| #include "cache.h" |
| #include "alloc.h" |
| #include "config.h" |
| #include "entry.h" |
| #include "hex.h" |
| #include "parallel-checkout.h" |
| #include "pkt-line.h" |
| #include "progress.h" |
| #include "run-command.h" |
| #include "sigchain.h" |
| #include "streaming.h" |
| #include "thread-utils.h" |
| #include "trace2.h" |
| |
| struct pc_worker { |
| struct child_process cp; |
| size_t next_item_to_complete, nr_items_to_complete; |
| }; |
| |
| struct parallel_checkout { |
| enum pc_status status; |
| struct parallel_checkout_item *items; /* The parallel checkout queue. */ |
| size_t nr, alloc; |
| struct progress *progress; |
| unsigned int *progress_cnt; |
| }; |
| |
| static struct parallel_checkout parallel_checkout; |
| |
| enum pc_status parallel_checkout_status(void) |
| { |
| return parallel_checkout.status; |
| } |
| |
| static const int DEFAULT_THRESHOLD_FOR_PARALLELISM = 100; |
| static const int DEFAULT_NUM_WORKERS = 1; |
| |
| void get_parallel_checkout_configs(int *num_workers, int *threshold) |
| { |
| char *env_workers = getenv("GIT_TEST_CHECKOUT_WORKERS"); |
| |
| if (env_workers && *env_workers) { |
| if (strtol_i(env_workers, 10, num_workers)) { |
| die(_("invalid value for '%s': '%s'"), |
| "GIT_TEST_CHECKOUT_WORKERS", env_workers); |
| } |
| if (*num_workers < 1) |
| *num_workers = online_cpus(); |
| |
| *threshold = 0; |
| return; |
| } |
| |
| if (git_config_get_int("checkout.workers", num_workers)) |
| *num_workers = DEFAULT_NUM_WORKERS; |
| else if (*num_workers < 1) |
| *num_workers = online_cpus(); |
| |
| if (git_config_get_int("checkout.thresholdForParallelism", threshold)) |
| *threshold = DEFAULT_THRESHOLD_FOR_PARALLELISM; |
| } |
| |
| void init_parallel_checkout(void) |
| { |
| if (parallel_checkout.status != PC_UNINITIALIZED) |
| BUG("parallel checkout already initialized"); |
| |
| parallel_checkout.status = PC_ACCEPTING_ENTRIES; |
| } |
| |
| static void finish_parallel_checkout(void) |
| { |
| if (parallel_checkout.status == PC_UNINITIALIZED) |
| BUG("cannot finish parallel checkout: not initialized yet"); |
| |
| free(parallel_checkout.items); |
| memset(¶llel_checkout, 0, sizeof(parallel_checkout)); |
| } |
| |
| static int is_eligible_for_parallel_checkout(const struct cache_entry *ce, |
| const struct conv_attrs *ca) |
| { |
| enum conv_attrs_classification c; |
| size_t packed_item_size; |
| |
| /* |
| * Symlinks cannot be checked out in parallel as, in case of path |
| * collision, they could racily replace leading directories of other |
| * entries being checked out. Submodules are checked out in child |
| * processes, which have their own parallel checkout queues. |
| */ |
| if (!S_ISREG(ce->ce_mode)) |
| return 0; |
| |
| packed_item_size = sizeof(struct pc_item_fixed_portion) + ce->ce_namelen + |
| (ca->working_tree_encoding ? strlen(ca->working_tree_encoding) : 0); |
| |
| /* |
| * The amount of data we send to the workers per checkout item is |
| * typically small (75~300B). So unless we find an insanely huge path |
| * of 64KB, we should never reach the 65KB limit of one pkt-line. If |
| * that does happen, we let the sequential code handle the item. |
| */ |
| if (packed_item_size > LARGE_PACKET_DATA_MAX) |
| return 0; |
| |
| c = classify_conv_attrs(ca); |
| switch (c) { |
| case CA_CLASS_INCORE: |
| return 1; |
| |
| case CA_CLASS_INCORE_FILTER: |
| /* |
| * It would be safe to allow concurrent instances of |
| * single-file smudge filters, like rot13, but we should not |
| * assume that all filters are parallel-process safe. So we |
| * don't allow this. |
| */ |
| return 0; |
| |
| case CA_CLASS_INCORE_PROCESS: |
| /* |
| * The parallel queue and the delayed queue are not compatible, |
| * so they must be kept completely separated. And we can't tell |
| * if a long-running process will delay its response without |
| * actually asking it to perform the filtering. Therefore, this |
| * type of filter is not allowed in parallel checkout. |
| * |
| * Furthermore, there should only be one instance of the |
| * long-running process filter as we don't know how it is |
| * managing its own concurrency. So, spreading the entries that |
| * requisite such a filter among the parallel workers would |
| * require a lot more inter-process communication. We would |
| * probably have to designate a single process to interact with |
| * the filter and send all the necessary data to it, for each |
| * entry. |
| */ |
| return 0; |
| |
| case CA_CLASS_STREAMABLE: |
| return 1; |
| |
| default: |
| BUG("unsupported conv_attrs classification '%d'", c); |
| } |
| } |
| |
| int enqueue_checkout(struct cache_entry *ce, struct conv_attrs *ca, |
| int *checkout_counter) |
| { |
| struct parallel_checkout_item *pc_item; |
| |
| if (parallel_checkout.status != PC_ACCEPTING_ENTRIES || |
| !is_eligible_for_parallel_checkout(ce, ca)) |
| return -1; |
| |
| ALLOC_GROW(parallel_checkout.items, parallel_checkout.nr + 1, |
| parallel_checkout.alloc); |
| |
| pc_item = ¶llel_checkout.items[parallel_checkout.nr]; |
| pc_item->ce = ce; |
| memcpy(&pc_item->ca, ca, sizeof(pc_item->ca)); |
| pc_item->status = PC_ITEM_PENDING; |
| pc_item->id = parallel_checkout.nr; |
| pc_item->checkout_counter = checkout_counter; |
| parallel_checkout.nr++; |
| |
| return 0; |
| } |
| |
| size_t pc_queue_size(void) |
| { |
| return parallel_checkout.nr; |
| } |
| |
| static void advance_progress_meter(void) |
| { |
| if (parallel_checkout.progress) { |
| (*parallel_checkout.progress_cnt)++; |
| display_progress(parallel_checkout.progress, |
| *parallel_checkout.progress_cnt); |
| } |
| } |
| |
| static int handle_results(struct checkout *state) |
| { |
| int ret = 0; |
| size_t i; |
| int have_pending = 0; |
| |
| /* |
| * We first update the successfully written entries with the collected |
| * stat() data, so that they can be found by mark_colliding_entries(), |
| * in the next loop, when necessary. |
| */ |
| for (i = 0; i < parallel_checkout.nr; i++) { |
| struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; |
| if (pc_item->status == PC_ITEM_WRITTEN) |
| update_ce_after_write(state, pc_item->ce, &pc_item->st); |
| } |
| |
| for (i = 0; i < parallel_checkout.nr; i++) { |
| struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; |
| |
| switch(pc_item->status) { |
| case PC_ITEM_WRITTEN: |
| if (pc_item->checkout_counter) |
| (*pc_item->checkout_counter)++; |
| break; |
| case PC_ITEM_COLLIDED: |
| /* |
| * The entry could not be checked out due to a path |
| * collision with another entry. Since there can only |
| * be one entry of each colliding group on the disk, we |
| * could skip trying to check out this one and move on. |
| * However, this would leave the unwritten entries with |
| * null stat() fields on the index, which could |
| * potentially slow down subsequent operations that |
| * require refreshing it: git would not be able to |
| * trust st_size and would have to go to the filesystem |
| * to see if the contents match (see ie_modified()). |
| * |
| * Instead, let's pay the overhead only once, now, and |
| * call checkout_entry_ca() again for this file, to |
| * have its stat() data stored in the index. This also |
| * has the benefit of adding this entry and its |
| * colliding pair to the collision report message. |
| * Additionally, this overwriting behavior is consistent |
| * with what the sequential checkout does, so it doesn't |
| * add any extra overhead. |
| */ |
| ret |= checkout_entry_ca(pc_item->ce, &pc_item->ca, |
| state, NULL, |
| pc_item->checkout_counter); |
| advance_progress_meter(); |
| break; |
| case PC_ITEM_PENDING: |
| have_pending = 1; |
| /* fall through */ |
| case PC_ITEM_FAILED: |
| ret = -1; |
| break; |
| default: |
| BUG("unknown checkout item status in parallel checkout"); |
| } |
| } |
| |
| if (have_pending) |
| error("parallel checkout finished with pending entries"); |
| |
| return ret; |
| } |
| |
| static int reset_fd(int fd, const char *path) |
| { |
| if (lseek(fd, 0, SEEK_SET) != 0) |
| return error_errno("failed to rewind descriptor of '%s'", path); |
| if (ftruncate(fd, 0)) |
| return error_errno("failed to truncate file '%s'", path); |
| return 0; |
| } |
| |
| static int write_pc_item_to_fd(struct parallel_checkout_item *pc_item, int fd, |
| const char *path) |
| { |
| int ret; |
| struct stream_filter *filter; |
| struct strbuf buf = STRBUF_INIT; |
| char *blob; |
| size_t size; |
| ssize_t wrote; |
| |
| /* Sanity check */ |
| assert(is_eligible_for_parallel_checkout(pc_item->ce, &pc_item->ca)); |
| |
| filter = get_stream_filter_ca(&pc_item->ca, &pc_item->ce->oid); |
| if (filter) { |
| if (stream_blob_to_fd(fd, &pc_item->ce->oid, filter, 1)) { |
| /* On error, reset fd to try writing without streaming */ |
| if (reset_fd(fd, path)) |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| blob = read_blob_entry(pc_item->ce, &size); |
| if (!blob) |
| return error("cannot read object %s '%s'", |
| oid_to_hex(&pc_item->ce->oid), pc_item->ce->name); |
| |
| /* |
| * checkout metadata is used to give context for external process |
| * filters. Files requiring such filters are not eligible for parallel |
| * checkout, so pass NULL. Note: if that changes, the metadata must also |
| * be passed from the main process to the workers. |
| */ |
| ret = convert_to_working_tree_ca(&pc_item->ca, pc_item->ce->name, |
| blob, size, &buf, NULL); |
| |
| if (ret) { |
| size_t newsize; |
| free(blob); |
| blob = strbuf_detach(&buf, &newsize); |
| size = newsize; |
| } |
| |
| wrote = write_in_full(fd, blob, size); |
| free(blob); |
| if (wrote < 0) |
| return error("unable to write file '%s'", path); |
| |
| return 0; |
| } |
| |
| static int close_and_clear(int *fd) |
| { |
| int ret = 0; |
| |
| if (*fd >= 0) { |
| ret = close(*fd); |
| *fd = -1; |
| } |
| |
| return ret; |
| } |
| |
| void write_pc_item(struct parallel_checkout_item *pc_item, |
| struct checkout *state) |
| { |
| unsigned int mode = (pc_item->ce->ce_mode & 0100) ? 0777 : 0666; |
| int fd = -1, fstat_done = 0; |
| struct strbuf path = STRBUF_INIT; |
| const char *dir_sep; |
| |
| strbuf_add(&path, state->base_dir, state->base_dir_len); |
| strbuf_add(&path, pc_item->ce->name, pc_item->ce->ce_namelen); |
| |
| dir_sep = find_last_dir_sep(path.buf); |
| |
| /* |
| * The leading dirs should have been already created by now. But, in |
| * case of path collisions, one of the dirs could have been replaced by |
| * a symlink (checked out after we enqueued this entry for parallel |
| * checkout). Thus, we must check the leading dirs again. |
| */ |
| if (dir_sep && !has_dirs_only_path(path.buf, dir_sep - path.buf, |
| state->base_dir_len)) { |
| pc_item->status = PC_ITEM_COLLIDED; |
| trace2_data_string("pcheckout", NULL, "collision/dirname", path.buf); |
| goto out; |
| } |
| |
| fd = open(path.buf, O_WRONLY | O_CREAT | O_EXCL, mode); |
| |
| if (fd < 0) { |
| if (errno == EEXIST || errno == EISDIR) { |
| /* |
| * Errors which probably represent a path collision. |
| * Suppress the error message and mark the item to be |
| * retried later, sequentially. ENOTDIR and ENOENT are |
| * also interesting, but the above has_dirs_only_path() |
| * call should have already caught these cases. |
| */ |
| pc_item->status = PC_ITEM_COLLIDED; |
| trace2_data_string("pcheckout", NULL, |
| "collision/basename", path.buf); |
| } else { |
| error_errno("failed to open file '%s'", path.buf); |
| pc_item->status = PC_ITEM_FAILED; |
| } |
| goto out; |
| } |
| |
| if (write_pc_item_to_fd(pc_item, fd, path.buf)) { |
| /* Error was already reported. */ |
| pc_item->status = PC_ITEM_FAILED; |
| close_and_clear(&fd); |
| unlink(path.buf); |
| goto out; |
| } |
| |
| fstat_done = fstat_checkout_output(fd, state, &pc_item->st); |
| |
| if (close_and_clear(&fd)) { |
| error_errno("unable to close file '%s'", path.buf); |
| pc_item->status = PC_ITEM_FAILED; |
| goto out; |
| } |
| |
| if (state->refresh_cache && !fstat_done && lstat(path.buf, &pc_item->st) < 0) { |
| error_errno("unable to stat just-written file '%s'", path.buf); |
| pc_item->status = PC_ITEM_FAILED; |
| goto out; |
| } |
| |
| pc_item->status = PC_ITEM_WRITTEN; |
| |
| out: |
| strbuf_release(&path); |
| } |
| |
| static void send_one_item(int fd, struct parallel_checkout_item *pc_item) |
| { |
| size_t len_data; |
| char *data, *variant; |
| struct pc_item_fixed_portion *fixed_portion; |
| const char *working_tree_encoding = pc_item->ca.working_tree_encoding; |
| size_t name_len = pc_item->ce->ce_namelen; |
| size_t working_tree_encoding_len = working_tree_encoding ? |
| strlen(working_tree_encoding) : 0; |
| |
| /* |
| * Any changes in the calculation of the message size must also be made |
| * in is_eligible_for_parallel_checkout(). |
| */ |
| len_data = sizeof(struct pc_item_fixed_portion) + name_len + |
| working_tree_encoding_len; |
| |
| data = xmalloc(len_data); |
| |
| fixed_portion = (struct pc_item_fixed_portion *)data; |
| fixed_portion->id = pc_item->id; |
| fixed_portion->ce_mode = pc_item->ce->ce_mode; |
| fixed_portion->crlf_action = pc_item->ca.crlf_action; |
| fixed_portion->ident = pc_item->ca.ident; |
| fixed_portion->name_len = name_len; |
| fixed_portion->working_tree_encoding_len = working_tree_encoding_len; |
| /* |
| * We pad the unused bytes in the hash array because, otherwise, |
| * Valgrind would complain about passing uninitialized bytes to a |
| * write() syscall. The warning doesn't represent any real risk here, |
| * but it could hinder the detection of actual errors. |
| */ |
| oidcpy_with_padding(&fixed_portion->oid, &pc_item->ce->oid); |
| |
| variant = data + sizeof(*fixed_portion); |
| if (working_tree_encoding_len) { |
| memcpy(variant, working_tree_encoding, working_tree_encoding_len); |
| variant += working_tree_encoding_len; |
| } |
| memcpy(variant, pc_item->ce->name, name_len); |
| |
| packet_write(fd, data, len_data); |
| |
| free(data); |
| } |
| |
| static void send_batch(int fd, size_t start, size_t nr) |
| { |
| size_t i; |
| sigchain_push(SIGPIPE, SIG_IGN); |
| for (i = 0; i < nr; i++) |
| send_one_item(fd, ¶llel_checkout.items[start + i]); |
| packet_flush(fd); |
| sigchain_pop(SIGPIPE); |
| } |
| |
| static struct pc_worker *setup_workers(struct checkout *state, int num_workers) |
| { |
| struct pc_worker *workers; |
| int i, workers_with_one_extra_item; |
| size_t base_batch_size, batch_beginning = 0; |
| |
| ALLOC_ARRAY(workers, num_workers); |
| |
| for (i = 0; i < num_workers; i++) { |
| struct child_process *cp = &workers[i].cp; |
| |
| child_process_init(cp); |
| cp->git_cmd = 1; |
| cp->in = -1; |
| cp->out = -1; |
| cp->clean_on_exit = 1; |
| strvec_push(&cp->args, "checkout--worker"); |
| if (state->base_dir_len) |
| strvec_pushf(&cp->args, "--prefix=%s", state->base_dir); |
| if (start_command(cp)) |
| die("failed to spawn checkout worker"); |
| } |
| |
| base_batch_size = parallel_checkout.nr / num_workers; |
| workers_with_one_extra_item = parallel_checkout.nr % num_workers; |
| |
| for (i = 0; i < num_workers; i++) { |
| struct pc_worker *worker = &workers[i]; |
| size_t batch_size = base_batch_size; |
| |
| /* distribute the extra work evenly */ |
| if (i < workers_with_one_extra_item) |
| batch_size++; |
| |
| send_batch(worker->cp.in, batch_beginning, batch_size); |
| worker->next_item_to_complete = batch_beginning; |
| worker->nr_items_to_complete = batch_size; |
| |
| batch_beginning += batch_size; |
| } |
| |
| return workers; |
| } |
| |
| static void finish_workers(struct pc_worker *workers, int num_workers) |
| { |
| int i; |
| |
| /* |
| * Close pipes before calling finish_command() to let the workers |
| * exit asynchronously and avoid spending extra time on wait(). |
| */ |
| for (i = 0; i < num_workers; i++) { |
| struct child_process *cp = &workers[i].cp; |
| if (cp->in >= 0) |
| close(cp->in); |
| if (cp->out >= 0) |
| close(cp->out); |
| } |
| |
| for (i = 0; i < num_workers; i++) { |
| int rc = finish_command(&workers[i].cp); |
| if (rc > 128) { |
| /* |
| * For a normal non-zero exit, the worker should have |
| * already printed something useful to stderr. But a |
| * death by signal should be mentioned to the user. |
| */ |
| error("checkout worker %d died of signal %d", i, rc - 128); |
| } |
| } |
| |
| free(workers); |
| } |
| |
| static inline void assert_pc_item_result_size(int got, int exp) |
| { |
| if (got != exp) |
| BUG("wrong result size from checkout worker (got %dB, exp %dB)", |
| got, exp); |
| } |
| |
| static void parse_and_save_result(const char *buffer, int len, |
| struct pc_worker *worker) |
| { |
| struct pc_item_result *res; |
| struct parallel_checkout_item *pc_item; |
| struct stat *st = NULL; |
| |
| if (len < PC_ITEM_RESULT_BASE_SIZE) |
| BUG("too short result from checkout worker (got %dB, exp >=%dB)", |
| len, (int)PC_ITEM_RESULT_BASE_SIZE); |
| |
| res = (struct pc_item_result *)buffer; |
| |
| /* |
| * Worker should send either the full result struct on success, or |
| * just the base (i.e. no stat data), otherwise. |
| */ |
| if (res->status == PC_ITEM_WRITTEN) { |
| assert_pc_item_result_size(len, (int)sizeof(struct pc_item_result)); |
| st = &res->st; |
| } else { |
| assert_pc_item_result_size(len, (int)PC_ITEM_RESULT_BASE_SIZE); |
| } |
| |
| if (!worker->nr_items_to_complete) |
| BUG("received result from supposedly finished checkout worker"); |
| if (res->id != worker->next_item_to_complete) |
| BUG("unexpected item id from checkout worker (got %"PRIuMAX", exp %"PRIuMAX")", |
| (uintmax_t)res->id, (uintmax_t)worker->next_item_to_complete); |
| |
| worker->next_item_to_complete++; |
| worker->nr_items_to_complete--; |
| |
| pc_item = ¶llel_checkout.items[res->id]; |
| pc_item->status = res->status; |
| if (st) |
| pc_item->st = *st; |
| |
| if (res->status != PC_ITEM_COLLIDED) |
| advance_progress_meter(); |
| } |
| |
| static void gather_results_from_workers(struct pc_worker *workers, |
| int num_workers) |
| { |
| int i, active_workers = num_workers; |
| struct pollfd *pfds; |
| |
| CALLOC_ARRAY(pfds, num_workers); |
| for (i = 0; i < num_workers; i++) { |
| pfds[i].fd = workers[i].cp.out; |
| pfds[i].events = POLLIN; |
| } |
| |
| while (active_workers) { |
| int nr = poll(pfds, num_workers, -1); |
| |
| if (nr < 0) { |
| if (errno == EINTR) |
| continue; |
| die_errno("failed to poll checkout workers"); |
| } |
| |
| for (i = 0; i < num_workers && nr > 0; i++) { |
| struct pc_worker *worker = &workers[i]; |
| struct pollfd *pfd = &pfds[i]; |
| |
| if (!pfd->revents) |
| continue; |
| |
| if (pfd->revents & POLLIN) { |
| int len = packet_read(pfd->fd, packet_buffer, |
| sizeof(packet_buffer), 0); |
| |
| if (len < 0) { |
| BUG("packet_read() returned negative value"); |
| } else if (!len) { |
| pfd->fd = -1; |
| active_workers--; |
| } else { |
| parse_and_save_result(packet_buffer, |
| len, worker); |
| } |
| } else if (pfd->revents & POLLHUP) { |
| pfd->fd = -1; |
| active_workers--; |
| } else if (pfd->revents & (POLLNVAL | POLLERR)) { |
| die("error polling from checkout worker"); |
| } |
| |
| nr--; |
| } |
| } |
| |
| free(pfds); |
| } |
| |
| static void write_items_sequentially(struct checkout *state) |
| { |
| size_t i; |
| |
| for (i = 0; i < parallel_checkout.nr; i++) { |
| struct parallel_checkout_item *pc_item = ¶llel_checkout.items[i]; |
| write_pc_item(pc_item, state); |
| if (pc_item->status != PC_ITEM_COLLIDED) |
| advance_progress_meter(); |
| } |
| } |
| |
| int run_parallel_checkout(struct checkout *state, int num_workers, int threshold, |
| struct progress *progress, unsigned int *progress_cnt) |
| { |
| int ret; |
| |
| if (parallel_checkout.status != PC_ACCEPTING_ENTRIES) |
| BUG("cannot run parallel checkout: uninitialized or already running"); |
| |
| parallel_checkout.status = PC_RUNNING; |
| parallel_checkout.progress = progress; |
| parallel_checkout.progress_cnt = progress_cnt; |
| |
| if (parallel_checkout.nr < num_workers) |
| num_workers = parallel_checkout.nr; |
| |
| if (num_workers <= 1 || parallel_checkout.nr < threshold) { |
| write_items_sequentially(state); |
| } else { |
| struct pc_worker *workers = setup_workers(state, num_workers); |
| gather_results_from_workers(workers, num_workers); |
| finish_workers(workers, num_workers); |
| } |
| |
| ret = handle_results(state); |
| |
| finish_parallel_checkout(); |
| return ret; |
| } |