| /* Extended regular expression matching and search library. |
| Copyright (C) 2002-2006, 2010 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, write to the Free |
| Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 02110-1301 USA. */ |
| |
| static void re_string_construct_common (const char *str, int len, |
| re_string_t *pstr, |
| RE_TRANSLATE_TYPE trans, int icase, |
| const re_dfa_t *dfa) internal_function; |
| static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, |
| const re_node_set *nodes, |
| unsigned int hash) internal_function; |
| static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, |
| const re_node_set *nodes, |
| unsigned int context, |
| unsigned int hash) internal_function; |
| |
| #ifdef GAWK |
| #undef MAX /* safety */ |
| static int |
| MAX(size_t a, size_t b) |
| { |
| return (a > b ? a : b); |
| } |
| #endif |
| |
| /* Functions for string operation. */ |
| |
| /* This function allocate the buffers. It is necessary to call |
| re_string_reconstruct before using the object. */ |
| |
| static reg_errcode_t |
| internal_function |
| re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len, |
| RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) |
| { |
| reg_errcode_t ret; |
| int init_buf_len; |
| |
| /* Ensure at least one character fits into the buffers. */ |
| if (init_len < dfa->mb_cur_max) |
| init_len = dfa->mb_cur_max; |
| init_buf_len = (len + 1 < init_len) ? len + 1: init_len; |
| re_string_construct_common (str, len, pstr, trans, icase, dfa); |
| |
| ret = re_string_realloc_buffers (pstr, init_buf_len); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| |
| pstr->word_char = dfa->word_char; |
| pstr->word_ops_used = dfa->word_ops_used; |
| pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
| pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; |
| pstr->valid_raw_len = pstr->valid_len; |
| return REG_NOERROR; |
| } |
| |
| /* This function allocate the buffers, and initialize them. */ |
| |
| static reg_errcode_t |
| internal_function |
| re_string_construct (re_string_t *pstr, const char *str, int len, |
| RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) |
| { |
| reg_errcode_t ret; |
| memset (pstr, '\0', sizeof (re_string_t)); |
| re_string_construct_common (str, len, pstr, trans, icase, dfa); |
| |
| if (len > 0) |
| { |
| ret = re_string_realloc_buffers (pstr, len + 1); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| } |
| pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
| |
| if (icase) |
| { |
| #ifdef RE_ENABLE_I18N |
| if (dfa->mb_cur_max > 1) |
| { |
| while (1) |
| { |
| ret = build_wcs_upper_buffer (pstr); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| if (pstr->valid_raw_len >= len) |
| break; |
| if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) |
| break; |
| ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| } |
| } |
| else |
| #endif /* RE_ENABLE_I18N */ |
| build_upper_buffer (pstr); |
| } |
| else |
| { |
| #ifdef RE_ENABLE_I18N |
| if (dfa->mb_cur_max > 1) |
| build_wcs_buffer (pstr); |
| else |
| #endif /* RE_ENABLE_I18N */ |
| { |
| if (trans != NULL) |
| re_string_translate_buffer (pstr); |
| else |
| { |
| pstr->valid_len = pstr->bufs_len; |
| pstr->valid_raw_len = pstr->bufs_len; |
| } |
| } |
| } |
| |
| return REG_NOERROR; |
| } |
| |
| /* Helper functions for re_string_allocate, and re_string_construct. */ |
| |
| static reg_errcode_t |
| internal_function |
| re_string_realloc_buffers (re_string_t *pstr, int new_buf_len) |
| { |
| #ifdef RE_ENABLE_I18N |
| if (pstr->mb_cur_max > 1) |
| { |
| wint_t *new_wcs; |
| |
| /* Avoid overflow in realloc. */ |
| const size_t max_object_size = MAX (sizeof (wint_t), sizeof (int)); |
| if (BE (SIZE_MAX / max_object_size < new_buf_len, 0)) |
| return REG_ESPACE; |
| |
| new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); |
| if (BE (new_wcs == NULL, 0)) |
| return REG_ESPACE; |
| pstr->wcs = new_wcs; |
| if (pstr->offsets != NULL) |
| { |
| int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len); |
| if (BE (new_offsets == NULL, 0)) |
| return REG_ESPACE; |
| pstr->offsets = new_offsets; |
| } |
| } |
| #endif /* RE_ENABLE_I18N */ |
| if (pstr->mbs_allocated) |
| { |
| unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, |
| new_buf_len); |
| if (BE (new_mbs == NULL, 0)) |
| return REG_ESPACE; |
| pstr->mbs = new_mbs; |
| } |
| pstr->bufs_len = new_buf_len; |
| return REG_NOERROR; |
| } |
| |
| |
| static void |
| internal_function |
| re_string_construct_common (const char *str, int len, re_string_t *pstr, |
| RE_TRANSLATE_TYPE trans, int icase, |
| const re_dfa_t *dfa) |
| { |
| pstr->raw_mbs = (const unsigned char *) str; |
| pstr->len = len; |
| pstr->raw_len = len; |
| pstr->trans = trans; |
| pstr->icase = icase ? 1 : 0; |
| pstr->mbs_allocated = (trans != NULL || icase); |
| pstr->mb_cur_max = dfa->mb_cur_max; |
| pstr->is_utf8 = dfa->is_utf8; |
| pstr->map_notascii = dfa->map_notascii; |
| pstr->stop = pstr->len; |
| pstr->raw_stop = pstr->stop; |
| } |
| |
| #ifdef RE_ENABLE_I18N |
| |
| /* Build wide character buffer PSTR->WCS. |
| If the byte sequence of the string are: |
| <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> |
| Then wide character buffer will be: |
| <wc1> , WEOF , <wc2> , WEOF , <wc3> |
| We use WEOF for padding, they indicate that the position isn't |
| a first byte of a multibyte character. |
| |
| Note that this function assumes PSTR->VALID_LEN elements are already |
| built and starts from PSTR->VALID_LEN. */ |
| |
| static void |
| internal_function |
| build_wcs_buffer (re_string_t *pstr) |
| { |
| #ifdef _LIBC |
| unsigned char buf[MB_LEN_MAX]; |
| assert (MB_LEN_MAX >= pstr->mb_cur_max); |
| #else |
| unsigned char buf[64]; |
| #endif |
| mbstate_t prev_st; |
| int byte_idx, end_idx, remain_len; |
| size_t mbclen; |
| |
| /* Build the buffers from pstr->valid_len to either pstr->len or |
| pstr->bufs_len. */ |
| end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
| for (byte_idx = pstr->valid_len; byte_idx < end_idx;) |
| { |
| wchar_t wc; |
| const char *p; |
| |
| remain_len = end_idx - byte_idx; |
| prev_st = pstr->cur_state; |
| /* Apply the translation if we need. */ |
| if (BE (pstr->trans != NULL, 0)) |
| { |
| int i, ch; |
| |
| for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
| { |
| ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; |
| buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; |
| } |
| p = (const char *) buf; |
| } |
| else |
| p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; |
| mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
| if (BE (mbclen == (size_t) -2, 0)) |
| { |
| /* The buffer doesn't have enough space, finish to build. */ |
| pstr->cur_state = prev_st; |
| break; |
| } |
| else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0)) |
| { |
| /* We treat these cases as a singlebyte character. */ |
| mbclen = 1; |
| wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
| if (BE (pstr->trans != NULL, 0)) |
| wc = pstr->trans[wc]; |
| pstr->cur_state = prev_st; |
| } |
| |
| /* Write wide character and padding. */ |
| pstr->wcs[byte_idx++] = wc; |
| /* Write paddings. */ |
| for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
| pstr->wcs[byte_idx++] = WEOF; |
| } |
| pstr->valid_len = byte_idx; |
| pstr->valid_raw_len = byte_idx; |
| } |
| |
| /* Build wide character buffer PSTR->WCS like build_wcs_buffer, |
| but for REG_ICASE. */ |
| |
| static reg_errcode_t |
| internal_function |
| build_wcs_upper_buffer (re_string_t *pstr) |
| { |
| mbstate_t prev_st; |
| int src_idx, byte_idx, end_idx, remain_len; |
| size_t mbclen; |
| #ifdef _LIBC |
| char buf[MB_LEN_MAX]; |
| assert (MB_LEN_MAX >= pstr->mb_cur_max); |
| #else |
| char buf[64]; |
| #endif |
| |
| byte_idx = pstr->valid_len; |
| end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
| |
| /* The following optimization assumes that ASCII characters can be |
| mapped to wide characters with a simple cast. */ |
| if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) |
| { |
| while (byte_idx < end_idx) |
| { |
| wchar_t wc; |
| |
| if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) |
| && mbsinit (&pstr->cur_state)) |
| { |
| /* In case of a singlebyte character. */ |
| pstr->mbs[byte_idx] |
| = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); |
| /* The next step uses the assumption that wchar_t is encoded |
| ASCII-safe: all ASCII values can be converted like this. */ |
| pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; |
| ++byte_idx; |
| continue; |
| } |
| |
| remain_len = end_idx - byte_idx; |
| prev_st = pstr->cur_state; |
| mbclen = __mbrtowc (&wc, |
| ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx |
| + byte_idx), remain_len, &pstr->cur_state); |
| if (BE (mbclen + 2 > 2, 1)) |
| { |
| wchar_t wcu = wc; |
| if (iswlower (wc)) |
| { |
| size_t mbcdlen; |
| |
| wcu = towupper (wc); |
| mbcdlen = wcrtomb (buf, wcu, &prev_st); |
| if (BE (mbclen == mbcdlen, 1)) |
| memcpy (pstr->mbs + byte_idx, buf, mbclen); |
| else |
| { |
| src_idx = byte_idx; |
| goto offsets_needed; |
| } |
| } |
| else |
| memcpy (pstr->mbs + byte_idx, |
| pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); |
| pstr->wcs[byte_idx++] = wcu; |
| /* Write paddings. */ |
| for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
| pstr->wcs[byte_idx++] = WEOF; |
| } |
| else if (mbclen == (size_t) -1 || mbclen == 0) |
| { |
| /* It is an invalid character or '\0'. Just use the byte. */ |
| int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
| pstr->mbs[byte_idx] = ch; |
| /* And also cast it to wide char. */ |
| pstr->wcs[byte_idx++] = (wchar_t) ch; |
| if (BE (mbclen == (size_t) -1, 0)) |
| pstr->cur_state = prev_st; |
| } |
| else |
| { |
| /* The buffer doesn't have enough space, finish to build. */ |
| pstr->cur_state = prev_st; |
| break; |
| } |
| } |
| pstr->valid_len = byte_idx; |
| pstr->valid_raw_len = byte_idx; |
| return REG_NOERROR; |
| } |
| else |
| for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) |
| { |
| wchar_t wc; |
| const char *p; |
| offsets_needed: |
| remain_len = end_idx - byte_idx; |
| prev_st = pstr->cur_state; |
| if (BE (pstr->trans != NULL, 0)) |
| { |
| int i, ch; |
| |
| for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
| { |
| ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; |
| buf[i] = pstr->trans[ch]; |
| } |
| p = (const char *) buf; |
| } |
| else |
| p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; |
| mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
| if (BE (mbclen + 2 > 2, 1)) |
| { |
| wchar_t wcu = wc; |
| if (iswlower (wc)) |
| { |
| size_t mbcdlen; |
| |
| wcu = towupper (wc); |
| mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st); |
| if (BE (mbclen == mbcdlen, 1)) |
| memcpy (pstr->mbs + byte_idx, buf, mbclen); |
| else if (mbcdlen != (size_t) -1) |
| { |
| size_t i; |
| |
| if (byte_idx + mbcdlen > pstr->bufs_len) |
| { |
| pstr->cur_state = prev_st; |
| break; |
| } |
| |
| if (pstr->offsets == NULL) |
| { |
| pstr->offsets = re_malloc (int, pstr->bufs_len); |
| |
| if (pstr->offsets == NULL) |
| return REG_ESPACE; |
| } |
| if (!pstr->offsets_needed) |
| { |
| for (i = 0; i < (size_t) byte_idx; ++i) |
| pstr->offsets[i] = i; |
| pstr->offsets_needed = 1; |
| } |
| |
| memcpy (pstr->mbs + byte_idx, buf, mbcdlen); |
| pstr->wcs[byte_idx] = wcu; |
| pstr->offsets[byte_idx] = src_idx; |
| for (i = 1; i < mbcdlen; ++i) |
| { |
| pstr->offsets[byte_idx + i] |
| = src_idx + (i < mbclen ? i : mbclen - 1); |
| pstr->wcs[byte_idx + i] = WEOF; |
| } |
| pstr->len += mbcdlen - mbclen; |
| if (pstr->raw_stop > src_idx) |
| pstr->stop += mbcdlen - mbclen; |
| end_idx = (pstr->bufs_len > pstr->len) |
| ? pstr->len : pstr->bufs_len; |
| byte_idx += mbcdlen; |
| src_idx += mbclen; |
| continue; |
| } |
| else |
| memcpy (pstr->mbs + byte_idx, p, mbclen); |
| } |
| else |
| memcpy (pstr->mbs + byte_idx, p, mbclen); |
| |
| if (BE (pstr->offsets_needed != 0, 0)) |
| { |
| size_t i; |
| for (i = 0; i < mbclen; ++i) |
| pstr->offsets[byte_idx + i] = src_idx + i; |
| } |
| src_idx += mbclen; |
| |
| pstr->wcs[byte_idx++] = wcu; |
| /* Write paddings. */ |
| for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
| pstr->wcs[byte_idx++] = WEOF; |
| } |
| else if (mbclen == (size_t) -1 || mbclen == 0) |
| { |
| /* It is an invalid character or '\0'. Just use the byte. */ |
| int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; |
| |
| if (BE (pstr->trans != NULL, 0)) |
| ch = pstr->trans [ch]; |
| pstr->mbs[byte_idx] = ch; |
| |
| if (BE (pstr->offsets_needed != 0, 0)) |
| pstr->offsets[byte_idx] = src_idx; |
| ++src_idx; |
| |
| /* And also cast it to wide char. */ |
| pstr->wcs[byte_idx++] = (wchar_t) ch; |
| if (BE (mbclen == (size_t) -1, 0)) |
| pstr->cur_state = prev_st; |
| } |
| else |
| { |
| /* The buffer doesn't have enough space, finish to build. */ |
| pstr->cur_state = prev_st; |
| break; |
| } |
| } |
| pstr->valid_len = byte_idx; |
| pstr->valid_raw_len = src_idx; |
| return REG_NOERROR; |
| } |
| |
| /* Skip characters until the index becomes greater than NEW_RAW_IDX. |
| Return the index. */ |
| |
| static int |
| internal_function |
| re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc) |
| { |
| mbstate_t prev_st; |
| int rawbuf_idx; |
| size_t mbclen; |
| wint_t wc = WEOF; |
| |
| /* Skip the characters which are not necessary to check. */ |
| for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; |
| rawbuf_idx < new_raw_idx;) |
| { |
| wchar_t wc2; |
| int remain_len = pstr->len - rawbuf_idx; |
| prev_st = pstr->cur_state; |
| mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, |
| remain_len, &pstr->cur_state); |
| if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) |
| { |
| /* We treat these cases as a single byte character. */ |
| if (mbclen == 0 || remain_len == 0) |
| wc = L'\0'; |
| else |
| wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); |
| mbclen = 1; |
| pstr->cur_state = prev_st; |
| } |
| else |
| wc = (wint_t) wc2; |
| /* Then proceed the next character. */ |
| rawbuf_idx += mbclen; |
| } |
| *last_wc = (wint_t) wc; |
| return rawbuf_idx; |
| } |
| #endif /* RE_ENABLE_I18N */ |
| |
| /* Build the buffer PSTR->MBS, and apply the translation if we need. |
| This function is used in case of REG_ICASE. */ |
| |
| static void |
| internal_function |
| build_upper_buffer (re_string_t *pstr) |
| { |
| int char_idx, end_idx; |
| end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
| |
| for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) |
| { |
| int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; |
| if (BE (pstr->trans != NULL, 0)) |
| ch = pstr->trans[ch]; |
| if (islower (ch)) |
| pstr->mbs[char_idx] = toupper (ch); |
| else |
| pstr->mbs[char_idx] = ch; |
| } |
| pstr->valid_len = char_idx; |
| pstr->valid_raw_len = char_idx; |
| } |
| |
| /* Apply TRANS to the buffer in PSTR. */ |
| |
| static void |
| internal_function |
| re_string_translate_buffer (re_string_t *pstr) |
| { |
| int buf_idx, end_idx; |
| end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
| |
| for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) |
| { |
| int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; |
| pstr->mbs[buf_idx] = pstr->trans[ch]; |
| } |
| |
| pstr->valid_len = buf_idx; |
| pstr->valid_raw_len = buf_idx; |
| } |
| |
| /* This function re-construct the buffers. |
| Concretely, convert to wide character in case of pstr->mb_cur_max > 1, |
| convert to upper case in case of REG_ICASE, apply translation. */ |
| |
| static reg_errcode_t |
| internal_function |
| re_string_reconstruct (re_string_t *pstr, int idx, int eflags) |
| { |
| int offset = idx - pstr->raw_mbs_idx; |
| if (BE (offset < 0, 0)) |
| { |
| /* Reset buffer. */ |
| #ifdef RE_ENABLE_I18N |
| if (pstr->mb_cur_max > 1) |
| memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
| #endif /* RE_ENABLE_I18N */ |
| pstr->len = pstr->raw_len; |
| pstr->stop = pstr->raw_stop; |
| pstr->valid_len = 0; |
| pstr->raw_mbs_idx = 0; |
| pstr->valid_raw_len = 0; |
| pstr->offsets_needed = 0; |
| pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
| : CONTEXT_NEWLINE | CONTEXT_BEGBUF); |
| if (!pstr->mbs_allocated) |
| pstr->mbs = (unsigned char *) pstr->raw_mbs; |
| offset = idx; |
| } |
| |
| if (BE (offset != 0, 1)) |
| { |
| /* Should the already checked characters be kept? */ |
| if (BE (offset < pstr->valid_raw_len, 1)) |
| { |
| /* Yes, move them to the front of the buffer. */ |
| #ifdef RE_ENABLE_I18N |
| if (BE (pstr->offsets_needed, 0)) |
| { |
| int low = 0, high = pstr->valid_len, mid; |
| do |
| { |
| mid = (high + low) / 2; |
| if (pstr->offsets[mid] > offset) |
| high = mid; |
| else if (pstr->offsets[mid] < offset) |
| low = mid + 1; |
| else |
| break; |
| } |
| while (low < high); |
| if (pstr->offsets[mid] < offset) |
| ++mid; |
| pstr->tip_context = re_string_context_at (pstr, mid - 1, |
| eflags); |
| /* This can be quite complicated, so handle specially |
| only the common and easy case where the character with |
| different length representation of lower and upper |
| case is present at or after offset. */ |
| if (pstr->valid_len > offset |
| && mid == offset && pstr->offsets[mid] == offset) |
| { |
| memmove (pstr->wcs, pstr->wcs + offset, |
| (pstr->valid_len - offset) * sizeof (wint_t)); |
| memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); |
| pstr->valid_len -= offset; |
| pstr->valid_raw_len -= offset; |
| for (low = 0; low < pstr->valid_len; low++) |
| pstr->offsets[low] = pstr->offsets[low + offset] - offset; |
| } |
| else |
| { |
| /* Otherwise, just find out how long the partial multibyte |
| character at offset is and fill it with WEOF/255. */ |
| pstr->len = pstr->raw_len - idx + offset; |
| pstr->stop = pstr->raw_stop - idx + offset; |
| pstr->offsets_needed = 0; |
| while (mid > 0 && pstr->offsets[mid - 1] == offset) |
| --mid; |
| while (mid < pstr->valid_len) |
| if (pstr->wcs[mid] != WEOF) |
| break; |
| else |
| ++mid; |
| if (mid == pstr->valid_len) |
| pstr->valid_len = 0; |
| else |
| { |
| pstr->valid_len = pstr->offsets[mid] - offset; |
| if (pstr->valid_len) |
| { |
| for (low = 0; low < pstr->valid_len; ++low) |
| pstr->wcs[low] = WEOF; |
| memset (pstr->mbs, 255, pstr->valid_len); |
| } |
| } |
| pstr->valid_raw_len = pstr->valid_len; |
| } |
| } |
| else |
| #endif |
| { |
| pstr->tip_context = re_string_context_at (pstr, offset - 1, |
| eflags); |
| #ifdef RE_ENABLE_I18N |
| if (pstr->mb_cur_max > 1) |
| memmove (pstr->wcs, pstr->wcs + offset, |
| (pstr->valid_len - offset) * sizeof (wint_t)); |
| #endif /* RE_ENABLE_I18N */ |
| if (BE (pstr->mbs_allocated, 0)) |
| memmove (pstr->mbs, pstr->mbs + offset, |
| pstr->valid_len - offset); |
| pstr->valid_len -= offset; |
| pstr->valid_raw_len -= offset; |
| #if DEBUG |
| assert (pstr->valid_len > 0); |
| #endif |
| } |
| } |
| else |
| { |
| #ifdef RE_ENABLE_I18N |
| /* No, skip all characters until IDX. */ |
| int prev_valid_len = pstr->valid_len; |
| |
| if (BE (pstr->offsets_needed, 0)) |
| { |
| pstr->len = pstr->raw_len - idx + offset; |
| pstr->stop = pstr->raw_stop - idx + offset; |
| pstr->offsets_needed = 0; |
| } |
| #endif |
| pstr->valid_len = 0; |
| #ifdef RE_ENABLE_I18N |
| if (pstr->mb_cur_max > 1) |
| { |
| int wcs_idx; |
| wint_t wc = WEOF; |
| |
| if (pstr->is_utf8) |
| { |
| const unsigned char *raw, *p, *end; |
| |
| /* Special case UTF-8. Multi-byte chars start with any |
| byte other than 0x80 - 0xbf. */ |
| raw = pstr->raw_mbs + pstr->raw_mbs_idx; |
| end = raw + (offset - pstr->mb_cur_max); |
| if (end < pstr->raw_mbs) |
| end = pstr->raw_mbs; |
| p = raw + offset - 1; |
| #ifdef _LIBC |
| /* We know the wchar_t encoding is UCS4, so for the simple |
| case, ASCII characters, skip the conversion step. */ |
| if (isascii (*p) && BE (pstr->trans == NULL, 1)) |
| { |
| memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
| /* pstr->valid_len = 0; */ |
| wc = (wchar_t) *p; |
| } |
| else |
| #endif |
| for (; p >= end; --p) |
| if ((*p & 0xc0) != 0x80) |
| { |
| mbstate_t cur_state; |
| wchar_t wc2; |
| int mlen = raw + pstr->len - p; |
| unsigned char buf[6]; |
| size_t mbclen; |
| |
| if (BE (pstr->trans != NULL, 0)) |
| { |
| int i = mlen < 6 ? mlen : 6; |
| while (--i >= 0) |
| buf[i] = pstr->trans[p[i]]; |
| } |
| /* XXX Don't use mbrtowc, we know which conversion |
| to use (UTF-8 -> UCS4). */ |
| memset (&cur_state, 0, sizeof (cur_state)); |
| mbclen = __mbrtowc (&wc2, (const char *) p, mlen, |
| &cur_state); |
| if (raw + offset - p <= mbclen |
| && mbclen < (size_t) -2) |
| { |
| memset (&pstr->cur_state, '\0', |
| sizeof (mbstate_t)); |
| pstr->valid_len = mbclen - (raw + offset - p); |
| wc = wc2; |
| } |
| break; |
| } |
| } |
| |
| if (wc == WEOF) |
| pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; |
| if (wc == WEOF) |
| pstr->tip_context |
| = re_string_context_at (pstr, prev_valid_len - 1, eflags); |
| else |
| pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) |
| && IS_WIDE_WORD_CHAR (wc)) |
| ? CONTEXT_WORD |
| : ((IS_WIDE_NEWLINE (wc) |
| && pstr->newline_anchor) |
| ? CONTEXT_NEWLINE : 0)); |
| if (BE (pstr->valid_len, 0)) |
| { |
| for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) |
| pstr->wcs[wcs_idx] = WEOF; |
| if (pstr->mbs_allocated) |
| memset (pstr->mbs, 255, pstr->valid_len); |
| } |
| pstr->valid_raw_len = pstr->valid_len; |
| } |
| else |
| #endif /* RE_ENABLE_I18N */ |
| { |
| int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; |
| pstr->valid_raw_len = 0; |
| if (pstr->trans) |
| c = pstr->trans[c]; |
| pstr->tip_context = (bitset_contain (pstr->word_char, c) |
| ? CONTEXT_WORD |
| : ((IS_NEWLINE (c) && pstr->newline_anchor) |
| ? CONTEXT_NEWLINE : 0)); |
| } |
| } |
| if (!BE (pstr->mbs_allocated, 0)) |
| pstr->mbs += offset; |
| } |
| pstr->raw_mbs_idx = idx; |
| pstr->len -= offset; |
| pstr->stop -= offset; |
| |
| /* Then build the buffers. */ |
| #ifdef RE_ENABLE_I18N |
| if (pstr->mb_cur_max > 1) |
| { |
| if (pstr->icase) |
| { |
| reg_errcode_t ret = build_wcs_upper_buffer (pstr); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| } |
| else |
| build_wcs_buffer (pstr); |
| } |
| else |
| #endif /* RE_ENABLE_I18N */ |
| if (BE (pstr->mbs_allocated, 0)) |
| { |
| if (pstr->icase) |
| build_upper_buffer (pstr); |
| else if (pstr->trans != NULL) |
| re_string_translate_buffer (pstr); |
| } |
| else |
| pstr->valid_len = pstr->len; |
| |
| pstr->cur_idx = 0; |
| return REG_NOERROR; |
| } |
| |
| static unsigned char |
| internal_function __attribute ((pure)) |
| re_string_peek_byte_case (const re_string_t *pstr, int idx) |
| { |
| int ch, off; |
| |
| /* Handle the common (easiest) cases first. */ |
| if (BE (!pstr->mbs_allocated, 1)) |
| return re_string_peek_byte (pstr, idx); |
| |
| #ifdef RE_ENABLE_I18N |
| if (pstr->mb_cur_max > 1 |
| && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) |
| return re_string_peek_byte (pstr, idx); |
| #endif |
| |
| off = pstr->cur_idx + idx; |
| #ifdef RE_ENABLE_I18N |
| if (pstr->offsets_needed) |
| off = pstr->offsets[off]; |
| #endif |
| |
| ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
| |
| #ifdef RE_ENABLE_I18N |
| /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I |
| this function returns CAPITAL LETTER I instead of first byte of |
| DOTLESS SMALL LETTER I. The latter would confuse the parser, |
| since peek_byte_case doesn't advance cur_idx in any way. */ |
| if (pstr->offsets_needed && !isascii (ch)) |
| return re_string_peek_byte (pstr, idx); |
| #endif |
| |
| return ch; |
| } |
| |
| static unsigned char |
| internal_function __attribute ((pure)) |
| re_string_fetch_byte_case (re_string_t *pstr) |
| { |
| if (BE (!pstr->mbs_allocated, 1)) |
| return re_string_fetch_byte (pstr); |
| |
| #ifdef RE_ENABLE_I18N |
| if (pstr->offsets_needed) |
| { |
| int off, ch; |
| |
| /* For tr_TR.UTF-8 [[:islower:]] there is |
| [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip |
| in that case the whole multi-byte character and return |
| the original letter. On the other side, with |
| [[: DOTLESS SMALL LETTER I return [[:I, as doing |
| anything else would complicate things too much. */ |
| |
| if (!re_string_first_byte (pstr, pstr->cur_idx)) |
| return re_string_fetch_byte (pstr); |
| |
| off = pstr->offsets[pstr->cur_idx]; |
| ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
| |
| if (! isascii (ch)) |
| return re_string_fetch_byte (pstr); |
| |
| re_string_skip_bytes (pstr, |
| re_string_char_size_at (pstr, pstr->cur_idx)); |
| return ch; |
| } |
| #endif |
| |
| return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; |
| } |
| |
| static void |
| internal_function |
| re_string_destruct (re_string_t *pstr) |
| { |
| #ifdef RE_ENABLE_I18N |
| re_free (pstr->wcs); |
| re_free (pstr->offsets); |
| #endif /* RE_ENABLE_I18N */ |
| if (pstr->mbs_allocated) |
| re_free (pstr->mbs); |
| } |
| |
| /* Return the context at IDX in INPUT. */ |
| |
| static unsigned int |
| internal_function |
| re_string_context_at (const re_string_t *input, int idx, int eflags) |
| { |
| int c; |
| if (BE (idx < 0, 0)) |
| /* In this case, we use the value stored in input->tip_context, |
| since we can't know the character in input->mbs[-1] here. */ |
| return input->tip_context; |
| if (BE (idx == input->len, 0)) |
| return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF |
| : CONTEXT_NEWLINE | CONTEXT_ENDBUF); |
| #ifdef RE_ENABLE_I18N |
| if (input->mb_cur_max > 1) |
| { |
| wint_t wc; |
| int wc_idx = idx; |
| while(input->wcs[wc_idx] == WEOF) |
| { |
| #ifdef DEBUG |
| /* It must not happen. */ |
| assert (wc_idx >= 0); |
| #endif |
| --wc_idx; |
| if (wc_idx < 0) |
| return input->tip_context; |
| } |
| wc = input->wcs[wc_idx]; |
| if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) |
| return CONTEXT_WORD; |
| return (IS_WIDE_NEWLINE (wc) && input->newline_anchor |
| ? CONTEXT_NEWLINE : 0); |
| } |
| else |
| #endif |
| { |
| c = re_string_byte_at (input, idx); |
| if (bitset_contain (input->word_char, c)) |
| return CONTEXT_WORD; |
| return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; |
| } |
| } |
| |
| /* Functions for set operation. */ |
| |
| static reg_errcode_t |
| internal_function |
| re_node_set_alloc (re_node_set *set, int size) |
| { |
| /* |
| * ADR: valgrind says size can be 0, which then doesn't |
| * free the block of size 0. Harumph. This seems |
| * to work ok, though. |
| */ |
| if (size == 0) |
| { |
| memset(set, 0, sizeof(*set)); |
| return REG_NOERROR; |
| } |
| set->alloc = size; |
| set->nelem = 0; |
| set->elems = re_malloc (int, size); |
| if (BE (set->elems == NULL, 0)) |
| return REG_ESPACE; |
| return REG_NOERROR; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| re_node_set_init_1 (re_node_set *set, int elem) |
| { |
| set->alloc = 1; |
| set->nelem = 1; |
| set->elems = re_malloc (int, 1); |
| if (BE (set->elems == NULL, 0)) |
| { |
| set->alloc = set->nelem = 0; |
| return REG_ESPACE; |
| } |
| set->elems[0] = elem; |
| return REG_NOERROR; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| re_node_set_init_2 (re_node_set *set, int elem1, int elem2) |
| { |
| set->alloc = 2; |
| set->elems = re_malloc (int, 2); |
| if (BE (set->elems == NULL, 0)) |
| return REG_ESPACE; |
| if (elem1 == elem2) |
| { |
| set->nelem = 1; |
| set->elems[0] = elem1; |
| } |
| else |
| { |
| set->nelem = 2; |
| if (elem1 < elem2) |
| { |
| set->elems[0] = elem1; |
| set->elems[1] = elem2; |
| } |
| else |
| { |
| set->elems[0] = elem2; |
| set->elems[1] = elem1; |
| } |
| } |
| return REG_NOERROR; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| re_node_set_init_copy (re_node_set *dest, const re_node_set *src) |
| { |
| dest->nelem = src->nelem; |
| if (src->nelem > 0) |
| { |
| dest->alloc = dest->nelem; |
| dest->elems = re_malloc (int, dest->alloc); |
| if (BE (dest->elems == NULL, 0)) |
| { |
| dest->alloc = dest->nelem = 0; |
| return REG_ESPACE; |
| } |
| memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); |
| } |
| else |
| re_node_set_init_empty (dest); |
| return REG_NOERROR; |
| } |
| |
| /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to |
| DEST. Return value indicate the error code or REG_NOERROR if succeeded. |
| Note: We assume dest->elems is NULL, when dest->alloc is 0. */ |
| |
| static reg_errcode_t |
| internal_function |
| re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, |
| const re_node_set *src2) |
| { |
| int i1, i2, is, id, delta, sbase; |
| if (src1->nelem == 0 || src2->nelem == 0) |
| return REG_NOERROR; |
| |
| /* We need dest->nelem + 2 * elems_in_intersection; this is a |
| conservative estimate. */ |
| if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) |
| { |
| int new_alloc = src1->nelem + src2->nelem + dest->alloc; |
| int *new_elems = re_realloc (dest->elems, int, new_alloc); |
| if (BE (new_elems == NULL, 0)) |
| return REG_ESPACE; |
| dest->elems = new_elems; |
| dest->alloc = new_alloc; |
| } |
| |
| /* Find the items in the intersection of SRC1 and SRC2, and copy |
| into the top of DEST those that are not already in DEST itself. */ |
| sbase = dest->nelem + src1->nelem + src2->nelem; |
| i1 = src1->nelem - 1; |
| i2 = src2->nelem - 1; |
| id = dest->nelem - 1; |
| for (;;) |
| { |
| if (src1->elems[i1] == src2->elems[i2]) |
| { |
| /* Try to find the item in DEST. Maybe we could binary search? */ |
| while (id >= 0 && dest->elems[id] > src1->elems[i1]) |
| --id; |
| |
| if (id < 0 || dest->elems[id] != src1->elems[i1]) |
| dest->elems[--sbase] = src1->elems[i1]; |
| |
| if (--i1 < 0 || --i2 < 0) |
| break; |
| } |
| |
| /* Lower the highest of the two items. */ |
| else if (src1->elems[i1] < src2->elems[i2]) |
| { |
| if (--i2 < 0) |
| break; |
| } |
| else |
| { |
| if (--i1 < 0) |
| break; |
| } |
| } |
| |
| id = dest->nelem - 1; |
| is = dest->nelem + src1->nelem + src2->nelem - 1; |
| delta = is - sbase + 1; |
| |
| /* Now copy. When DELTA becomes zero, the remaining |
| DEST elements are already in place; this is more or |
| less the same loop that is in re_node_set_merge. */ |
| dest->nelem += delta; |
| if (delta > 0 && id >= 0) |
| for (;;) |
| { |
| if (dest->elems[is] > dest->elems[id]) |
| { |
| /* Copy from the top. */ |
| dest->elems[id + delta--] = dest->elems[is--]; |
| if (delta == 0) |
| break; |
| } |
| else |
| { |
| /* Slide from the bottom. */ |
| dest->elems[id + delta] = dest->elems[id]; |
| if (--id < 0) |
| break; |
| } |
| } |
| |
| /* Copy remaining SRC elements. */ |
| memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int)); |
| |
| return REG_NOERROR; |
| } |
| |
| /* Calculate the union set of the sets SRC1 and SRC2. And store it to |
| DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
| |
| static reg_errcode_t |
| internal_function |
| re_node_set_init_union (re_node_set *dest, const re_node_set *src1, |
| const re_node_set *src2) |
| { |
| int i1, i2, id; |
| if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) |
| { |
| dest->alloc = src1->nelem + src2->nelem; |
| dest->elems = re_malloc (int, dest->alloc); |
| if (BE (dest->elems == NULL, 0)) |
| return REG_ESPACE; |
| } |
| else |
| { |
| if (src1 != NULL && src1->nelem > 0) |
| return re_node_set_init_copy (dest, src1); |
| else if (src2 != NULL && src2->nelem > 0) |
| return re_node_set_init_copy (dest, src2); |
| else |
| re_node_set_init_empty (dest); |
| return REG_NOERROR; |
| } |
| for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) |
| { |
| if (src1->elems[i1] > src2->elems[i2]) |
| { |
| dest->elems[id++] = src2->elems[i2++]; |
| continue; |
| } |
| if (src1->elems[i1] == src2->elems[i2]) |
| ++i2; |
| dest->elems[id++] = src1->elems[i1++]; |
| } |
| if (i1 < src1->nelem) |
| { |
| memcpy (dest->elems + id, src1->elems + i1, |
| (src1->nelem - i1) * sizeof (int)); |
| id += src1->nelem - i1; |
| } |
| else if (i2 < src2->nelem) |
| { |
| memcpy (dest->elems + id, src2->elems + i2, |
| (src2->nelem - i2) * sizeof (int)); |
| id += src2->nelem - i2; |
| } |
| dest->nelem = id; |
| return REG_NOERROR; |
| } |
| |
| /* Calculate the union set of the sets DEST and SRC. And store it to |
| DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
| |
| static reg_errcode_t |
| internal_function |
| re_node_set_merge (re_node_set *dest, const re_node_set *src) |
| { |
| int is, id, sbase, delta; |
| if (src == NULL || src->nelem == 0) |
| return REG_NOERROR; |
| if (dest->alloc < 2 * src->nelem + dest->nelem) |
| { |
| int new_alloc = 2 * (src->nelem + dest->alloc); |
| int *new_buffer = re_realloc (dest->elems, int, new_alloc); |
| if (BE (new_buffer == NULL, 0)) |
| return REG_ESPACE; |
| dest->elems = new_buffer; |
| dest->alloc = new_alloc; |
| } |
| |
| if (BE (dest->nelem == 0, 0)) |
| { |
| dest->nelem = src->nelem; |
| memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); |
| return REG_NOERROR; |
| } |
| |
| /* Copy into the top of DEST the items of SRC that are not |
| found in DEST. Maybe we could binary search in DEST? */ |
| for (sbase = dest->nelem + 2 * src->nelem, |
| is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) |
| { |
| if (dest->elems[id] == src->elems[is]) |
| is--, id--; |
| else if (dest->elems[id] < src->elems[is]) |
| dest->elems[--sbase] = src->elems[is--]; |
| else /* if (dest->elems[id] > src->elems[is]) */ |
| --id; |
| } |
| |
| if (is >= 0) |
| { |
| /* If DEST is exhausted, the remaining items of SRC must be unique. */ |
| sbase -= is + 1; |
| memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int)); |
| } |
| |
| id = dest->nelem - 1; |
| is = dest->nelem + 2 * src->nelem - 1; |
| delta = is - sbase + 1; |
| if (delta == 0) |
| return REG_NOERROR; |
| |
| /* Now copy. When DELTA becomes zero, the remaining |
| DEST elements are already in place. */ |
| dest->nelem += delta; |
| for (;;) |
| { |
| if (dest->elems[is] > dest->elems[id]) |
| { |
| /* Copy from the top. */ |
| dest->elems[id + delta--] = dest->elems[is--]; |
| if (delta == 0) |
| break; |
| } |
| else |
| { |
| /* Slide from the bottom. */ |
| dest->elems[id + delta] = dest->elems[id]; |
| if (--id < 0) |
| { |
| /* Copy remaining SRC elements. */ |
| memcpy (dest->elems, dest->elems + sbase, |
| delta * sizeof (int)); |
| break; |
| } |
| } |
| } |
| |
| return REG_NOERROR; |
| } |
| |
| /* Insert the new element ELEM to the re_node_set* SET. |
| SET should not already have ELEM. |
| return -1 if an error is occured, return 1 otherwise. */ |
| |
| static int |
| internal_function |
| re_node_set_insert (re_node_set *set, int elem) |
| { |
| int idx; |
| /* In case the set is empty. */ |
| if (set->alloc == 0) |
| { |
| if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1)) |
| return 1; |
| else |
| return -1; |
| } |
| |
| if (BE (set->nelem, 0) == 0) |
| { |
| /* We already guaranteed above that set->alloc != 0. */ |
| set->elems[0] = elem; |
| ++set->nelem; |
| return 1; |
| } |
| |
| /* Realloc if we need. */ |
| if (set->alloc == set->nelem) |
| { |
| int *new_elems; |
| set->alloc = set->alloc * 2; |
| new_elems = re_realloc (set->elems, int, set->alloc); |
| if (BE (new_elems == NULL, 0)) |
| return -1; |
| set->elems = new_elems; |
| } |
| |
| /* Move the elements which follows the new element. Test the |
| first element separately to skip a check in the inner loop. */ |
| if (elem < set->elems[0]) |
| { |
| idx = 0; |
| for (idx = set->nelem; idx > 0; idx--) |
| set->elems[idx] = set->elems[idx - 1]; |
| } |
| else |
| { |
| for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) |
| set->elems[idx] = set->elems[idx - 1]; |
| } |
| |
| /* Insert the new element. */ |
| set->elems[idx] = elem; |
| ++set->nelem; |
| return 1; |
| } |
| |
| /* Insert the new element ELEM to the re_node_set* SET. |
| SET should not already have any element greater than or equal to ELEM. |
| Return -1 if an error is occured, return 1 otherwise. */ |
| |
| static int |
| internal_function |
| re_node_set_insert_last (re_node_set *set, int elem) |
| { |
| /* Realloc if we need. */ |
| if (set->alloc == set->nelem) |
| { |
| int *new_elems; |
| set->alloc = (set->alloc + 1) * 2; |
| new_elems = re_realloc (set->elems, int, set->alloc); |
| if (BE (new_elems == NULL, 0)) |
| return -1; |
| set->elems = new_elems; |
| } |
| |
| /* Insert the new element. */ |
| set->elems[set->nelem++] = elem; |
| return 1; |
| } |
| |
| /* Compare two node sets SET1 and SET2. |
| return 1 if SET1 and SET2 are equivalent, return 0 otherwise. */ |
| |
| static int |
| internal_function __attribute ((pure)) |
| re_node_set_compare (const re_node_set *set1, const re_node_set *set2) |
| { |
| int i; |
| if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) |
| return 0; |
| for (i = set1->nelem ; --i >= 0 ; ) |
| if (set1->elems[i] != set2->elems[i]) |
| return 0; |
| return 1; |
| } |
| |
| /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ |
| |
| static int |
| internal_function __attribute ((pure)) |
| re_node_set_contains (const re_node_set *set, int elem) |
| { |
| unsigned int idx, right, mid; |
| if (set->nelem <= 0) |
| return 0; |
| |
| /* Binary search the element. */ |
| idx = 0; |
| right = set->nelem - 1; |
| while (idx < right) |
| { |
| mid = (idx + right) / 2; |
| if (set->elems[mid] < elem) |
| idx = mid + 1; |
| else |
| right = mid; |
| } |
| return set->elems[idx] == elem ? idx + 1 : 0; |
| } |
| |
| static void |
| internal_function |
| re_node_set_remove_at (re_node_set *set, int idx) |
| { |
| if (idx < 0 || idx >= set->nelem) |
| return; |
| --set->nelem; |
| for (; idx < set->nelem; idx++) |
| set->elems[idx] = set->elems[idx + 1]; |
| } |
| |
| |
| /* Add the token TOKEN to dfa->nodes, and return the index of the token. |
| Or return -1, if an error will be occured. */ |
| |
| static int |
| internal_function |
| re_dfa_add_node (re_dfa_t *dfa, re_token_t token) |
| { |
| if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) |
| { |
| size_t new_nodes_alloc = dfa->nodes_alloc * 2; |
| int *new_nexts, *new_indices; |
| re_node_set *new_edests, *new_eclosures; |
| re_token_t *new_nodes; |
| |
| /* Avoid overflows in realloc. */ |
| const size_t max_object_size = MAX (sizeof (re_token_t), |
| MAX (sizeof (re_node_set), |
| sizeof (int))); |
| if (BE (SIZE_MAX / max_object_size < new_nodes_alloc, 0)) |
| return -1; |
| |
| new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); |
| if (BE (new_nodes == NULL, 0)) |
| return -1; |
| dfa->nodes = new_nodes; |
| new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc); |
| new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc); |
| new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); |
| new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); |
| if (BE (new_nexts == NULL || new_indices == NULL |
| || new_edests == NULL || new_eclosures == NULL, 0)) |
| return -1; |
| dfa->nexts = new_nexts; |
| dfa->org_indices = new_indices; |
| dfa->edests = new_edests; |
| dfa->eclosures = new_eclosures; |
| dfa->nodes_alloc = new_nodes_alloc; |
| } |
| dfa->nodes[dfa->nodes_len] = token; |
| dfa->nodes[dfa->nodes_len].constraint = 0; |
| #ifdef RE_ENABLE_I18N |
| dfa->nodes[dfa->nodes_len].accept_mb = |
| (token.type == OP_PERIOD && dfa->mb_cur_max > 1) || token.type == COMPLEX_BRACKET; |
| #endif |
| dfa->nexts[dfa->nodes_len] = -1; |
| re_node_set_init_empty (dfa->edests + dfa->nodes_len); |
| re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); |
| return dfa->nodes_len++; |
| } |
| |
| static inline unsigned int |
| internal_function |
| calc_state_hash (const re_node_set *nodes, unsigned int context) |
| { |
| unsigned int hash = nodes->nelem + context; |
| int i; |
| for (i = 0 ; i < nodes->nelem ; i++) |
| hash += nodes->elems[i]; |
| return hash; |
| } |
| |
| /* Search for the state whose node_set is equivalent to NODES. |
| Return the pointer to the state, if we found it in the DFA. |
| Otherwise create the new one and return it. In case of an error |
| return NULL and set the error code in ERR. |
| Note: - We assume NULL as the invalid state, then it is possible that |
| return value is NULL and ERR is REG_NOERROR. |
| - We never return non-NULL value in case of any errors, it is for |
| optimization. */ |
| |
| static re_dfastate_t * |
| internal_function |
| re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, |
| const re_node_set *nodes) |
| { |
| unsigned int hash; |
| re_dfastate_t *new_state; |
| struct re_state_table_entry *spot; |
| int i; |
| if (BE (nodes->nelem == 0, 0)) |
| { |
| *err = REG_NOERROR; |
| return NULL; |
| } |
| hash = calc_state_hash (nodes, 0); |
| spot = dfa->state_table + (hash & dfa->state_hash_mask); |
| |
| for (i = 0 ; i < spot->num ; i++) |
| { |
| re_dfastate_t *state = spot->array[i]; |
| if (hash != state->hash) |
| continue; |
| if (re_node_set_compare (&state->nodes, nodes)) |
| return state; |
| } |
| |
| /* There are no appropriate state in the dfa, create the new one. */ |
| new_state = create_ci_newstate (dfa, nodes, hash); |
| if (BE (new_state == NULL, 0)) |
| *err = REG_ESPACE; |
| |
| return new_state; |
| } |
| |
| /* Search for the state whose node_set is equivalent to NODES and |
| whose context is equivalent to CONTEXT. |
| Return the pointer to the state, if we found it in the DFA. |
| Otherwise create the new one and return it. In case of an error |
| return NULL and set the error code in ERR. |
| Note: - We assume NULL as the invalid state, then it is possible that |
| return value is NULL and ERR is REG_NOERROR. |
| - We never return non-NULL value in case of any errors, it is for |
| optimization. */ |
| |
| static re_dfastate_t * |
| internal_function |
| re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, |
| const re_node_set *nodes, unsigned int context) |
| { |
| unsigned int hash; |
| re_dfastate_t *new_state; |
| struct re_state_table_entry *spot; |
| int i; |
| if (nodes->nelem == 0) |
| { |
| *err = REG_NOERROR; |
| return NULL; |
| } |
| hash = calc_state_hash (nodes, context); |
| spot = dfa->state_table + (hash & dfa->state_hash_mask); |
| |
| for (i = 0 ; i < spot->num ; i++) |
| { |
| re_dfastate_t *state = spot->array[i]; |
| if (state->hash == hash |
| && state->context == context |
| && re_node_set_compare (state->entrance_nodes, nodes)) |
| return state; |
| } |
| /* There are no appropriate state in `dfa', create the new one. */ |
| new_state = create_cd_newstate (dfa, nodes, context, hash); |
| if (BE (new_state == NULL, 0)) |
| *err = REG_ESPACE; |
| |
| return new_state; |
| } |
| |
| /* Finish initialization of the new state NEWSTATE, and using its hash value |
| HASH put in the appropriate bucket of DFA's state table. Return value |
| indicates the error code if failed. */ |
| |
| static reg_errcode_t |
| register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, |
| unsigned int hash) |
| { |
| struct re_state_table_entry *spot; |
| reg_errcode_t err; |
| int i; |
| |
| newstate->hash = hash; |
| err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); |
| if (BE (err != REG_NOERROR, 0)) |
| return REG_ESPACE; |
| for (i = 0; i < newstate->nodes.nelem; i++) |
| { |
| int elem = newstate->nodes.elems[i]; |
| if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) |
| if (re_node_set_insert_last (&newstate->non_eps_nodes, elem) < 0) |
| return REG_ESPACE; |
| } |
| |
| spot = dfa->state_table + (hash & dfa->state_hash_mask); |
| if (BE (spot->alloc <= spot->num, 0)) |
| { |
| int new_alloc = 2 * spot->num + 2; |
| re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, |
| new_alloc); |
| if (BE (new_array == NULL, 0)) |
| return REG_ESPACE; |
| spot->array = new_array; |
| spot->alloc = new_alloc; |
| } |
| spot->array[spot->num++] = newstate; |
| return REG_NOERROR; |
| } |
| |
| static void |
| free_state (re_dfastate_t *state) |
| { |
| re_node_set_free (&state->non_eps_nodes); |
| re_node_set_free (&state->inveclosure); |
| if (state->entrance_nodes != &state->nodes) |
| { |
| re_node_set_free (state->entrance_nodes); |
| re_free (state->entrance_nodes); |
| } |
| re_node_set_free (&state->nodes); |
| re_free (state->word_trtable); |
| re_free (state->trtable); |
| re_free (state); |
| } |
| |
| /* Create the new state which is independ of contexts. |
| Return the new state if succeeded, otherwise return NULL. */ |
| |
| static re_dfastate_t * |
| internal_function |
| create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
| unsigned int hash) |
| { |
| int i; |
| reg_errcode_t err; |
| re_dfastate_t *newstate; |
| |
| newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
| if (BE (newstate == NULL, 0)) |
| return NULL; |
| err = re_node_set_init_copy (&newstate->nodes, nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_free (newstate); |
| return NULL; |
| } |
| |
| newstate->entrance_nodes = &newstate->nodes; |
| for (i = 0 ; i < nodes->nelem ; i++) |
| { |
| re_token_t *node = dfa->nodes + nodes->elems[i]; |
| re_token_type_t type = node->type; |
| if (type == CHARACTER && !node->constraint) |
| continue; |
| #ifdef RE_ENABLE_I18N |
| newstate->accept_mb |= node->accept_mb; |
| #endif /* RE_ENABLE_I18N */ |
| |
| /* If the state has the halt node, the state is a halt state. */ |
| if (type == END_OF_RE) |
| newstate->halt = 1; |
| else if (type == OP_BACK_REF) |
| newstate->has_backref = 1; |
| else if (type == ANCHOR || node->constraint) |
| newstate->has_constraint = 1; |
| } |
| err = register_state (dfa, newstate, hash); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| free_state (newstate); |
| newstate = NULL; |
| } |
| return newstate; |
| } |
| |
| /* Create the new state which is depend on the context CONTEXT. |
| Return the new state if succeeded, otherwise return NULL. */ |
| |
| static re_dfastate_t * |
| internal_function |
| create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
| unsigned int context, unsigned int hash) |
| { |
| int i, nctx_nodes = 0; |
| reg_errcode_t err; |
| re_dfastate_t *newstate; |
| |
| newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
| if (BE (newstate == NULL, 0)) |
| return NULL; |
| err = re_node_set_init_copy (&newstate->nodes, nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_free (newstate); |
| return NULL; |
| } |
| |
| newstate->context = context; |
| newstate->entrance_nodes = &newstate->nodes; |
| |
| for (i = 0 ; i < nodes->nelem ; i++) |
| { |
| re_token_t *node = dfa->nodes + nodes->elems[i]; |
| re_token_type_t type = node->type; |
| unsigned int constraint = node->constraint; |
| |
| if (type == CHARACTER && !constraint) |
| continue; |
| #ifdef RE_ENABLE_I18N |
| newstate->accept_mb |= node->accept_mb; |
| #endif /* RE_ENABLE_I18N */ |
| |
| /* If the state has the halt node, the state is a halt state. */ |
| if (type == END_OF_RE) |
| newstate->halt = 1; |
| else if (type == OP_BACK_REF) |
| newstate->has_backref = 1; |
| |
| if (constraint) |
| { |
| if (newstate->entrance_nodes == &newstate->nodes) |
| { |
| newstate->entrance_nodes = re_malloc (re_node_set, 1); |
| if (BE (newstate->entrance_nodes == NULL, 0)) |
| { |
| free_state (newstate); |
| return NULL; |
| } |
| if (re_node_set_init_copy (newstate->entrance_nodes, nodes) |
| != REG_NOERROR) |
| return NULL; |
| nctx_nodes = 0; |
| newstate->has_constraint = 1; |
| } |
| |
| if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) |
| { |
| re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); |
| ++nctx_nodes; |
| } |
| } |
| } |
| err = register_state (dfa, newstate, hash); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| free_state (newstate); |
| newstate = NULL; |
| } |
| return newstate; |
| } |