |
| */ |
| static void validate_snapshot(struct packed_ref_store *refs) |
| { |
| if (refs->snapshot && |
| !stat_validity_check(&refs->snapshot->validity, refs->path)) |
| clear_snapshot(refs); |
| } |
| |
| /* |
| * Get the `snapshot` for the specified packed_ref_store, creating and |
| * populating it if it hasn't been read before or if the file has been |
| * changed (according to its `validity` field) since it was last read. |
| * On the other hand, if we hold the lock, then assume that the file |
| * hasn't been changed out from under us, so skip the extra `stat()` |
| * call in `stat_validity_check()`. This function does *not* increase |
| * the snapshot's reference count on behalf of the caller. |
| */ |
| static struct snapshot *get_snapshot(struct packed_ref_store *refs) |
| { |
| if (!is_lock_file_locked(&refs->lock)) |
| validate_snapshot(refs); |
| |
| if (!refs->snapshot) |
| refs->snapshot = create_snapshot(refs); |
| |
| return refs->snapshot; |
| } |
| |
| static int packed_read_raw_ref(struct ref_store *ref_store, const char *refname, |
| struct object_id *oid, struct strbuf *referent UNUSED, |
| unsigned int *type, int *failure_errno) |
| { |
| struct packed_ref_store *refs = |
| packed_downcast(ref_store, REF_STORE_READ, "read_raw_ref"); |
| struct snapshot *snapshot = get_snapshot(refs); |
| const char *rec; |
| |
| *type = 0; |
| |
| rec = find_reference_location(snapshot, refname, 1); |
| |
| if (!rec) { |
| /* refname is not a packed reference. */ |
| *failure_errno = ENOENT; |
| return -1; |
| } |
| |
| if (get_oid_hex(rec, oid)) |
| die_invalid_line(refs->path, rec, snapshot->eof - rec); |
| |
| *type = REF_ISPACKED; |
| return 0; |
| } |
| |
| /* |
| * This value is set in `base.flags` if the peeled value of the |
| * current reference is known. In that case, `peeled` contains the |
| * correct peeled value for the reference, which might be `null_oid` |
| * if the reference is not a tag or if it is broken. |
| */ |
| #define REF_KNOWS_PEELED 0x40 |
| |
| /* |
| * An iterator over a snapshot of a `packed-refs` file. |
| */ |
| struct packed_ref_iterator { |
| struct ref_iterator base; |
| |
| struct snapshot *snapshot; |
| |
| /* The current position in the snapshot's buffer: */ |
| const char *pos; |
| |
| /* The end of the part of the buffer that will be iterated over: */ |
| const char *eof; |
| |
| struct jump_list_entry { |
| const char *start; |
| const char *end; |
| } *jump; |
| size_t jump_nr, jump_alloc; |
| size_t jump_cur; |
| |
| /* Scratch space for current values: */ |
| struct object_id oid, peeled; |
| struct strbuf refname_buf; |
| |
| struct repository *repo; |
| unsigned int flags; |
| }; |
| |
| /* |
| * Move the iterator to the next record in the snapshot, without |
| * respect for whether the record is actually required by the current |
| * iteration. Adjust the fields in `iter` and return `ITER_OK` or |
| * `ITER_DONE`. This function does not free the iterator in the case |
| * of `ITER_DONE`. |
| */ |
| static int next_record(struct packed_ref_iterator *iter) |
| { |
| const char *p, *eol; |
| |
| strbuf_reset(&iter->refname_buf); |
| |
| /* |
| * If iter->pos is contained within a skipped region, jump past |
| * it. |
| * |
| * Note that each skipped region is considered at most once, |
| * since they are ordered based on their starting position. |
| */ |
| while (iter->jump_cur < iter->jump_nr) { |
| struct jump_list_entry *curr = &iter->jump[iter->jump_cur]; |
| if (iter->pos < curr->start) |
| break; /* not to the next jump yet */ |
| |
| iter->jump_cur++; |
| if (iter->pos < curr->end) { |
| iter->pos = curr->end; |
| trace2_counter_add(TRACE2_COUNTER_ID_PACKED_REFS_JUMPS, 1); |
| /* jumps are coalesced, so only one jump is necessary */ |
| break; |
| } |
| } |
| |
| if (iter->pos == iter->eof) |
| return ITER_DONE; |
| |
| iter->base.flags = REF_ISPACKED; |
| p = iter->pos; |
| |
| if (iter->eof - p < snapshot_hexsz(iter->snapshot) + 2 || |
| parse_oid_hex(p, &iter->oid, &p) || |
| !isspace(*p++)) |
| die_invalid_line(iter->snapshot->refs->path, |
| iter->pos, iter->eof - iter->pos); |
| |
| eol = memchr(p, '\n', iter->eof - p); |
| if (!eol) |
| die_unterminated_line(iter->snapshot->refs->path, |
| iter->pos, iter->eof - iter->pos); |
| |
| strbuf_add(&iter->refname_buf, p, eol - p); |
| iter->base.refname = iter->refname_buf.buf; |
| |
| if (check_refname_format(iter->base.refname, REFNAME_ALLOW_ONELEVEL)) { |
| if (!refname_is_safe(iter->base.refname)) |
| die("packed refname is dangerous: %s", |
| iter->base.refname); |
| oidclr(&iter->oid); |
| iter->base.flags |= REF_BAD_NAME | REF_ISBROKEN; |
| } |
| if (iter->snapshot->peeled == PEELED_FULLY || |
| (iter->snapshot->peeled == PEELED_TAGS && |
| starts_with(iter->base.refname, "refs/tags/"))) |
| iter->base.flags |= REF_KNOWS_PEELED; |
| |
| iter->pos = eol + 1; |
| |
| if (iter->pos < iter->eof && *iter->pos == '^') { |
| p = iter->pos + 1; |
| if (iter->eof - p < snapshot_hexsz(iter->snapshot) + 1 || |
| parse_oid_hex(p, &iter->peeled, &p) || |
| *p++ != '\n') |
| die_invalid_line(iter->snapshot->refs->path, |
| iter->pos, iter->eof - iter->pos); |
| iter->pos = p; |
| |
| /* |
| * Regardless of what the file header said, we |
| * definitely know the value of *this* reference. But |
| * we suppress it if the reference is broken: |
| */ |
| if ((iter->base.flags & REF_ISBROKEN)) { |
| oidclr(&iter->peeled); |
| iter->base.flags &= ~REF_KNOWS_PEELED; |
| } else { |
| iter->base.flags |= REF_KNOWS_PEELED; |
| } |
| } else { |
| oidclr(&iter->peeled); |
| } |
| |
| return ITER_OK; |
| } |
| |
| static int packed_ref_iterator_advance(struct ref_iterator *ref_iterator) |
| { |
| struct packed_ref_iterator *iter = |
| (struct packed_ref_iterator *)ref_iterator; |
| int ok; |
| |
| while ((ok = next_record(iter)) == ITER_OK) { |
| if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY && |
| !is_per_worktree_ref(iter->base.refname)) |
| continue; |
| |
| if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) && |
| !ref_resolves_to_object(iter->base.refname, iter->repo, |
| &iter->oid, iter->flags)) |
| continue; |
| |
| return ITER_OK; |
| } |
| |
| if (ref_iterator_abort(ref_iterator) != ITER_DONE) |
| ok = ITER_ERROR; |
| |
| return ok; |
| } |
| |
| static int packed_ref_iterator_peel(struct ref_iterator *ref_iterator, |
| struct object_id *peeled) |
| { |
| struct packed_ref_iterator *iter = |
| (struct packed_ref_iterator *)ref_iterator; |
| |
| if ((iter->base.flags & REF_KNOWS_PEELED)) { |
| oidcpy(peeled, &iter->peeled); |
| return is_null_oid(&iter->peeled) ? -1 : 0; |
| } else if ((iter->base.flags & (REF_ISBROKEN | REF_ISSYMREF))) { |
| return -1; |
| } else { |
| return peel_object(iter->repo, &iter->oid, peeled) ? -1 : 0; |
| } |
| } |
| |
| static int packed_ref_iterator_abort(struct ref_iterator *ref_iterator) |
| { |
| struct packed_ref_iterator *iter = |
| (struct packed_ref_iterator *)ref_iterator; |
| int ok = ITER_DONE; |
| |
| strbuf_release(&iter->refname_buf); |
| free(iter->jump); |
| release_snapshot(iter->snapshot); |
| base_ref_iterator_free(ref_iterator); |
| return ok; |
| } |
| |
| static struct ref_iterator_vtable packed_ref_iterator_vtable = { |
| .advance = packed_ref_iterator_advance, |
| .peel = packed_ref_iterator_peel, |
| .abort = packed_ref_iterator_abort |
| }; |
| |
| static int jump_list_entry_cmp(const void *va, const void *vb) |
| { |
| const struct jump_list_entry *a = va; |
| const struct jump_list_entry *b = vb; |
| |
| if (a->start < b->start) |
| return -1; |
| if (a->start > b->start) |
| return 1; |
| return 0; |
| } |
| |
| static int has_glob_special(const char *str) |
| { |
| const char *p; |
| for (p = str; *p; p++) { |
| if (is_glob_special(*p)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void populate_excluded_jump_list(struct packed_ref_iterator *iter, |
| struct snapshot *snapshot, |
| const char **excluded_patterns) |
| { |
| size_t i, j; |
| const char **pattern; |
| struct jump_list_entry *last_disjoint; |
| |
| if (!excluded_patterns) |
| return; |
| |
| for (pattern = excluded_patterns; *pattern; pattern++) { |
| struct jump_list_entry *e; |
| const char *start, *end; |
| |
| /* |
| * We can't feed any excludes with globs in them to the |
| * refs machinery. It only understands prefix matching. |
| * We likewise can't even feed the string leading up to |
| * the first meta-character, as something like "foo[a]" |
| * should not exclude "foobar" (but the prefix "foo" |
| * would match that and mark it for exclusion). |
| */ |
| if (has_glob_special(*pattern)) |
| continue; |
| |
| start = find_reference_location(snapshot, *pattern, 0); |
| end = find_reference_location_end(snapshot, *pattern, 0); |
| |
| if (start == end) |
| continue; /* nothing to jump over */ |
| |
| ALLOC_GROW(iter->jump, iter->jump_nr + 1, iter->jump_alloc); |
| |
| e = &iter->jump[iter->jump_nr++]; |
| e->start = start; |
| e->end = end; |
| } |
| |
| if (!iter->jump_nr) { |
| /* |
| * Every entry in exclude_patterns has a meta-character, |
| * nothing to do here. |
| */ |
| return; |
| } |
| |
| QSORT(iter->jump, iter->jump_nr, jump_list_entry_cmp); |
| |
| /* |
| * As an optimization, merge adjacent entries in the jump list |
| * to jump forwards as far as possible when entering a skipped |
| * region. |
| * |
| * For example, if we have two skipped regions: |
| * |
| * [[A, B], [B, C]] |
| * |
| * we want to combine that into a single entry jumping from A to |
| * C. |
| */ |
| last_disjoint = iter->jump; |
| |
| for (i = 1, j = 1; i < iter->jump_nr; i++) { |
| struct jump_list_entry *ours = &iter->jump[i]; |
| if (ours->start <= last_disjoint->end) { |
| /* overlapping regions extend the previous one */ |
| last_disjoint->end = last_disjoint->end > ours->end |
| ? last_disjoint->end : ours->end; |
| } else { |
| /* otherwise, insert a new region */ |
| iter->jump[j++] = *ours; |
| last_disjoint = ours; |
| } |
| } |
| |
| iter->jump_nr = j; |
| iter->jump_cur = 0; |
| } |
| |
| static struct ref_iterator *packed_ref_iterator_begin( |
| struct ref_store *ref_store, |
| const char *prefix, const char **exclude_patterns, |
| unsigned int flags) |
| { |
| struct packed_ref_store *refs; |
| struct snapshot *snapshot; |
| const char *start; |
| struct packed_ref_iterator *iter; |
| struct ref_iterator *ref_iterator; |
| unsigned int required_flags = REF_STORE_READ; |
| |
| if (!(flags & DO_FOR_EACH_INCLUDE_BROKEN)) |
| required_flags |= REF_STORE_ODB; |
| refs = packed_downcast(ref_store, required_flags, "ref_iterator_begin"); |
| |
| /* |
| * Note that `get_snapshot()` internally checks whether the |
| * snapshot is up to date with what is on disk, and re-reads |
| * it if not. |
| */ |
| snapshot = get_snapshot(refs); |
| |
| if (prefix && *prefix) |
| start = find_reference_location(snapshot, prefix, 0); |
| else |
| start = snapshot->start; |
| |
| if (start == snapshot->eof) |
| return empty_ref_iterator_begin(); |
| |
| CALLOC_ARRAY(iter, 1); |
| ref_iterator = &iter->base; |
| base_ref_iterator_init(ref_iterator, &packed_ref_iterator_vtable); |
| |
| if (exclude_patterns) |
| populate_excluded_jump_list(iter, snapshot, exclude_patterns); |
| |
| iter->snapshot = snapshot; |
| acquire_snapshot(snapshot); |
| |
| iter->pos = start; |
| iter->eof = snapshot->eof; |
| strbuf_init(&iter->refname_buf, 0); |
| |
| iter->base.oid = &iter->oid; |
| |
| iter->repo = ref_store->repo; |
| iter->flags = flags; |
| |
| if (prefix && *prefix) |
| /* Stop iteration after we've gone *past* prefix: */ |
| ref_iterator = prefix_ref_iterator_begin(ref_iterator, prefix, 0); |
| |
| return ref_iterator; |
| } |
| |
| /* |
| * Write an entry to the packed-refs file for the specified refname. |
| * If peeled is non-NULL, write it as the entry's peeled value. On |
| * error, return a nonzero value and leave errno set at the value left |
| * by the failing call to `fprintf()`. |
| */ |
| static int write_packed_entry(FILE *fh, const char *refname, |
| const struct object_id *oid, |
| const struct object_id *peeled) |
| { |
| if (fprintf(fh, "%s %s\n", oid_to_hex(oid), refname) < 0 || |
| (peeled && fprintf(fh, "^%s\n", oid_to_hex(peeled)) < 0)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int packed_refs_lock(struct ref_store *ref_store, int flags, struct strbuf *err) |
| { |
| struct packed_ref_store *refs = |
| packed_downcast(ref_store, REF_STORE_WRITE | REF_STORE_MAIN, |
| "packed_refs_lock"); |
| static int timeout_configured = 0; |
| static int timeout_value = 1000; |
| |
| if (!timeout_configured) { |
| git_config_get_int("core.packedrefstimeout", &timeout_value); |
| timeout_configured = 1; |
| } |
| |
| /* |
| * Note that we close the lockfile immediately because we |
| * don't write new content to it, but rather to a separate |
| * tempfile. |
| */ |
| if (hold_lock_file_for_update_timeout( |
| &refs->lock, |
| refs->path, |
| flags, timeout_value) < 0) { |
| unable_to_lock_message(refs->path, errno, err); |
| return -1; |
| } |
| |
| if (close_lock_file_gently(&refs->lock)) { |
| strbuf_addf(err, "unable to close %s: %s", refs->path, strerror(errno)); |
| rollback_lock_file(&refs->lock); |
| return -1; |
| } |
| |
| /* |
| * There is a stat-validity problem might cause `update-ref -d` |
| * lost the newly commit of a ref, because a new `packed-refs` |
| * file might has the same on-disk file attributes such as |
| * timestamp, file size and inode value, but has a changed |
| * ref value. |
| * |
| * This could happen with a very small chance when |
| * `update-ref -d` is called and at the same time another |
| * `pack-refs --all` process is running. |
| * |
| * Now that we hold the `packed-refs` lock, it is important |
| * to make sure we could read the latest version of |
| * `packed-refs` file no matter we have just mmap it or not. |
| * So what need to do is clear the snapshot if we hold it |
| * already. |
| */ |
| clear_snapshot(refs); |
| |
| /* |
| * Now make sure that the packed-refs file as it exists in the |
| * locked state is loaded into the snapshot: |
| */ |
| get_snapshot(refs); |
| return 0; |
| } |
| |
| void packed_refs_unlock(struct ref_store *ref_store) |
| { |
| struct packed_ref_store *refs = packed_downcast( |
| ref_store, |
| REF_STORE_READ | REF_STORE_WRITE, |
| "packed_refs_unlock"); |
| |
| if (!is_lock_file_locked(&refs->lock)) |
| BUG("packed_refs_unlock() called when not locked"); |
| rollback_lock_file(&refs->lock); |
| } |
| |
| int packed_refs_is_locked(struct ref_store *ref_store) |
| { |
| struct packed_ref_store *refs = packed_downcast( |
| ref_store, |
| REF_STORE_READ | REF_STORE_WRITE, |
| "packed_refs_is_locked"); |
| |
| return is_lock_file_locked(&refs->lock); |
| } |
| |
| /* |
| * The packed-refs header line that we write out. Perhaps other traits |
| * will be added later. |
| * |
| * Note that earlier versions of Git used to parse these traits by |
| * looking for " trait " in the line. For this reason, the space after |
| * the colon and the trailing space are required. |
| */ |
| static const char PACKED_REFS_HEADER[] = |
| "# pack-refs with: peeled fully-peeled sorted \n"; |
| |
| static int packed_ref_store_create_on_disk(struct ref_store *ref_store UNUSED, |
| int flags UNUSED, |
| struct strbuf *err UNUSED) |
| { |
| /* Nothing to do. */ |
| return 0; |
| } |
| |
| static int packed_ref_store_remove_on_disk(struct ref_store *ref_store, |
| struct strbuf *err) |
| { |
| struct packed_ref_store *refs = packed_downcast(ref_store, 0, "remove"); |
| |
| if (remove_path(refs->path) < 0) { |
| strbuf_addstr(err, "could not delete packed-refs"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Write the packed refs from the current snapshot to the packed-refs |
| * tempfile, incorporating any changes from `updates`. `updates` must |
| * be a sorted string list whose keys are the refnames and whose util |
| * values are `struct ref_update *`. On error, rollback the tempfile, |
| * write an error message to `err`, and return a nonzero value. |
| * |
| * The packfile must be locked before calling this function and will |
| * remain locked when it is done. |
| */ |
| static int write_with_updates(struct packed_ref_store *refs, |
| struct string_list *updates, |
| struct strbuf *err) |
| { |
| struct ref_iterator *iter = NULL; |
| size_t i; |
| int ok; |
| FILE *out; |
| struct strbuf sb = STRBUF_INIT; |
| char *packed_refs_path; |
| |
| if (!is_lock_file_locked(&refs->lock)) |
| BUG("write_with_updates() called while unlocked"); |
| |
| /* |
| * If packed-refs is a symlink, we want to overwrite the |
| * symlinked-to file, not the symlink itself. Also, put the |
| * staging file next to it: |
| */ |
| packed_refs_path = get_locked_file_path(&refs->lock); |
| strbuf_addf(&sb, "%s.new", packed_refs_path); |
| free(packed_refs_path); |
| refs->tempfile = create_tempfile(sb.buf); |
| if (!refs->tempfile) { |
| strbuf_addf(err, "unable to create file %s: %s", |
| sb.buf, strerror(errno)); |
| strbuf_release(&sb); |
| return -1; |
| } |
| strbuf_release(&sb); |
| |
| out = fdopen_tempfile(refs->tempfile, "w"); |
| if (!out) { |
| strbuf_addf(err, "unable to fdopen packed-refs tempfile: %s", |
| strerror(errno)); |
| goto error; |
| } |
| |
| if (fprintf(out, "%s", PACKED_REFS_HEADER) < 0) |
| goto write_error; |
| |
| /* |
| * We iterate in parallel through the current list of refs and |
| * the list of updates, processing an entry from at least one |
| * of the lists each time through the loop. When the current |
| * list of refs is exhausted, set iter to NULL. When the list |
| * of updates is exhausted, leave i set to updates->nr. |
| */ |
| iter = packed_ref_iterator_begin(&refs->base, "", NULL, |
| DO_FOR_EACH_INCLUDE_BROKEN); |
| if ((ok = ref_iterator_advance(iter)) != ITER_OK) |
| iter = NULL; |
| |
| i = 0; |
| |
| while (iter || i < updates->nr) { |
| struct ref_update *update = NULL; |
| int cmp; |
| |
| if (i >= updates->nr) { |
| cmp = -1; |
| } else { |
| update = updates->items[i].util; |
| |
| if (!iter) |
| cmp = +1; |
| else |
| cmp = strcmp(iter->refname, update->refname); |
| } |
| |
| if (!cmp) { |
| /* |
| * There is both an old value and an update |
| * for this reference. Check the old value if |
| * necessary: |
| */ |
| if ((update->flags & REF_HAVE_OLD)) { |
| if (is_null_oid(&update->old_oid)) { |
| strbuf_addf(err, "cannot update ref '%s': " |
| "reference already exists", |
| update->refname); |
| goto error; |
| } else if (!oideq(&update->old_oid, iter->oid)) { |
| strbuf_addf(err, "cannot update ref '%s': " |
| "is at %s but expected %s", |
| update->refname, |
| oid_to_hex(iter->oid), |
| oid_to_hex(&update->old_oid)); |
| goto error; |
| } |
| } |
| |
| /* Now figure out what to use for the new value: */ |
| if ((update->flags & REF_HAVE_NEW)) { |
| /* |
| * The update takes precedence. Skip |
| * the iterator over the unneeded |
| * value. |
| */ |
| if ((ok = ref_iterator_advance(iter)) != ITER_OK) |
| iter = NULL; |
| cmp = +1; |
| } else { |
| /* |
| * The update doesn't actually want to |
| * change anything. We're done with it. |
| */ |
| i++; |
| cmp = -1; |
| } |
| } else if (cmp > 0) { |
| /* |
| * There is no old value but there is an |
| * update for this reference. Make sure that |
| * the update didn't expect an existing value: |
| */ |
| if ((update->flags & REF_HAVE_OLD) && |
| !is_null_oid(&update->old_oid)) { |
| strbuf_addf(err, "cannot update ref '%s': " |
| "reference is missing but expected %s", |
| update->refname, |
| oid_to_hex(&update->old_oid)); |
| goto error; |
| } |
| } |
| |
| if (cmp < 0) { |
| /* Pass the old reference through. */ |
| |
| struct object_id peeled; |
| int peel_error = ref_iterator_peel(iter, &peeled); |
| |
| if (write_packed_entry(out, iter->refname, |
| iter->oid, |
| peel_error ? NULL : &peeled)) |
| goto write_error; |
| |
| if ((ok = ref_iterator_advance(iter)) != ITER_OK) |
| iter = NULL; |
| } else if (is_null_oid(&update->new_oid)) { |
| /* |
| * The update wants to delete the reference, |
| * and the reference either didn't exist or we |
| * have already skipped it. So we're done with |
| * the update (and don't have to write |
| * anything). |
| */ |
| i++; |
| } else { |
| struct object_id peeled; |
| int peel_error = peel_object(refs->base.repo, |
| &update->new_oid, |
| &peeled); |
| |
| if (write_packed_entry(out, update->refname, |
| &update->new_oid, |
| peel_error ? NULL : &peeled)) |
| goto write_error; |
| |
| i++; |
| } |
| } |
| |
| if (ok != ITER_DONE) { |
| strbuf_addstr(err, "unable to write packed-refs file: " |
| "error iterating over old contents"); |
| goto error; |
| } |
| |
| if (fflush(out) || |
| fsync_component(FSYNC_COMPONENT_REFERENCE, get_tempfile_fd(refs->tempfile)) || |
| close_tempfile_gently(refs->tempfile)) { |
| strbuf_addf(err, "error closing file %s: %s", |
| get_tempfile_path(refs->tempfile), |
| strerror(errno)); |
| strbuf_release(&sb); |
| delete_tempfile(&refs->tempfile); |
| return -1; |
| } |
| |
| return 0; |
| |
| write_error: |
| strbuf_addf(err, "error writing to %s: %s", |
| get_tempfile_path(refs->tempfile), strerror(errno)); |
| |
| error: |
| if (iter) |
| ref_iterator_abort(iter); |
| |
| delete_tempfile(&refs->tempfile); |
| return -1; |
| } |
| |
| int is_packed_transaction_needed(struct ref_store *ref_store, |
| struct ref_transaction *transaction) |
| { |
| struct packed_ref_store *refs = packed_downcast( |
| ref_store, |
| REF_STORE_READ, |
| "is_packed_transaction_needed"); |
| struct strbuf referent = STRBUF_INIT; |
| size_t i; |
| int ret; |
| |
| if (!is_lock_file_locked(&refs->lock)) |
| BUG("is_packed_transaction_needed() called while unlocked"); |
| |
| /* |
| * We're only going to bother returning false for the common, |
| * trivial case that references are only being deleted, their |
| * old values are not being checked, and the old `packed-refs` |
| * file doesn't contain any of those reference(s). This gives |
| * false positives for some other cases that could |
| * theoretically be optimized away: |
| * |
| * 1. It could be that the old value is being verified without |
| * setting a new value. In this case, we could verify the |
| * old value here and skip the update if it agrees. If it |
| * disagrees, we could either let the update go through |
| * (the actual commit would re-detect and report the |
| * problem), or come up with a way of reporting such an |
| * error to *our* caller. |
| * |
| * 2. It could be that a new value is being set, but that it |
| * is identical to the current packed value of the |
| * reference. |
| * |
| * Neither of these cases will come up in the current code, |
| * because the only caller of this function passes to it a |
| * transaction that only includes `delete` updates with no |
| * `old_id`. Even if that ever changes, false positives only |
| * cause an optimization to be missed; they do not affect |
| * correctness. |
| */ |
| |
| /* |
| * Start with the cheap checks that don't require old |
| * reference values to be read: |
| */ |
| for (i = 0; i < transaction->nr; i++) { |
| struct ref_update *update = transaction->updates[i]; |
| |
| if (update->flags & REF_HAVE_OLD) |
| /* Have to check the old value -> needed. */ |
| return 1; |
| |
| if ((update->flags & REF_HAVE_NEW) && !is_null_oid(&update->new_oid)) |
| /* Have to set a new value -> needed. */ |
| return 1; |
| } |
| |
| /* |
| * The transaction isn't checking any old values nor is it |
| * setting any nonzero new values, so it still might be able |
| * to be skipped. Now do the more expensive check: the update |
| * is needed if any of the updates is a delete, and the old |
| * `packed-refs` file contains a value for that reference. |
| */ |
| ret = 0; |
| for (i = 0; i < transaction->nr; i++) { |
| struct ref_update *update = transaction->updates[i]; |
| int failure_errno; |
| unsigned int type; |
| struct object_id oid; |
| |
| if (!(update->flags & REF_HAVE_NEW)) |
| /* |
| * This reference isn't being deleted -> not |
| * needed. |
| */ |
| continue; |
| |
| if (!refs_read_raw_ref(ref_store, update->refname, &oid, |
| &referent, &type, &failure_errno) || |
| failure_errno != ENOENT) { |
| /* |
| * We have to actually delete that reference |
| * -> this transaction is needed. |
| */ |
| ret = 1; |
| break; |
| } |
| } |
| |
| strbuf_release(&referent); |
| return ret; |
| } |
| |
| struct packed_transaction_backend_data { |
| /* True iff the transaction owns the packed-refs lock. */ |
| int own_lock; |
| |
| struct string_list updates; |
| }; |
| |
| static void packed_transaction_cleanup(struct packed_ref_store *refs, |
| struct ref_transaction *transaction) |
| { |
| struct packed_transaction_backend_data *data = transaction->backend_data; |
| |
| if (data) { |
| string_list_clear(&data->updates, 0); |
| |
| if (is_tempfile_active(refs->tempfile)) |
| delete_tempfile(&refs->tempfile); |
| |
| if (data->own_lock && is_lock_file_locked(&refs->lock)) { |
| packed_refs_unlock(&refs->base); |
| data->own_lock = 0; |
| } |
| |
| free(data); |
| transaction->backend_data = NULL; |
| } |
| |
| transaction->state = REF_TRANSACTION_CLOSED; |
| } |
| |
| static int packed_transaction_prepare(struct ref_store *ref_store, |
| struct ref_transaction *transaction, |
| struct strbuf *err) |
| { |
| struct packed_ref_store *refs = packed_downcast( |
| ref_store, |
| REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB, |
| "ref_transaction_prepare"); |
| struct packed_transaction_backend_data *data; |
| size_t i; |
| int ret = TRANSACTION_GENERIC_ERROR; |
| |
| /* |
| * Note that we *don't* skip transactions with zero updates, |
| * because such a transaction might be executed for the side |
| * effect of ensuring that all of the references are peeled or |
| * ensuring that the `packed-refs` file is sorted. If the |
| * caller wants to optimize away empty transactions, it should |
| * do so itself. |
| */ |
| |
| CALLOC_ARRAY(data, 1); |
| string_list_init_nodup(&data->updates); |
| |
| transaction->backend_data = data; |
| |
| /* |
| * Stick the updates in a string list by refname so that we |
| * can sort them: |
| */ |
| for (i = 0; i < transaction->nr; i++) { |
| struct ref_update *update = transaction->updates[i]; |
| struct string_list_item *item = |
| string_list_append(&data->updates, update->refname); |
| |
| /* Store a pointer to update in item->util: */ |
| item->util = update; |
| } |
| string_list_sort(&data->updates); |
| |
| if (ref_update_reject_duplicates(&data->updates, err)) |
| goto failure; |
| |
| if (!is_lock_file_locked(&refs->lock)) { |
| if (packed_refs_lock(ref_store, 0, err)) |
| goto failure; |
| data->own_lock = 1; |
| } |
| |
| if (write_with_updates(refs, &data->updates, err)) |
| goto failure; |
| |
| transaction->state = REF_TRANSACTION_PREPARED; |
| return 0; |
| |
| failure: |
| packed_transaction_cleanup(refs, transaction); |
| return ret; |
| } |
| |
| static int packed_transaction_abort(struct ref_store *ref_store, |
| struct ref_transaction *transaction, |
| struct strbuf *err UNUSED) |
| { |
| struct packed_ref_store *refs = packed_downcast( |
| ref_store, |
| REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB, |
| "ref_transaction_abort"); |
| |
| packed_transaction_cleanup(refs, transaction); |
| return 0; |
| } |
| |
| static int packed_transaction_finish(struct ref_store *ref_store, |
| struct ref_transaction *transaction, |
| struct strbuf *err) |
| { |
| struct packed_ref_store *refs = packed_downcast( |
| ref_store, |
| REF_STORE_READ | REF_STORE_WRITE | REF_STORE_ODB, |
| "ref_transaction_finish"); |
| int ret = TRANSACTION_GENERIC_ERROR; |
| char *packed_refs_path; |
| |
| clear_snapshot(refs); |
| |
| packed_refs_path = get_locked_file_path(&refs->lock); |
| if (rename_tempfile(&refs->tempfile, packed_refs_path)) { |
| strbuf_addf(err, "error replacing %s: %s", |
| refs->path, strerror(errno)); |
| goto cleanup; |
| } |
| |
| ret = 0; |
| |
| cleanup: |
| free(packed_refs_path); |
| packed_transaction_cleanup(refs, transaction); |
| return ret; |
| } |
| |
| static int packed_initial_transaction_commit(struct ref_store *ref_store UNUSED, |
| struct ref_transaction *transaction, |
| struct strbuf *err) |
| { |
| return ref_transaction_commit(transaction, err); |
| } |
| |
| static int packed_pack_refs(struct ref_store *ref_store UNUSED, |
| struct pack_refs_opts *pack_opts UNUSED) |
| { |
| /* |
| * Packed refs are already packed. It might be that loose refs |
| * are packed *into* a packed refs store, but that is done by |
| * updating the packed references via a transaction. |
| */ |
| return 0; |
| } |
| |
| static struct ref_iterator *packed_reflog_iterator_begin(struct ref_store *ref_store UNUSED) |
| { |
| return empty_ref_iterator_begin(); |
| } |
| |
| struct ref_storage_be refs_be_packed = { |
| .name = "packed", |
| .init = packed_ref_store_init, |
| .release = packed_ref_store_release, |
| .create_on_disk = packed_ref_store_create_on_disk, |
| .remove_on_disk = packed_ref_store_remove_on_disk, |
| |
| .transaction_prepare = packed_transaction_prepare, |
| .transaction_finish = packed_transaction_finish, |
| .transaction_abort = packed_transaction_abort, |
| .initial_transaction_commit = packed_initial_transaction_commit, |
| |
| .pack_refs = packed_pack_refs, |
| .rename_ref = NULL, |
| .copy_ref = NULL, |
| |
| .iterator_begin = packed_ref_iterator_begin, |
| .read_raw_ref = packed_read_raw_ref, |
| .read_symbolic_ref = NULL, |
| |
| .reflog_iterator_begin = packed_reflog_iterator_begin, |
| .for_each_reflog_ent = NULL, |
| .for_each_reflog_ent_reverse = NULL, |
| .reflog_exists = NULL, |
| .create_reflog = NULL, |
| .delete_reflog = NULL, |
| .reflog_expire = NULL, |
| }; |