blob: 9d5e6072bc6116e2be292cc39a406bc7bd9e1c90 [file] [log] [blame]
/*
Copyright 2020 Google LLC
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file or at
https://developers.google.com/open-source/licenses/bsd
*/
#include "writer.h"
#include "system.h"
#include "block.h"
#include "constants.h"
#include "record.h"
#include "tree.h"
#include "reftable-error.h"
/* finishes a block, and writes it to storage */
static int writer_flush_block(struct reftable_writer *w);
/* deallocates memory related to the index */
static void writer_clear_index(struct reftable_writer *w);
/* finishes writing a 'r' (refs) or 'g' (reflogs) section */
static int writer_finish_public_section(struct reftable_writer *w);
static struct reftable_block_stats *
writer_reftable_block_stats(struct reftable_writer *w, uint8_t typ)
{
switch (typ) {
case 'r':
return &w->stats.ref_stats;
case 'o':
return &w->stats.obj_stats;
case 'i':
return &w->stats.idx_stats;
case 'g':
return &w->stats.log_stats;
}
abort();
return NULL;
}
/* write data, queuing the padding for the next write. Returns negative for
* error. */
static int padded_write(struct reftable_writer *w, uint8_t *data, size_t len,
int padding)
{
int n = 0;
if (w->pending_padding > 0) {
uint8_t *zeroed = reftable_calloc(w->pending_padding, sizeof(*zeroed));
int n = w->write(w->write_arg, zeroed, w->pending_padding);
if (n < 0)
return n;
w->pending_padding = 0;
reftable_free(zeroed);
}
w->pending_padding = padding;
n = w->write(w->write_arg, data, len);
if (n < 0)
return n;
n += padding;
return 0;
}
static void options_set_defaults(struct reftable_write_options *opts)
{
if (opts->restart_interval == 0) {
opts->restart_interval = 16;
}
if (opts->hash_id == 0) {
opts->hash_id = GIT_SHA1_FORMAT_ID;
}
if (opts->block_size == 0) {
opts->block_size = DEFAULT_BLOCK_SIZE;
}
}
static int writer_version(struct reftable_writer *w)
{
return (w->opts.hash_id == 0 || w->opts.hash_id == GIT_SHA1_FORMAT_ID) ?
1 :
2;
}
static int writer_write_header(struct reftable_writer *w, uint8_t *dest)
{
memcpy(dest, "REFT", 4);
dest[4] = writer_version(w);
put_be24(dest + 5, w->opts.block_size);
put_be64(dest + 8, w->min_update_index);
put_be64(dest + 16, w->max_update_index);
if (writer_version(w) == 2) {
put_be32(dest + 24, w->opts.hash_id);
}
return header_size(writer_version(w));
}
static void writer_reinit_block_writer(struct reftable_writer *w, uint8_t typ)
{
int block_start = 0;
if (w->next == 0) {
block_start = header_size(writer_version(w));
}
strbuf_reset(&w->last_key);
block_writer_init(&w->block_writer_data, typ, w->block,
w->opts.block_size, block_start,
hash_size(w->opts.hash_id));
w->block_writer = &w->block_writer_data;
w->block_writer->restart_interval = w->opts.restart_interval;
}
struct reftable_writer *
reftable_new_writer(ssize_t (*writer_func)(void *, const void *, size_t),
int (*flush_func)(void *),
void *writer_arg, const struct reftable_write_options *_opts)
{
struct reftable_writer *wp = reftable_calloc(1, sizeof(*wp));
struct reftable_write_options opts = {0};
if (_opts)
opts = *_opts;
options_set_defaults(&opts);
if (opts.block_size >= (1 << 24))
BUG("configured block size exceeds 16MB");
strbuf_init(&wp->block_writer_data.last_key, 0);
strbuf_init(&wp->last_key, 0);
REFTABLE_CALLOC_ARRAY(wp->block, opts.block_size);
wp->write = writer_func;
wp->write_arg = writer_arg;
wp->opts = opts;
wp->flush = flush_func;
writer_reinit_block_writer(wp, BLOCK_TYPE_REF);
return wp;
}
void reftable_writer_set_limits(struct reftable_writer *w, uint64_t min,
uint64_t max)
{
w->min_update_index = min;
w->max_update_index = max;
}
static void writer_release(struct reftable_writer *w)
{
if (w) {
reftable_free(w->block);
w->block = NULL;
block_writer_release(&w->block_writer_data);
w->block_writer = NULL;
writer_clear_index(w);
strbuf_release(&w->last_key);
}
}
void reftable_writer_free(struct reftable_writer *w)
{
writer_release(w);
reftable_free(w);
}
struct obj_index_tree_node {
struct strbuf hash;
uint64_t *offsets;
size_t offset_len;
size_t offset_cap;
};
#define OBJ_INDEX_TREE_NODE_INIT \
{ \
.hash = STRBUF_INIT \
}
static int obj_index_tree_node_compare(const void *a, const void *b)
{
return strbuf_cmp(&((const struct obj_index_tree_node *)a)->hash,
&((const struct obj_index_tree_node *)b)->hash);
}
static void writer_index_hash(struct reftable_writer *w, struct strbuf *hash)
{
uint64_t off = w->next;
struct obj_index_tree_node want = { .hash = *hash };
struct tree_node *node = tree_search(&want, &w->obj_index_tree,
&obj_index_tree_node_compare, 0);
struct obj_index_tree_node *key = NULL;
if (!node) {
struct obj_index_tree_node empty = OBJ_INDEX_TREE_NODE_INIT;
key = reftable_malloc(sizeof(struct obj_index_tree_node));
*key = empty;
strbuf_reset(&key->hash);
strbuf_addbuf(&key->hash, hash);
tree_search((void *)key, &w->obj_index_tree,
&obj_index_tree_node_compare, 1);
} else {
key = node->key;
}
if (key->offset_len > 0 && key->offsets[key->offset_len - 1] == off) {
return;
}
REFTABLE_ALLOC_GROW(key->offsets, key->offset_len + 1, key->offset_cap);
key->offsets[key->offset_len++] = off;
}
static int writer_add_record(struct reftable_writer *w,
struct reftable_record *rec)
{
struct strbuf key = STRBUF_INIT;
int err;
reftable_record_key(rec, &key);
if (strbuf_cmp(&w->last_key, &key) >= 0) {
err = REFTABLE_API_ERROR;
goto done;
}
strbuf_reset(&w->last_key);
strbuf_addbuf(&w->last_key, &key);
if (!w->block_writer)
writer_reinit_block_writer(w, reftable_record_type(rec));
if (block_writer_type(w->block_writer) != reftable_record_type(rec))
BUG("record of type %d added to writer of type %d",
reftable_record_type(rec), block_writer_type(w->block_writer));
/*
* Try to add the record to the writer. If this succeeds then we're
* done. Otherwise the block writer may have hit the block size limit
* and needs to be flushed.
*/
if (!block_writer_add(w->block_writer, rec)) {
err = 0;
goto done;
}
/*
* The current block is full, so we need to flush and reinitialize the
* writer to start writing the next block.
*/
err = writer_flush_block(w);
if (err < 0)
goto done;
writer_reinit_block_writer(w, reftable_record_type(rec));
/*
* Try to add the record to the writer again. If this still fails then
* the record does not fit into the block size.
*
* TODO: it would be great to have `block_writer_add()` return proper
* error codes so that we don't have to second-guess the failure
* mode here.
*/
err = block_writer_add(w->block_writer, rec);
if (err) {
err = REFTABLE_ENTRY_TOO_BIG_ERROR;
goto done;
}
done:
strbuf_release(&key);
return err;
}
int reftable_writer_add_ref(struct reftable_writer *w,
struct reftable_ref_record *ref)
{
struct reftable_record rec = {
.type = BLOCK_TYPE_REF,
.u = {
.ref = *ref
},
};
int err = 0;
if (!ref->refname)
return REFTABLE_API_ERROR;
if (ref->update_index < w->min_update_index ||
ref->update_index > w->max_update_index)
return REFTABLE_API_ERROR;
rec.u.ref.update_index -= w->min_update_index;
err = writer_add_record(w, &rec);
if (err < 0)
return err;
if (!w->opts.skip_index_objects && reftable_ref_record_val1(ref)) {
struct strbuf h = STRBUF_INIT;
strbuf_add(&h, (char *)reftable_ref_record_val1(ref),
hash_size(w->opts.hash_id));
writer_index_hash(w, &h);
strbuf_release(&h);
}
if (!w->opts.skip_index_objects && reftable_ref_record_val2(ref)) {
struct strbuf h = STRBUF_INIT;
strbuf_add(&h, reftable_ref_record_val2(ref),
hash_size(w->opts.hash_id));
writer_index_hash(w, &h);
strbuf_release(&h);
}
return 0;
}
int reftable_writer_add_refs(struct reftable_writer *w,
struct reftable_ref_record *refs, int n)
{
int err = 0;
int i = 0;
QSORT(refs, n, reftable_ref_record_compare_name);
for (i = 0; err == 0 && i < n; i++) {
err = reftable_writer_add_ref(w, &refs[i]);
}
return err;
}
static int reftable_writer_add_log_verbatim(struct reftable_writer *w,
struct reftable_log_record *log)
{
struct reftable_record rec = {
.type = BLOCK_TYPE_LOG,
.u = {
.log = *log,
},
};
if (w->block_writer &&
block_writer_type(w->block_writer) == BLOCK_TYPE_REF) {
int err = writer_finish_public_section(w);
if (err < 0)
return err;
}
w->next -= w->pending_padding;
w->pending_padding = 0;
return writer_add_record(w, &rec);
}
int reftable_writer_add_log(struct reftable_writer *w,
struct reftable_log_record *log)
{
char *input_log_message = NULL;
struct strbuf cleaned_message = STRBUF_INIT;
int err = 0;
if (log->value_type == REFTABLE_LOG_DELETION)
return reftable_writer_add_log_verbatim(w, log);
if (!log->refname)
return REFTABLE_API_ERROR;
input_log_message = log->value.update.message;
if (!w->opts.exact_log_message && log->value.update.message) {
strbuf_addstr(&cleaned_message, log->value.update.message);
while (cleaned_message.len &&
cleaned_message.buf[cleaned_message.len - 1] == '\n')
strbuf_setlen(&cleaned_message,
cleaned_message.len - 1);
if (strchr(cleaned_message.buf, '\n')) {
/* multiple lines not allowed. */
err = REFTABLE_API_ERROR;
goto done;
}
strbuf_addstr(&cleaned_message, "\n");
log->value.update.message = cleaned_message.buf;
}
err = reftable_writer_add_log_verbatim(w, log);
log->value.update.message = input_log_message;
done:
strbuf_release(&cleaned_message);
return err;
}
int reftable_writer_add_logs(struct reftable_writer *w,
struct reftable_log_record *logs, int n)
{
int err = 0;
int i = 0;
QSORT(logs, n, reftable_log_record_compare_key);
for (i = 0; err == 0 && i < n; i++) {
err = reftable_writer_add_log(w, &logs[i]);
}
return err;
}
static int writer_finish_section(struct reftable_writer *w)
{
struct reftable_block_stats *bstats = NULL;
uint8_t typ = block_writer_type(w->block_writer);
uint64_t index_start = 0;
int max_level = 0;
size_t threshold = w->opts.unpadded ? 1 : 3;
int before_blocks = w->stats.idx_stats.blocks;
int err;
err = writer_flush_block(w);
if (err < 0)
return err;
/*
* When the section we are about to index has a lot of blocks then the
* index itself may span across multiple blocks, as well. This would
* require a linear scan over index blocks only to find the desired
* indexed block, which is inefficient. Instead, we write a multi-level
* index where index records of level N+1 will refer to index blocks of
* level N. This isn't constant time, either, but at least logarithmic.
*
* This loop handles writing this multi-level index. Note that we write
* the lowest-level index pointing to the indexed blocks first. We then
* continue writing additional index levels until the current level has
* less blocks than the threshold so that the highest level will be at
* the end of the index section.
*
* Readers are thus required to start reading the index section from
* its end, which is why we set `index_start` to the beginning of the
* last index section.
*/
while (w->index_len > threshold) {
struct reftable_index_record *idx = NULL;
size_t i, idx_len;
max_level++;
index_start = w->next;
writer_reinit_block_writer(w, BLOCK_TYPE_INDEX);
idx = w->index;
idx_len = w->index_len;
w->index = NULL;
w->index_len = 0;
w->index_cap = 0;
for (i = 0; i < idx_len; i++) {
struct reftable_record rec = {
.type = BLOCK_TYPE_INDEX,
.u = {
.idx = idx[i],
},
};
err = writer_add_record(w, &rec);
if (err < 0)
return err;
}
err = writer_flush_block(w);
if (err < 0)
return err;
for (i = 0; i < idx_len; i++)
strbuf_release(&idx[i].last_key);
reftable_free(idx);
}
/*
* The index may still contain a number of index blocks lower than the
* threshold. Clear it so that these entries don't leak into the next
* index section.
*/
writer_clear_index(w);
bstats = writer_reftable_block_stats(w, typ);
bstats->index_blocks = w->stats.idx_stats.blocks - before_blocks;
bstats->index_offset = index_start;
bstats->max_index_level = max_level;
/* Reinit lastKey, as the next section can start with any key. */
strbuf_reset(&w->last_key);
return 0;
}
struct common_prefix_arg {
struct strbuf *last;
int max;
};
static void update_common(void *void_arg, void *key)
{
struct common_prefix_arg *arg = void_arg;
struct obj_index_tree_node *entry = key;
if (arg->last) {
int n = common_prefix_size(&entry->hash, arg->last);
if (n > arg->max) {
arg->max = n;
}
}
arg->last = &entry->hash;
}
struct write_record_arg {
struct reftable_writer *w;
int err;
};
static void write_object_record(void *void_arg, void *key)
{
struct write_record_arg *arg = void_arg;
struct obj_index_tree_node *entry = key;
struct reftable_record
rec = { .type = BLOCK_TYPE_OBJ,
.u.obj = {
.hash_prefix = (uint8_t *)entry->hash.buf,
.hash_prefix_len = arg->w->stats.object_id_len,
.offsets = entry->offsets,
.offset_len = entry->offset_len,
} };
if (arg->err < 0)
goto done;
arg->err = block_writer_add(arg->w->block_writer, &rec);
if (arg->err == 0)
goto done;
arg->err = writer_flush_block(arg->w);
if (arg->err < 0)
goto done;
writer_reinit_block_writer(arg->w, BLOCK_TYPE_OBJ);
arg->err = block_writer_add(arg->w->block_writer, &rec);
if (arg->err == 0)
goto done;
rec.u.obj.offset_len = 0;
arg->err = block_writer_add(arg->w->block_writer, &rec);
/* Should be able to write into a fresh block. */
assert(arg->err == 0);
done:;
}
static void object_record_free(void *void_arg UNUSED, void *key)
{
struct obj_index_tree_node *entry = key;
FREE_AND_NULL(entry->offsets);
strbuf_release(&entry->hash);
reftable_free(entry);
}
static int writer_dump_object_index(struct reftable_writer *w)
{
struct write_record_arg closure = { .w = w };
struct common_prefix_arg common = {
.max = 1, /* obj_id_len should be >= 2. */
};
if (w->obj_index_tree) {
infix_walk(w->obj_index_tree, &update_common, &common);
}
w->stats.object_id_len = common.max + 1;
writer_reinit_block_writer(w, BLOCK_TYPE_OBJ);
if (w->obj_index_tree) {
infix_walk(w->obj_index_tree, &write_object_record, &closure);
}
if (closure.err < 0)
return closure.err;
return writer_finish_section(w);
}
static int writer_finish_public_section(struct reftable_writer *w)
{
uint8_t typ = 0;
int err = 0;
if (!w->block_writer)
return 0;
typ = block_writer_type(w->block_writer);
err = writer_finish_section(w);
if (err < 0)
return err;
if (typ == BLOCK_TYPE_REF && !w->opts.skip_index_objects &&
w->stats.ref_stats.index_blocks > 0) {
err = writer_dump_object_index(w);
if (err < 0)
return err;
}
if (w->obj_index_tree) {
infix_walk(w->obj_index_tree, &object_record_free, NULL);
tree_free(w->obj_index_tree);
w->obj_index_tree = NULL;
}
w->block_writer = NULL;
return 0;
}
int reftable_writer_close(struct reftable_writer *w)
{
uint8_t footer[72];
uint8_t *p = footer;
int err = writer_finish_public_section(w);
int empty_table = w->next == 0;
if (err != 0)
goto done;
w->pending_padding = 0;
if (empty_table) {
/* Empty tables need a header anyway. */
uint8_t header[28];
int n = writer_write_header(w, header);
err = padded_write(w, header, n, 0);
if (err < 0)
goto done;
}
p += writer_write_header(w, footer);
put_be64(p, w->stats.ref_stats.index_offset);
p += 8;
put_be64(p, (w->stats.obj_stats.offset) << 5 | w->stats.object_id_len);
p += 8;
put_be64(p, w->stats.obj_stats.index_offset);
p += 8;
put_be64(p, w->stats.log_stats.offset);
p += 8;
put_be64(p, w->stats.log_stats.index_offset);
p += 8;
put_be32(p, crc32(0, footer, p - footer));
p += 4;
err = w->flush(w->write_arg);
if (err < 0) {
err = REFTABLE_IO_ERROR;
goto done;
}
err = padded_write(w, footer, footer_size(writer_version(w)), 0);
if (err < 0)
goto done;
if (empty_table) {
err = REFTABLE_EMPTY_TABLE_ERROR;
goto done;
}
done:
writer_release(w);
return err;
}
static void writer_clear_index(struct reftable_writer *w)
{
for (size_t i = 0; w->index && i < w->index_len; i++)
strbuf_release(&w->index[i].last_key);
FREE_AND_NULL(w->index);
w->index_len = 0;
w->index_cap = 0;
}
static int writer_flush_nonempty_block(struct reftable_writer *w)
{
struct reftable_index_record index_record = {
.last_key = STRBUF_INIT,
};
uint8_t typ = block_writer_type(w->block_writer);
struct reftable_block_stats *bstats;
int raw_bytes, padding = 0, err;
uint64_t block_typ_off;
/*
* Finish the current block. This will cause the block writer to emit
* restart points and potentially compress records in case we are
* writing a log block.
*
* Note that this is still happening in memory.
*/
raw_bytes = block_writer_finish(w->block_writer);
if (raw_bytes < 0)
return raw_bytes;
/*
* By default, all records except for log records are padded to the
* block size.
*/
if (!w->opts.unpadded && typ != BLOCK_TYPE_LOG)
padding = w->opts.block_size - raw_bytes;
bstats = writer_reftable_block_stats(w, typ);
block_typ_off = (bstats->blocks == 0) ? w->next : 0;
if (block_typ_off > 0)
bstats->offset = block_typ_off;
bstats->entries += w->block_writer->entries;
bstats->restarts += w->block_writer->restart_len;
bstats->blocks++;
w->stats.blocks++;
/*
* If this is the first block we're writing to the table then we need
* to also write the reftable header.
*/
if (!w->next)
writer_write_header(w, w->block);
err = padded_write(w, w->block, raw_bytes, padding);
if (err < 0)
return err;
/*
* Add an index record for every block that we're writing. If we end up
* having more than a threshold of index records we will end up writing
* an index section in `writer_finish_section()`. Each index record
* contains the last record key of the block it is indexing as well as
* the offset of that block.
*
* Note that this also applies when flushing index blocks, in which
* case we will end up with a multi-level index.
*/
REFTABLE_ALLOC_GROW(w->index, w->index_len + 1, w->index_cap);
index_record.offset = w->next;
strbuf_reset(&index_record.last_key);
strbuf_addbuf(&index_record.last_key, &w->block_writer->last_key);
w->index[w->index_len] = index_record;
w->index_len++;
w->next += padding + raw_bytes;
w->block_writer = NULL;
return 0;
}
static int writer_flush_block(struct reftable_writer *w)
{
if (!w->block_writer)
return 0;
if (w->block_writer->entries == 0)
return 0;
return writer_flush_nonempty_block(w);
}
const struct reftable_stats *reftable_writer_stats(struct reftable_writer *w)
{
return &w->stats;
}