| #include "../cache.h" |
| #include "../refs.h" |
| #include "refs-internal.h" |
| #include "ref-cache.h" |
| #include "../iterator.h" |
| |
| void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry) |
| { |
| ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc); |
| dir->entries[dir->nr++] = entry; |
| /* optimize for the case that entries are added in order */ |
| if (dir->nr == 1 || |
| (dir->nr == dir->sorted + 1 && |
| strcmp(dir->entries[dir->nr - 2]->name, |
| dir->entries[dir->nr - 1]->name) < 0)) |
| dir->sorted = dir->nr; |
| } |
| |
| struct ref_dir *get_ref_dir(struct ref_entry *entry) |
| { |
| struct ref_dir *dir; |
| assert(entry->flag & REF_DIR); |
| dir = &entry->u.subdir; |
| if (entry->flag & REF_INCOMPLETE) { |
| if (!dir->cache->fill_ref_dir) |
| die("BUG: incomplete ref_store without fill_ref_dir function"); |
| |
| dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name); |
| entry->flag &= ~REF_INCOMPLETE; |
| } |
| return dir; |
| } |
| |
| struct ref_entry *create_ref_entry(const char *refname, |
| const struct object_id *oid, int flag) |
| { |
| struct ref_entry *ref; |
| |
| FLEX_ALLOC_STR(ref, name, refname); |
| oidcpy(&ref->u.value.oid, oid); |
| ref->flag = flag; |
| return ref; |
| } |
| |
| struct ref_cache *create_ref_cache(struct ref_store *refs, |
| fill_ref_dir_fn *fill_ref_dir) |
| { |
| struct ref_cache *ret = xcalloc(1, sizeof(*ret)); |
| |
| ret->ref_store = refs; |
| ret->fill_ref_dir = fill_ref_dir; |
| ret->root = create_dir_entry(ret, "", 0, 1); |
| return ret; |
| } |
| |
| static void clear_ref_dir(struct ref_dir *dir); |
| |
| static void free_ref_entry(struct ref_entry *entry) |
| { |
| if (entry->flag & REF_DIR) { |
| /* |
| * Do not use get_ref_dir() here, as that might |
| * trigger the reading of loose refs. |
| */ |
| clear_ref_dir(&entry->u.subdir); |
| } |
| free(entry); |
| } |
| |
| void free_ref_cache(struct ref_cache *cache) |
| { |
| free_ref_entry(cache->root); |
| free(cache); |
| } |
| |
| /* |
| * Clear and free all entries in dir, recursively. |
| */ |
| static void clear_ref_dir(struct ref_dir *dir) |
| { |
| int i; |
| for (i = 0; i < dir->nr; i++) |
| free_ref_entry(dir->entries[i]); |
| FREE_AND_NULL(dir->entries); |
| dir->sorted = dir->nr = dir->alloc = 0; |
| } |
| |
| struct ref_entry *create_dir_entry(struct ref_cache *cache, |
| const char *dirname, size_t len, |
| int incomplete) |
| { |
| struct ref_entry *direntry; |
| |
| FLEX_ALLOC_MEM(direntry, name, dirname, len); |
| direntry->u.subdir.cache = cache; |
| direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0); |
| return direntry; |
| } |
| |
| static int ref_entry_cmp(const void *a, const void *b) |
| { |
| struct ref_entry *one = *(struct ref_entry **)a; |
| struct ref_entry *two = *(struct ref_entry **)b; |
| return strcmp(one->name, two->name); |
| } |
| |
| static void sort_ref_dir(struct ref_dir *dir); |
| |
| struct string_slice { |
| size_t len; |
| const char *str; |
| }; |
| |
| static int ref_entry_cmp_sslice(const void *key_, const void *ent_) |
| { |
| const struct string_slice *key = key_; |
| const struct ref_entry *ent = *(const struct ref_entry * const *)ent_; |
| int cmp = strncmp(key->str, ent->name, key->len); |
| if (cmp) |
| return cmp; |
| return '\0' - (unsigned char)ent->name[key->len]; |
| } |
| |
| int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len) |
| { |
| struct ref_entry **r; |
| struct string_slice key; |
| |
| if (refname == NULL || !dir->nr) |
| return -1; |
| |
| sort_ref_dir(dir); |
| key.len = len; |
| key.str = refname; |
| r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries), |
| ref_entry_cmp_sslice); |
| |
| if (r == NULL) |
| return -1; |
| |
| return r - dir->entries; |
| } |
| |
| /* |
| * Search for a directory entry directly within dir (without |
| * recursing). Sort dir if necessary. subdirname must be a directory |
| * name (i.e., end in '/'). If mkdir is set, then create the |
| * directory if it is missing; otherwise, return NULL if the desired |
| * directory cannot be found. dir must already be complete. |
| */ |
| static struct ref_dir *search_for_subdir(struct ref_dir *dir, |
| const char *subdirname, size_t len, |
| int mkdir) |
| { |
| int entry_index = search_ref_dir(dir, subdirname, len); |
| struct ref_entry *entry; |
| if (entry_index == -1) { |
| if (!mkdir) |
| return NULL; |
| /* |
| * Since dir is complete, the absence of a subdir |
| * means that the subdir really doesn't exist; |
| * therefore, create an empty record for it but mark |
| * the record complete. |
| */ |
| entry = create_dir_entry(dir->cache, subdirname, len, 0); |
| add_entry_to_dir(dir, entry); |
| } else { |
| entry = dir->entries[entry_index]; |
| } |
| return get_ref_dir(entry); |
| } |
| |
| /* |
| * If refname is a reference name, find the ref_dir within the dir |
| * tree that should hold refname. If refname is a directory name |
| * (i.e., it ends in '/'), then return that ref_dir itself. dir must |
| * represent the top-level directory and must already be complete. |
| * Sort ref_dirs and recurse into subdirectories as necessary. If |
| * mkdir is set, then create any missing directories; otherwise, |
| * return NULL if the desired directory cannot be found. |
| */ |
| static struct ref_dir *find_containing_dir(struct ref_dir *dir, |
| const char *refname, int mkdir) |
| { |
| const char *slash; |
| for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) { |
| size_t dirnamelen = slash - refname + 1; |
| struct ref_dir *subdir; |
| subdir = search_for_subdir(dir, refname, dirnamelen, mkdir); |
| if (!subdir) { |
| dir = NULL; |
| break; |
| } |
| dir = subdir; |
| } |
| |
| return dir; |
| } |
| |
| struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname) |
| { |
| int entry_index; |
| struct ref_entry *entry; |
| dir = find_containing_dir(dir, refname, 0); |
| if (!dir) |
| return NULL; |
| entry_index = search_ref_dir(dir, refname, strlen(refname)); |
| if (entry_index == -1) |
| return NULL; |
| entry = dir->entries[entry_index]; |
| return (entry->flag & REF_DIR) ? NULL : entry; |
| } |
| |
| int remove_entry_from_dir(struct ref_dir *dir, const char *refname) |
| { |
| int refname_len = strlen(refname); |
| int entry_index; |
| struct ref_entry *entry; |
| int is_dir = refname[refname_len - 1] == '/'; |
| if (is_dir) { |
| /* |
| * refname represents a reference directory. Remove |
| * the trailing slash; otherwise we will get the |
| * directory *representing* refname rather than the |
| * one *containing* it. |
| */ |
| char *dirname = xmemdupz(refname, refname_len - 1); |
| dir = find_containing_dir(dir, dirname, 0); |
| free(dirname); |
| } else { |
| dir = find_containing_dir(dir, refname, 0); |
| } |
| if (!dir) |
| return -1; |
| entry_index = search_ref_dir(dir, refname, refname_len); |
| if (entry_index == -1) |
| return -1; |
| entry = dir->entries[entry_index]; |
| |
| memmove(&dir->entries[entry_index], |
| &dir->entries[entry_index + 1], |
| (dir->nr - entry_index - 1) * sizeof(*dir->entries) |
| ); |
| dir->nr--; |
| if (dir->sorted > entry_index) |
| dir->sorted--; |
| free_ref_entry(entry); |
| return dir->nr; |
| } |
| |
| int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref) |
| { |
| dir = find_containing_dir(dir, ref->name, 1); |
| if (!dir) |
| return -1; |
| add_entry_to_dir(dir, ref); |
| return 0; |
| } |
| |
| /* |
| * Emit a warning and return true iff ref1 and ref2 have the same name |
| * and the same sha1. Die if they have the same name but different |
| * sha1s. |
| */ |
| static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2) |
| { |
| if (strcmp(ref1->name, ref2->name)) |
| return 0; |
| |
| /* Duplicate name; make sure that they don't conflict: */ |
| |
| if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR)) |
| /* This is impossible by construction */ |
| die("Reference directory conflict: %s", ref1->name); |
| |
| if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid)) |
| die("Duplicated ref, and SHA1s don't match: %s", ref1->name); |
| |
| warning("Duplicated ref: %s", ref1->name); |
| return 1; |
| } |
| |
| /* |
| * Sort the entries in dir non-recursively (if they are not already |
| * sorted) and remove any duplicate entries. |
| */ |
| static void sort_ref_dir(struct ref_dir *dir) |
| { |
| int i, j; |
| struct ref_entry *last = NULL; |
| |
| /* |
| * This check also prevents passing a zero-length array to qsort(), |
| * which is a problem on some platforms. |
| */ |
| if (dir->sorted == dir->nr) |
| return; |
| |
| QSORT(dir->entries, dir->nr, ref_entry_cmp); |
| |
| /* Remove any duplicates: */ |
| for (i = 0, j = 0; j < dir->nr; j++) { |
| struct ref_entry *entry = dir->entries[j]; |
| if (last && is_dup_ref(last, entry)) |
| free_ref_entry(entry); |
| else |
| last = dir->entries[i++] = entry; |
| } |
| dir->sorted = dir->nr = i; |
| } |
| |
| enum prefix_state { |
| /* All refs within the directory would match prefix: */ |
| PREFIX_CONTAINS_DIR, |
| |
| /* Some, but not all, refs within the directory might match prefix: */ |
| PREFIX_WITHIN_DIR, |
| |
| /* No refs within the directory could possibly match prefix: */ |
| PREFIX_EXCLUDES_DIR |
| }; |
| |
| /* |
| * Return a `prefix_state` constant describing the relationship |
| * between the directory with the specified `dirname` and `prefix`. |
| */ |
| static enum prefix_state overlaps_prefix(const char *dirname, |
| const char *prefix) |
| { |
| while (*prefix && *dirname == *prefix) { |
| dirname++; |
| prefix++; |
| } |
| if (!*prefix) |
| return PREFIX_CONTAINS_DIR; |
| else if (!*dirname) |
| return PREFIX_WITHIN_DIR; |
| else |
| return PREFIX_EXCLUDES_DIR; |
| } |
| |
| /* |
| * Load all of the refs from `dir` (recursively) that could possibly |
| * contain references matching `prefix` into our in-memory cache. If |
| * `prefix` is NULL, prime unconditionally. |
| */ |
| static void prime_ref_dir(struct ref_dir *dir, const char *prefix) |
| { |
| /* |
| * The hard work of loading loose refs is done by get_ref_dir(), so we |
| * just need to recurse through all of the sub-directories. We do not |
| * even need to care about sorting, as traversal order does not matter |
| * to us. |
| */ |
| int i; |
| for (i = 0; i < dir->nr; i++) { |
| struct ref_entry *entry = dir->entries[i]; |
| if (!(entry->flag & REF_DIR)) { |
| /* Not a directory; no need to recurse. */ |
| } else if (!prefix) { |
| /* Recurse in any case: */ |
| prime_ref_dir(get_ref_dir(entry), NULL); |
| } else { |
| switch (overlaps_prefix(entry->name, prefix)) { |
| case PREFIX_CONTAINS_DIR: |
| /* |
| * Recurse, and from here down we |
| * don't have to check the prefix |
| * anymore: |
| */ |
| prime_ref_dir(get_ref_dir(entry), NULL); |
| break; |
| case PREFIX_WITHIN_DIR: |
| prime_ref_dir(get_ref_dir(entry), prefix); |
| break; |
| case PREFIX_EXCLUDES_DIR: |
| /* No need to prime this directory. */ |
| break; |
| } |
| } |
| } |
| } |
| |
| /* |
| * A level in the reference hierarchy that is currently being iterated |
| * through. |
| */ |
| struct cache_ref_iterator_level { |
| /* |
| * The ref_dir being iterated over at this level. The ref_dir |
| * is sorted before being stored here. |
| */ |
| struct ref_dir *dir; |
| |
| enum prefix_state prefix_state; |
| |
| /* |
| * The index of the current entry within dir (which might |
| * itself be a directory). If index == -1, then the iteration |
| * hasn't yet begun. If index == dir->nr, then the iteration |
| * through this level is over. |
| */ |
| int index; |
| }; |
| |
| /* |
| * Represent an iteration through a ref_dir in the memory cache. The |
| * iteration recurses through subdirectories. |
| */ |
| struct cache_ref_iterator { |
| struct ref_iterator base; |
| |
| /* |
| * The number of levels currently on the stack. This is always |
| * at least 1, because when it becomes zero the iteration is |
| * ended and this struct is freed. |
| */ |
| size_t levels_nr; |
| |
| /* The number of levels that have been allocated on the stack */ |
| size_t levels_alloc; |
| |
| /* |
| * Only include references with this prefix in the iteration. |
| * The prefix is matched textually, without regard for path |
| * component boundaries. |
| */ |
| const char *prefix; |
| |
| /* |
| * A stack of levels. levels[0] is the uppermost level that is |
| * being iterated over in this iteration. (This is not |
| * necessary the top level in the references hierarchy. If we |
| * are iterating through a subtree, then levels[0] will hold |
| * the ref_dir for that subtree, and subsequent levels will go |
| * on from there.) |
| */ |
| struct cache_ref_iterator_level *levels; |
| }; |
| |
| static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator) |
| { |
| struct cache_ref_iterator *iter = |
| (struct cache_ref_iterator *)ref_iterator; |
| |
| while (1) { |
| struct cache_ref_iterator_level *level = |
| &iter->levels[iter->levels_nr - 1]; |
| struct ref_dir *dir = level->dir; |
| struct ref_entry *entry; |
| enum prefix_state entry_prefix_state; |
| |
| if (level->index == -1) |
| sort_ref_dir(dir); |
| |
| if (++level->index == level->dir->nr) { |
| /* This level is exhausted; pop up a level */ |
| if (--iter->levels_nr == 0) |
| return ref_iterator_abort(ref_iterator); |
| |
| continue; |
| } |
| |
| entry = dir->entries[level->index]; |
| |
| if (level->prefix_state == PREFIX_WITHIN_DIR) { |
| entry_prefix_state = overlaps_prefix(entry->name, iter->prefix); |
| if (entry_prefix_state == PREFIX_EXCLUDES_DIR) |
| continue; |
| } else { |
| entry_prefix_state = level->prefix_state; |
| } |
| |
| if (entry->flag & REF_DIR) { |
| /* push down a level */ |
| ALLOC_GROW(iter->levels, iter->levels_nr + 1, |
| iter->levels_alloc); |
| |
| level = &iter->levels[iter->levels_nr++]; |
| level->dir = get_ref_dir(entry); |
| level->prefix_state = entry_prefix_state; |
| level->index = -1; |
| } else { |
| iter->base.refname = entry->name; |
| iter->base.oid = &entry->u.value.oid; |
| iter->base.flags = entry->flag; |
| return ITER_OK; |
| } |
| } |
| } |
| |
| static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator, |
| struct object_id *peeled) |
| { |
| return peel_object(ref_iterator->oid->hash, peeled->hash); |
| } |
| |
| static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator) |
| { |
| struct cache_ref_iterator *iter = |
| (struct cache_ref_iterator *)ref_iterator; |
| |
| free((char *)iter->prefix); |
| free(iter->levels); |
| base_ref_iterator_free(ref_iterator); |
| return ITER_DONE; |
| } |
| |
| static struct ref_iterator_vtable cache_ref_iterator_vtable = { |
| cache_ref_iterator_advance, |
| cache_ref_iterator_peel, |
| cache_ref_iterator_abort |
| }; |
| |
| struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache, |
| const char *prefix, |
| int prime_dir) |
| { |
| struct ref_dir *dir; |
| struct cache_ref_iterator *iter; |
| struct ref_iterator *ref_iterator; |
| struct cache_ref_iterator_level *level; |
| |
| dir = get_ref_dir(cache->root); |
| if (prefix && *prefix) |
| dir = find_containing_dir(dir, prefix, 0); |
| if (!dir) |
| /* There's nothing to iterate over. */ |
| return empty_ref_iterator_begin(); |
| |
| if (prime_dir) |
| prime_ref_dir(dir, prefix); |
| |
| iter = xcalloc(1, sizeof(*iter)); |
| ref_iterator = &iter->base; |
| base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable, 1); |
| ALLOC_GROW(iter->levels, 10, iter->levels_alloc); |
| |
| iter->levels_nr = 1; |
| level = &iter->levels[0]; |
| level->index = -1; |
| level->dir = dir; |
| |
| if (prefix && *prefix) { |
| iter->prefix = xstrdup(prefix); |
| level->prefix_state = PREFIX_WITHIN_DIR; |
| } else { |
| level->prefix_state = PREFIX_CONTAINS_DIR; |
| } |
| |
| return ref_iterator; |
| } |