| #include "cache.h" |
| #include "tree-walk.h" |
| #include "unpack-trees.h" |
| #include "dir.h" |
| #include "tree.h" |
| |
| static const char *get_mode(const char *str, unsigned int *modep) |
| { |
| unsigned char c; |
| unsigned int mode = 0; |
| |
| if (*str == ' ') |
| return NULL; |
| |
| while ((c = *str++) != ' ') { |
| if (c < '0' || c > '7') |
| return NULL; |
| mode = (mode << 3) + (c - '0'); |
| } |
| *modep = mode; |
| return str; |
| } |
| |
| static void decode_tree_entry(struct tree_desc *desc, const char *buf, unsigned long size) |
| { |
| const char *path; |
| unsigned int mode, len; |
| |
| if (size < 24 || buf[size - 21]) |
| die("corrupt tree file"); |
| |
| path = get_mode(buf, &mode); |
| if (!path || !*path) |
| die("corrupt tree file"); |
| len = strlen(path) + 1; |
| |
| /* Initialize the descriptor entry */ |
| desc->entry.path = path; |
| desc->entry.mode = mode; |
| desc->entry.sha1 = (const unsigned char *)(path + len); |
| } |
| |
| void init_tree_desc(struct tree_desc *desc, const void *buffer, unsigned long size) |
| { |
| desc->buffer = buffer; |
| desc->size = size; |
| if (size) |
| decode_tree_entry(desc, buffer, size); |
| } |
| |
| void *fill_tree_descriptor(struct tree_desc *desc, const unsigned char *sha1) |
| { |
| unsigned long size = 0; |
| void *buf = NULL; |
| |
| if (sha1) { |
| buf = read_object_with_reference(sha1, tree_type, &size, NULL); |
| if (!buf) |
| die("unable to read tree %s", sha1_to_hex(sha1)); |
| } |
| init_tree_desc(desc, buf, size); |
| return buf; |
| } |
| |
| static void entry_clear(struct name_entry *a) |
| { |
| memset(a, 0, sizeof(*a)); |
| } |
| |
| static void entry_extract(struct tree_desc *t, struct name_entry *a) |
| { |
| *a = t->entry; |
| } |
| |
| void update_tree_entry(struct tree_desc *desc) |
| { |
| const void *buf = desc->buffer; |
| const unsigned char *end = desc->entry.sha1 + 20; |
| unsigned long size = desc->size; |
| unsigned long len = end - (const unsigned char *)buf; |
| |
| if (size < len) |
| die("corrupt tree file"); |
| buf = end; |
| size -= len; |
| desc->buffer = buf; |
| desc->size = size; |
| if (size) |
| decode_tree_entry(desc, buf, size); |
| } |
| |
| int tree_entry(struct tree_desc *desc, struct name_entry *entry) |
| { |
| if (!desc->size) |
| return 0; |
| |
| *entry = desc->entry; |
| update_tree_entry(desc); |
| return 1; |
| } |
| |
| void setup_traverse_info(struct traverse_info *info, const char *base) |
| { |
| int pathlen = strlen(base); |
| static struct traverse_info dummy; |
| |
| memset(info, 0, sizeof(*info)); |
| if (pathlen && base[pathlen-1] == '/') |
| pathlen--; |
| info->pathlen = pathlen ? pathlen + 1 : 0; |
| info->name.path = base; |
| info->name.sha1 = (void *)(base + pathlen + 1); |
| if (pathlen) |
| info->prev = &dummy; |
| } |
| |
| char *make_traverse_path(char *path, const struct traverse_info *info, const struct name_entry *n) |
| { |
| int len = tree_entry_len(n->path, n->sha1); |
| int pathlen = info->pathlen; |
| |
| path[pathlen + len] = 0; |
| for (;;) { |
| memcpy(path + pathlen, n->path, len); |
| if (!pathlen) |
| break; |
| path[--pathlen] = '/'; |
| n = &info->name; |
| len = tree_entry_len(n->path, n->sha1); |
| info = info->prev; |
| pathlen -= len; |
| } |
| return path; |
| } |
| |
| struct tree_desc_skip { |
| struct tree_desc_skip *prev; |
| const void *ptr; |
| }; |
| |
| struct tree_desc_x { |
| struct tree_desc d; |
| struct tree_desc_skip *skip; |
| }; |
| |
| static int name_compare(const char *a, int a_len, |
| const char *b, int b_len) |
| { |
| int len = (a_len < b_len) ? a_len : b_len; |
| int cmp = memcmp(a, b, len); |
| if (cmp) |
| return cmp; |
| return (a_len - b_len); |
| } |
| |
| static int check_entry_match(const char *a, int a_len, const char *b, int b_len) |
| { |
| /* |
| * The caller wants to pick *a* from a tree or nothing. |
| * We are looking at *b* in a tree. |
| * |
| * (0) If a and b are the same name, we are trivially happy. |
| * |
| * There are three possibilities where *a* could be hiding |
| * behind *b*. |
| * |
| * (1) *a* == "t", *b* == "ab" i.e. *b* sorts earlier than *a* no |
| * matter what. |
| * (2) *a* == "t", *b* == "t-2" and "t" is a subtree in the tree; |
| * (3) *a* == "t-2", *b* == "t" and "t-2" is a blob in the tree. |
| * |
| * Otherwise we know *a* won't appear in the tree without |
| * scanning further. |
| */ |
| |
| int cmp = name_compare(a, a_len, b, b_len); |
| |
| /* Most common case first -- reading sync'd trees */ |
| if (!cmp) |
| return cmp; |
| |
| if (0 < cmp) { |
| /* a comes after b; it does not matter if it is case (3) |
| if (b_len < a_len && !memcmp(a, b, b_len) && a[b_len] < '/') |
| return 1; |
| */ |
| return 1; /* keep looking */ |
| } |
| |
| /* b comes after a; are we looking at case (2)? */ |
| if (a_len < b_len && !memcmp(a, b, a_len) && b[a_len] < '/') |
| return 1; /* keep looking */ |
| |
| return -1; /* a cannot appear in the tree */ |
| } |
| |
| /* |
| * From the extended tree_desc, extract the first name entry, while |
| * paying attention to the candidate "first" name. Most importantly, |
| * when looking for an entry, if there are entries that sorts earlier |
| * in the tree object representation than that name, skip them and |
| * process the named entry first. We will remember that we haven't |
| * processed the first entry yet, and in the later call skip the |
| * entry we processed early when update_extended_entry() is called. |
| * |
| * E.g. if the underlying tree object has these entries: |
| * |
| * blob "t-1" |
| * blob "t-2" |
| * tree "t" |
| * blob "t=1" |
| * |
| * and the "first" asks for "t", remember that we still need to |
| * process "t-1" and "t-2" but extract "t". After processing the |
| * entry "t" from this call, the caller will let us know by calling |
| * update_extended_entry() that we can remember "t" has been processed |
| * already. |
| */ |
| |
| static void extended_entry_extract(struct tree_desc_x *t, |
| struct name_entry *a, |
| const char *first, |
| int first_len) |
| { |
| const char *path; |
| int len; |
| struct tree_desc probe; |
| struct tree_desc_skip *skip; |
| |
| /* |
| * Extract the first entry from the tree_desc, but skip the |
| * ones that we already returned in earlier rounds. |
| */ |
| while (1) { |
| if (!t->d.size) { |
| entry_clear(a); |
| break; /* not found */ |
| } |
| entry_extract(&t->d, a); |
| for (skip = t->skip; skip; skip = skip->prev) |
| if (a->path == skip->ptr) |
| break; /* found */ |
| if (!skip) |
| break; |
| /* We have processed this entry already. */ |
| update_tree_entry(&t->d); |
| } |
| |
| if (!first || !a->path) |
| return; |
| |
| /* |
| * The caller wants "first" from this tree, or nothing. |
| */ |
| path = a->path; |
| len = tree_entry_len(a->path, a->sha1); |
| switch (check_entry_match(first, first_len, path, len)) { |
| case -1: |
| entry_clear(a); |
| case 0: |
| return; |
| default: |
| break; |
| } |
| |
| /* |
| * We need to look-ahead -- we suspect that a subtree whose |
| * name is "first" may be hiding behind the current entry "path". |
| */ |
| probe = t->d; |
| while (probe.size) { |
| entry_extract(&probe, a); |
| path = a->path; |
| len = tree_entry_len(a->path, a->sha1); |
| switch (check_entry_match(first, first_len, path, len)) { |
| case -1: |
| entry_clear(a); |
| case 0: |
| return; |
| default: |
| update_tree_entry(&probe); |
| break; |
| } |
| /* keep looking */ |
| } |
| entry_clear(a); |
| } |
| |
| static void update_extended_entry(struct tree_desc_x *t, struct name_entry *a) |
| { |
| if (t->d.entry.path == a->path) { |
| update_tree_entry(&t->d); |
| } else { |
| /* we have returned this entry early */ |
| struct tree_desc_skip *skip = xmalloc(sizeof(*skip)); |
| skip->ptr = a->path; |
| skip->prev = t->skip; |
| t->skip = skip; |
| } |
| } |
| |
| static void free_extended_entry(struct tree_desc_x *t) |
| { |
| struct tree_desc_skip *p, *s; |
| |
| for (s = t->skip; s; s = p) { |
| p = s->prev; |
| free(s); |
| } |
| } |
| |
| int traverse_trees(int n, struct tree_desc *t, struct traverse_info *info) |
| { |
| int ret = 0; |
| int error = 0; |
| struct name_entry *entry = xmalloc(n*sizeof(*entry)); |
| int i; |
| struct tree_desc_x *tx = xcalloc(n, sizeof(*tx)); |
| |
| for (i = 0; i < n; i++) |
| tx[i].d = t[i]; |
| |
| for (;;) { |
| unsigned long mask, dirmask; |
| const char *first = NULL; |
| int first_len = 0; |
| struct name_entry *e; |
| int len; |
| |
| for (i = 0; i < n; i++) { |
| e = entry + i; |
| extended_entry_extract(tx + i, e, NULL, 0); |
| } |
| |
| /* |
| * A tree may have "t-2" at the current location even |
| * though it may have "t" that is a subtree behind it, |
| * and another tree may return "t". We want to grab |
| * all "t" from all trees to match in such a case. |
| */ |
| for (i = 0; i < n; i++) { |
| e = entry + i; |
| if (!e->path) |
| continue; |
| len = tree_entry_len(e->path, e->sha1); |
| if (!first) { |
| first = e->path; |
| first_len = len; |
| continue; |
| } |
| if (name_compare(e->path, len, first, first_len) < 0) { |
| first = e->path; |
| first_len = len; |
| } |
| } |
| |
| if (first) { |
| for (i = 0; i < n; i++) { |
| e = entry + i; |
| extended_entry_extract(tx + i, e, first, first_len); |
| /* Cull the ones that are not the earliest */ |
| if (!e->path) |
| continue; |
| len = tree_entry_len(e->path, e->sha1); |
| if (name_compare(e->path, len, first, first_len)) |
| entry_clear(e); |
| } |
| } |
| |
| /* Now we have in entry[i] the earliest name from the trees */ |
| mask = 0; |
| dirmask = 0; |
| for (i = 0; i < n; i++) { |
| if (!entry[i].path) |
| continue; |
| mask |= 1ul << i; |
| if (S_ISDIR(entry[i].mode)) |
| dirmask |= 1ul << i; |
| } |
| if (!mask) |
| break; |
| ret = info->fn(n, mask, dirmask, entry, info); |
| if (ret < 0) { |
| error = ret; |
| if (!info->show_all_errors) |
| break; |
| } |
| mask &= ret; |
| ret = 0; |
| for (i = 0; i < n; i++) |
| if (mask & (1ul << i)) |
| update_extended_entry(tx + i, entry + i); |
| } |
| free(entry); |
| for (i = 0; i < n; i++) |
| free_extended_entry(tx + i); |
| free(tx); |
| return error; |
| } |
| |
| static int find_tree_entry(struct tree_desc *t, const char *name, unsigned char *result, unsigned *mode) |
| { |
| int namelen = strlen(name); |
| while (t->size) { |
| const char *entry; |
| const unsigned char *sha1; |
| int entrylen, cmp; |
| |
| sha1 = tree_entry_extract(t, &entry, mode); |
| update_tree_entry(t); |
| entrylen = tree_entry_len(entry, sha1); |
| if (entrylen > namelen) |
| continue; |
| cmp = memcmp(name, entry, entrylen); |
| if (cmp > 0) |
| continue; |
| if (cmp < 0) |
| break; |
| if (entrylen == namelen) { |
| hashcpy(result, sha1); |
| return 0; |
| } |
| if (name[entrylen] != '/') |
| continue; |
| if (!S_ISDIR(*mode)) |
| break; |
| if (++entrylen == namelen) { |
| hashcpy(result, sha1); |
| return 0; |
| } |
| return get_tree_entry(sha1, name + entrylen, result, mode); |
| } |
| return -1; |
| } |
| |
| int get_tree_entry(const unsigned char *tree_sha1, const char *name, unsigned char *sha1, unsigned *mode) |
| { |
| int retval; |
| void *tree; |
| unsigned long size; |
| struct tree_desc t; |
| unsigned char root[20]; |
| |
| tree = read_object_with_reference(tree_sha1, tree_type, &size, root); |
| if (!tree) |
| return -1; |
| |
| if (name[0] == '\0') { |
| hashcpy(sha1, root); |
| free(tree); |
| return 0; |
| } |
| |
| init_tree_desc(&t, tree, size); |
| retval = find_tree_entry(&t, name, sha1, mode); |
| free(tree); |
| return retval; |
| } |
| |
| static int match_entry(const struct name_entry *entry, int pathlen, |
| const char *match, int matchlen, |
| int *never_interesting) |
| { |
| int m = -1; /* signals that we haven't called strncmp() */ |
| |
| if (*never_interesting) { |
| /* |
| * We have not seen any match that sorts later |
| * than the current path. |
| */ |
| |
| /* |
| * Does match sort strictly earlier than path |
| * with their common parts? |
| */ |
| m = strncmp(match, entry->path, |
| (matchlen < pathlen) ? matchlen : pathlen); |
| if (m < 0) |
| return 0; |
| |
| /* |
| * If we come here even once, that means there is at |
| * least one pathspec that would sort equal to or |
| * later than the path we are currently looking at. |
| * In other words, if we have never reached this point |
| * after iterating all pathspecs, it means all |
| * pathspecs are either outside of base, or inside the |
| * base but sorts strictly earlier than the current |
| * one. In either case, they will never match the |
| * subsequent entries. In such a case, we initialized |
| * the variable to -1 and that is what will be |
| * returned, allowing the caller to terminate early. |
| */ |
| *never_interesting = 0; |
| } |
| |
| if (pathlen > matchlen) |
| return 0; |
| |
| if (matchlen > pathlen) { |
| if (match[pathlen] != '/') |
| return 0; |
| if (!S_ISDIR(entry->mode)) |
| return 0; |
| } |
| |
| if (m == -1) |
| /* |
| * we cheated and did not do strncmp(), so we do |
| * that here. |
| */ |
| m = strncmp(match, entry->path, pathlen); |
| |
| /* |
| * If common part matched earlier then it is a hit, |
| * because we rejected the case where path is not a |
| * leading directory and is shorter than match. |
| */ |
| if (!m) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int match_dir_prefix(const char *base, int baselen, |
| const char *match, int matchlen) |
| { |
| if (strncmp(base, match, matchlen)) |
| return 0; |
| |
| /* |
| * If the base is a subdirectory of a path which |
| * was specified, all of them are interesting. |
| */ |
| if (!matchlen || |
| base[matchlen] == '/' || |
| match[matchlen - 1] == '/') |
| return 1; |
| |
| /* Just a random prefix match */ |
| return 0; |
| } |
| |
| /* |
| * Is a tree entry interesting given the pathspec we have? |
| * |
| * Pre-condition: either baselen == base_offset (i.e. empty path) |
| * or base[baselen-1] == '/' (i.e. with trailing slash). |
| * |
| * Return: |
| * - 2 for "yes, and all subsequent entries will be" |
| * - 1 for yes |
| * - zero for no |
| * - negative for "no, and no subsequent entries will be either" |
| */ |
| int tree_entry_interesting(const struct name_entry *entry, |
| struct strbuf *base, int base_offset, |
| const struct pathspec *ps) |
| { |
| int i; |
| int pathlen, baselen = base->len - base_offset; |
| int never_interesting = ps->has_wildcard ? 0 : -1; |
| |
| if (!ps->nr) { |
| if (!ps->recursive || ps->max_depth == -1) |
| return 2; |
| return !!within_depth(base->buf + base_offset, baselen, |
| !!S_ISDIR(entry->mode), |
| ps->max_depth); |
| } |
| |
| pathlen = tree_entry_len(entry->path, entry->sha1); |
| |
| for (i = ps->nr - 1; i >= 0; i--) { |
| const struct pathspec_item *item = ps->items+i; |
| const char *match = item->match; |
| const char *base_str = base->buf + base_offset; |
| int matchlen = item->len; |
| |
| if (baselen >= matchlen) { |
| /* If it doesn't match, move along... */ |
| if (!match_dir_prefix(base_str, baselen, match, matchlen)) |
| goto match_wildcards; |
| |
| if (!ps->recursive || ps->max_depth == -1) |
| return 2; |
| |
| return !!within_depth(base_str + matchlen + 1, |
| baselen - matchlen - 1, |
| !!S_ISDIR(entry->mode), |
| ps->max_depth); |
| } |
| |
| /* Does the base match? */ |
| if (!strncmp(base_str, match, baselen)) { |
| if (match_entry(entry, pathlen, |
| match + baselen, matchlen - baselen, |
| &never_interesting)) |
| return 1; |
| |
| if (ps->items[i].has_wildcard) { |
| if (!fnmatch(match + baselen, entry->path, 0)) |
| return 1; |
| |
| /* |
| * Match all directories. We'll try to |
| * match files later on. |
| */ |
| if (ps->recursive && S_ISDIR(entry->mode)) |
| return 1; |
| } |
| |
| continue; |
| } |
| |
| match_wildcards: |
| if (!ps->items[i].has_wildcard) |
| continue; |
| |
| /* |
| * Concatenate base and entry->path into one and do |
| * fnmatch() on it. |
| */ |
| |
| strbuf_add(base, entry->path, pathlen); |
| |
| if (!fnmatch(match, base->buf + base_offset, 0)) { |
| strbuf_setlen(base, base_offset + baselen); |
| return 1; |
| } |
| strbuf_setlen(base, base_offset + baselen); |
| |
| /* |
| * Match all directories. We'll try to match files |
| * later on. |
| */ |
| if (ps->recursive && S_ISDIR(entry->mode)) |
| return 1; |
| } |
| return never_interesting; /* No matches */ |
| } |