| /* |
| Copyright 2020 Google LLC |
| |
| Use of this source code is governed by a BSD-style |
| license that can be found in the LICENSE file or at |
| https://developers.google.com/open-source/licenses/bsd |
| */ |
| |
| #ifndef BASICS_H |
| #define BASICS_H |
| |
| /* |
| * miscellaneous utilities that are not provided by Git. |
| */ |
| |
| #include "system.h" |
| #include "reftable-basics.h" |
| |
| #define REFTABLE_UNUSED __attribute__((__unused__)) |
| |
| struct reftable_buf { |
| size_t alloc; |
| size_t len; |
| char *buf; |
| }; |
| #define REFTABLE_BUF_INIT { 0 } |
| |
| /* |
| * Initialize the buffer such that it is ready for use. This is equivalent to |
| * using REFTABLE_BUF_INIT for stack-allocated variables. |
| */ |
| void reftable_buf_init(struct reftable_buf *buf); |
| |
| /* |
| * Release memory associated with the buffer. The buffer is reinitialized such |
| * that it can be reused for subsequent operations. |
| */ |
| void reftable_buf_release(struct reftable_buf *buf); |
| |
| /* |
| * Reset the buffer such that it is effectively empty, without releasing the |
| * memory that this structure holds on to. This is equivalent to calling |
| * `reftable_buf_setlen(buf, 0)`. |
| */ |
| void reftable_buf_reset(struct reftable_buf *buf); |
| |
| /* |
| * Trim the buffer to a shorter length by updating the `len` member and writing |
| * a NUL byte to `buf[len]`. Returns 0 on success, -1 when `len` points outside |
| * of the array. |
| */ |
| int reftable_buf_setlen(struct reftable_buf *buf, size_t len); |
| |
| /* |
| * Lexicographically compare the two buffers. Returns 0 when both buffers have |
| * the same contents, -1 when `a` is lexicographically smaller than `b`, and 1 |
| * otherwise. |
| */ |
| int reftable_buf_cmp(const struct reftable_buf *a, const struct reftable_buf *b); |
| |
| /* |
| * Append `len` bytes from `data` to the buffer. This function works with |
| * arbitrary byte sequences, including ones that contain embedded NUL |
| * characters. As such, we use `void *` as input type. Returns 0 on success, |
| * REFTABLE_OUT_OF_MEMORY_ERROR on allocation failure. |
| */ |
| int reftable_buf_add(struct reftable_buf *buf, const void *data, size_t len); |
| |
| /* Equivalent to `reftable_buf_add(buf, s, strlen(s))`. */ |
| int reftable_buf_addstr(struct reftable_buf *buf, const char *s); |
| |
| /* |
| * Detach the buffer from the structure such that the underlying memory is now |
| * owned by the caller. The buffer is reinitialized such that it can be reused |
| * for subsequent operations. |
| */ |
| char *reftable_buf_detach(struct reftable_buf *buf); |
| |
| /* Bigendian en/decoding of integers */ |
| |
| static inline void reftable_put_be16(void *out, uint16_t i) |
| { |
| unsigned char *p = out; |
| p[0] = (uint8_t)((i >> 8) & 0xff); |
| p[1] = (uint8_t)((i >> 0) & 0xff); |
| } |
| |
| static inline void reftable_put_be24(void *out, uint32_t i) |
| { |
| unsigned char *p = out; |
| p[0] = (uint8_t)((i >> 16) & 0xff); |
| p[1] = (uint8_t)((i >> 8) & 0xff); |
| p[2] = (uint8_t)((i >> 0) & 0xff); |
| } |
| |
| static inline void reftable_put_be32(void *out, uint32_t i) |
| { |
| unsigned char *p = out; |
| p[0] = (uint8_t)((i >> 24) & 0xff); |
| p[1] = (uint8_t)((i >> 16) & 0xff); |
| p[2] = (uint8_t)((i >> 8) & 0xff); |
| p[3] = (uint8_t)((i >> 0) & 0xff); |
| } |
| |
| static inline void reftable_put_be64(void *out, uint64_t i) |
| { |
| unsigned char *p = out; |
| p[0] = (uint8_t)((i >> 56) & 0xff); |
| p[1] = (uint8_t)((i >> 48) & 0xff); |
| p[2] = (uint8_t)((i >> 40) & 0xff); |
| p[3] = (uint8_t)((i >> 32) & 0xff); |
| p[4] = (uint8_t)((i >> 24) & 0xff); |
| p[5] = (uint8_t)((i >> 16) & 0xff); |
| p[6] = (uint8_t)((i >> 8) & 0xff); |
| p[7] = (uint8_t)((i >> 0) & 0xff); |
| } |
| |
| static inline uint16_t reftable_get_be16(const void *in) |
| { |
| const unsigned char *p = in; |
| return (uint16_t)(p[0]) << 8 | |
| (uint16_t)(p[1]) << 0; |
| } |
| |
| static inline uint32_t reftable_get_be24(const void *in) |
| { |
| const unsigned char *p = in; |
| return (uint32_t)(p[0]) << 16 | |
| (uint32_t)(p[1]) << 8 | |
| (uint32_t)(p[2]) << 0; |
| } |
| |
| static inline uint32_t reftable_get_be32(const void *in) |
| { |
| const unsigned char *p = in; |
| return (uint32_t)(p[0]) << 24 | |
| (uint32_t)(p[1]) << 16 | |
| (uint32_t)(p[2]) << 8| |
| (uint32_t)(p[3]) << 0; |
| } |
| |
| static inline uint64_t reftable_get_be64(const void *in) |
| { |
| const unsigned char *p = in; |
| return (uint64_t)(p[0]) << 56 | |
| (uint64_t)(p[1]) << 48 | |
| (uint64_t)(p[2]) << 40 | |
| (uint64_t)(p[3]) << 32 | |
| (uint64_t)(p[4]) << 24 | |
| (uint64_t)(p[5]) << 16 | |
| (uint64_t)(p[6]) << 8 | |
| (uint64_t)(p[7]) << 0; |
| } |
| |
| /* |
| * find smallest index i in [0, sz) at which `f(i) > 0`, assuming that f is |
| * ascending. Return sz if `f(i) == 0` for all indices. The search is aborted |
| * and `sz` is returned in case `f(i) < 0`. |
| * |
| * Contrary to bsearch(3), this returns something useful if the argument is not |
| * found. |
| */ |
| size_t binsearch(size_t sz, int (*f)(size_t k, void *args), void *args); |
| |
| /* |
| * Frees a NULL terminated array of malloced strings. The array itself is also |
| * freed. |
| */ |
| void free_names(char **a); |
| |
| /* |
| * Parse a newline separated list of names. `size` is the length of the buffer, |
| * without terminating '\0'. Empty names are discarded. Returns a `NULL` |
| * pointer when allocations fail. |
| */ |
| char **parse_names(char *buf, int size); |
| |
| /* compares two NULL-terminated arrays of strings. */ |
| int names_equal(const char **a, const char **b); |
| |
| /* returns the array size of a NULL-terminated array of strings. */ |
| size_t names_length(const char **names); |
| |
| /* Allocation routines; they invoke the functions set through |
| * reftable_set_alloc() */ |
| void *reftable_malloc(size_t sz); |
| void *reftable_realloc(void *p, size_t sz); |
| void reftable_free(void *p); |
| void *reftable_calloc(size_t nelem, size_t elsize); |
| char *reftable_strdup(const char *str); |
| |
| static inline int reftable_alloc_size(size_t nelem, size_t elsize, size_t *out) |
| { |
| if (nelem && elsize > SIZE_MAX / nelem) |
| return -1; |
| *out = nelem * elsize; |
| return 0; |
| } |
| |
| #define REFTABLE_ALLOC_ARRAY(x, alloc) do { \ |
| size_t alloc_size; \ |
| if (reftable_alloc_size(sizeof(*(x)), (alloc), &alloc_size) < 0) { \ |
| errno = ENOMEM; \ |
| (x) = NULL; \ |
| } else { \ |
| (x) = reftable_malloc(alloc_size); \ |
| } \ |
| } while (0) |
| #define REFTABLE_CALLOC_ARRAY(x, alloc) (x) = reftable_calloc((alloc), sizeof(*(x))) |
| #define REFTABLE_REALLOC_ARRAY(x, alloc) do { \ |
| size_t alloc_size; \ |
| if (reftable_alloc_size(sizeof(*(x)), (alloc), &alloc_size) < 0) { \ |
| errno = ENOMEM; \ |
| (x) = NULL; \ |
| } else { \ |
| (x) = reftable_realloc((x), alloc_size); \ |
| } \ |
| } while (0) |
| |
| static inline void *reftable_alloc_grow(void *p, size_t nelem, size_t elsize, |
| size_t *allocp) |
| { |
| void *new_p; |
| size_t alloc = *allocp * 2 + 1, alloc_bytes; |
| if (alloc < nelem) |
| alloc = nelem; |
| if (reftable_alloc_size(elsize, alloc, &alloc_bytes) < 0) { |
| errno = ENOMEM; |
| return p; |
| } |
| new_p = reftable_realloc(p, alloc_bytes); |
| if (!new_p) |
| return p; |
| *allocp = alloc; |
| return new_p; |
| } |
| |
| #define REFTABLE_ALLOC_GROW(x, nr, alloc) ( \ |
| (nr) > (alloc) && ( \ |
| (x) = reftable_alloc_grow((x), (nr), sizeof(*(x)), &(alloc)), \ |
| (nr) > (alloc) \ |
| ) \ |
| ) |
| |
| #define REFTABLE_ALLOC_GROW_OR_NULL(x, nr, alloc) do { \ |
| size_t reftable_alloc_grow_or_null_alloc = alloc; \ |
| if (REFTABLE_ALLOC_GROW((x), (nr), reftable_alloc_grow_or_null_alloc)) { \ |
| REFTABLE_FREE_AND_NULL(x); \ |
| alloc = 0; \ |
| } else { \ |
| alloc = reftable_alloc_grow_or_null_alloc; \ |
| } \ |
| } while (0) |
| |
| #define REFTABLE_FREE_AND_NULL(p) do { reftable_free(p); (p) = NULL; } while (0) |
| |
| #ifndef REFTABLE_ALLOW_BANNED_ALLOCATORS |
| # define REFTABLE_BANNED(func) use_reftable_##func##_instead |
| # undef malloc |
| # define malloc(sz) REFTABLE_BANNED(malloc) |
| # undef realloc |
| # define realloc(ptr, sz) REFTABLE_BANNED(realloc) |
| # undef free |
| # define free(ptr) REFTABLE_BANNED(free) |
| # undef calloc |
| # define calloc(nelem, elsize) REFTABLE_BANNED(calloc) |
| # undef strdup |
| # define strdup(str) REFTABLE_BANNED(strdup) |
| #endif |
| |
| #define REFTABLE_SWAP(a, b) do { \ |
| void *_swap_a_ptr = &(a); \ |
| void *_swap_b_ptr = &(b); \ |
| unsigned char _swap_buffer[sizeof(a) - 2 * sizeof(a) * (sizeof(a) != sizeof(b))]; \ |
| memcpy(_swap_buffer, _swap_a_ptr, sizeof(a)); \ |
| memcpy(_swap_a_ptr, _swap_b_ptr, sizeof(a)); \ |
| memcpy(_swap_b_ptr, _swap_buffer, sizeof(a)); \ |
| } while (0) |
| |
| /* Find the longest shared prefix size of `a` and `b` */ |
| size_t common_prefix_size(struct reftable_buf *a, struct reftable_buf *b); |
| |
| uint32_t hash_size(enum reftable_hash id); |
| |
| /* |
| * Format IDs that identify the hash function used by a reftable. Note that |
| * these constants end up on disk and thus mustn't change. The format IDs are |
| * "sha1" and "s256" in big endian, respectively. |
| */ |
| #define REFTABLE_FORMAT_ID_SHA1 ((uint32_t) 0x73686131) |
| #define REFTABLE_FORMAT_ID_SHA256 ((uint32_t) 0x73323536) |
| |
| #endif |