| #include "builtin.h" |
| #include "cache.h" |
| #include "config.h" |
| #include "attr.h" |
| #include "object.h" |
| #include "blob.h" |
| #include "commit.h" |
| #include "tag.h" |
| #include "tree.h" |
| #include "delta.h" |
| #include "pack.h" |
| #include "pack-revindex.h" |
| #include "csum-file.h" |
| #include "tree-walk.h" |
| #include "diff.h" |
| #include "revision.h" |
| #include "list-objects.h" |
| #include "pack-objects.h" |
| #include "progress.h" |
| #include "refs.h" |
| #include "streaming.h" |
| #include "thread-utils.h" |
| #include "pack-bitmap.h" |
| #include "reachable.h" |
| #include "sha1-array.h" |
| #include "argv-array.h" |
| #include "mru.h" |
| |
| static const char *pack_usage[] = { |
| N_("git pack-objects --stdout [<options>...] [< <ref-list> | < <object-list>]"), |
| N_("git pack-objects [<options>...] <base-name> [< <ref-list> | < <object-list>]"), |
| NULL |
| }; |
| |
| /* |
| * Objects we are going to pack are collected in the `to_pack` structure. |
| * It contains an array (dynamically expanded) of the object data, and a map |
| * that can resolve SHA1s to their position in the array. |
| */ |
| static struct packing_data to_pack; |
| |
| static struct pack_idx_entry **written_list; |
| static uint32_t nr_result, nr_written; |
| |
| static int non_empty; |
| static int reuse_delta = 1, reuse_object = 1; |
| static int keep_unreachable, unpack_unreachable, include_tag; |
| static timestamp_t unpack_unreachable_expiration; |
| static int pack_loose_unreachable; |
| static int local; |
| static int have_non_local_packs; |
| static int incremental; |
| static int ignore_packed_keep; |
| static int allow_ofs_delta; |
| static struct pack_idx_option pack_idx_opts; |
| static const char *base_name; |
| static int progress = 1; |
| static int window = 10; |
| static unsigned long pack_size_limit; |
| static int depth = 50; |
| static int delta_search_threads; |
| static int pack_to_stdout; |
| static int num_preferred_base; |
| static struct progress *progress_state; |
| |
| static struct packed_git *reuse_packfile; |
| static uint32_t reuse_packfile_objects; |
| static off_t reuse_packfile_offset; |
| |
| static int use_bitmap_index_default = 1; |
| static int use_bitmap_index = -1; |
| static int write_bitmap_index; |
| static uint16_t write_bitmap_options; |
| |
| static unsigned long delta_cache_size = 0; |
| static unsigned long max_delta_cache_size = 256 * 1024 * 1024; |
| static unsigned long cache_max_small_delta_size = 1000; |
| |
| static unsigned long window_memory_limit = 0; |
| |
| /* |
| * stats |
| */ |
| static uint32_t written, written_delta; |
| static uint32_t reused, reused_delta; |
| |
| /* |
| * Indexed commits |
| */ |
| static struct commit **indexed_commits; |
| static unsigned int indexed_commits_nr; |
| static unsigned int indexed_commits_alloc; |
| |
| static void index_commit_for_bitmap(struct commit *commit) |
| { |
| if (indexed_commits_nr >= indexed_commits_alloc) { |
| indexed_commits_alloc = (indexed_commits_alloc + 32) * 2; |
| REALLOC_ARRAY(indexed_commits, indexed_commits_alloc); |
| } |
| |
| indexed_commits[indexed_commits_nr++] = commit; |
| } |
| |
| static void *get_delta(struct object_entry *entry) |
| { |
| unsigned long size, base_size, delta_size; |
| void *buf, *base_buf, *delta_buf; |
| enum object_type type; |
| |
| buf = read_sha1_file(entry->idx.oid.hash, &type, &size); |
| if (!buf) |
| die("unable to read %s", oid_to_hex(&entry->idx.oid)); |
| base_buf = read_sha1_file(entry->delta->idx.oid.hash, &type, |
| &base_size); |
| if (!base_buf) |
| die("unable to read %s", |
| oid_to_hex(&entry->delta->idx.oid)); |
| delta_buf = diff_delta(base_buf, base_size, |
| buf, size, &delta_size, 0); |
| if (!delta_buf || delta_size != entry->delta_size) |
| die("delta size changed"); |
| free(buf); |
| free(base_buf); |
| return delta_buf; |
| } |
| |
| static unsigned long do_compress(void **pptr, unsigned long size) |
| { |
| git_zstream stream; |
| void *in, *out; |
| unsigned long maxsize; |
| |
| git_deflate_init(&stream, pack_compression_level); |
| maxsize = git_deflate_bound(&stream, size); |
| |
| in = *pptr; |
| out = xmalloc(maxsize); |
| *pptr = out; |
| |
| stream.next_in = in; |
| stream.avail_in = size; |
| stream.next_out = out; |
| stream.avail_out = maxsize; |
| while (git_deflate(&stream, Z_FINISH) == Z_OK) |
| ; /* nothing */ |
| git_deflate_end(&stream); |
| |
| free(in); |
| return stream.total_out; |
| } |
| |
| static unsigned long write_large_blob_data(struct git_istream *st, struct sha1file *f, |
| const unsigned char *sha1) |
| { |
| git_zstream stream; |
| unsigned char ibuf[1024 * 16]; |
| unsigned char obuf[1024 * 16]; |
| unsigned long olen = 0; |
| |
| git_deflate_init(&stream, pack_compression_level); |
| |
| for (;;) { |
| ssize_t readlen; |
| int zret = Z_OK; |
| readlen = read_istream(st, ibuf, sizeof(ibuf)); |
| if (readlen == -1) |
| die(_("unable to read %s"), sha1_to_hex(sha1)); |
| |
| stream.next_in = ibuf; |
| stream.avail_in = readlen; |
| while ((stream.avail_in || readlen == 0) && |
| (zret == Z_OK || zret == Z_BUF_ERROR)) { |
| stream.next_out = obuf; |
| stream.avail_out = sizeof(obuf); |
| zret = git_deflate(&stream, readlen ? 0 : Z_FINISH); |
| sha1write(f, obuf, stream.next_out - obuf); |
| olen += stream.next_out - obuf; |
| } |
| if (stream.avail_in) |
| die(_("deflate error (%d)"), zret); |
| if (readlen == 0) { |
| if (zret != Z_STREAM_END) |
| die(_("deflate error (%d)"), zret); |
| break; |
| } |
| } |
| git_deflate_end(&stream); |
| return olen; |
| } |
| |
| /* |
| * we are going to reuse the existing object data as is. make |
| * sure it is not corrupt. |
| */ |
| static int check_pack_inflate(struct packed_git *p, |
| struct pack_window **w_curs, |
| off_t offset, |
| off_t len, |
| unsigned long expect) |
| { |
| git_zstream stream; |
| unsigned char fakebuf[4096], *in; |
| int st; |
| |
| memset(&stream, 0, sizeof(stream)); |
| git_inflate_init(&stream); |
| do { |
| in = use_pack(p, w_curs, offset, &stream.avail_in); |
| stream.next_in = in; |
| stream.next_out = fakebuf; |
| stream.avail_out = sizeof(fakebuf); |
| st = git_inflate(&stream, Z_FINISH); |
| offset += stream.next_in - in; |
| } while (st == Z_OK || st == Z_BUF_ERROR); |
| git_inflate_end(&stream); |
| return (st == Z_STREAM_END && |
| stream.total_out == expect && |
| stream.total_in == len) ? 0 : -1; |
| } |
| |
| static void copy_pack_data(struct sha1file *f, |
| struct packed_git *p, |
| struct pack_window **w_curs, |
| off_t offset, |
| off_t len) |
| { |
| unsigned char *in; |
| unsigned long avail; |
| |
| while (len) { |
| in = use_pack(p, w_curs, offset, &avail); |
| if (avail > len) |
| avail = (unsigned long)len; |
| sha1write(f, in, avail); |
| offset += avail; |
| len -= avail; |
| } |
| } |
| |
| /* Return 0 if we will bust the pack-size limit */ |
| static unsigned long write_no_reuse_object(struct sha1file *f, struct object_entry *entry, |
| unsigned long limit, int usable_delta) |
| { |
| unsigned long size, datalen; |
| unsigned char header[MAX_PACK_OBJECT_HEADER], |
| dheader[MAX_PACK_OBJECT_HEADER]; |
| unsigned hdrlen; |
| enum object_type type; |
| void *buf; |
| struct git_istream *st = NULL; |
| |
| if (!usable_delta) { |
| if (entry->type == OBJ_BLOB && |
| entry->size > big_file_threshold && |
| (st = open_istream(entry->idx.oid.hash, &type, &size, NULL)) != NULL) |
| buf = NULL; |
| else { |
| buf = read_sha1_file(entry->idx.oid.hash, &type, |
| &size); |
| if (!buf) |
| die(_("unable to read %s"), |
| oid_to_hex(&entry->idx.oid)); |
| } |
| /* |
| * make sure no cached delta data remains from a |
| * previous attempt before a pack split occurred. |
| */ |
| FREE_AND_NULL(entry->delta_data); |
| entry->z_delta_size = 0; |
| } else if (entry->delta_data) { |
| size = entry->delta_size; |
| buf = entry->delta_data; |
| entry->delta_data = NULL; |
| type = (allow_ofs_delta && entry->delta->idx.offset) ? |
| OBJ_OFS_DELTA : OBJ_REF_DELTA; |
| } else { |
| buf = get_delta(entry); |
| size = entry->delta_size; |
| type = (allow_ofs_delta && entry->delta->idx.offset) ? |
| OBJ_OFS_DELTA : OBJ_REF_DELTA; |
| } |
| |
| if (st) /* large blob case, just assume we don't compress well */ |
| datalen = size; |
| else if (entry->z_delta_size) |
| datalen = entry->z_delta_size; |
| else |
| datalen = do_compress(&buf, size); |
| |
| /* |
| * The object header is a byte of 'type' followed by zero or |
| * more bytes of length. |
| */ |
| hdrlen = encode_in_pack_object_header(header, sizeof(header), |
| type, size); |
| |
| if (type == OBJ_OFS_DELTA) { |
| /* |
| * Deltas with relative base contain an additional |
| * encoding of the relative offset for the delta |
| * base from this object's position in the pack. |
| */ |
| off_t ofs = entry->idx.offset - entry->delta->idx.offset; |
| unsigned pos = sizeof(dheader) - 1; |
| dheader[pos] = ofs & 127; |
| while (ofs >>= 7) |
| dheader[--pos] = 128 | (--ofs & 127); |
| if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) { |
| if (st) |
| close_istream(st); |
| free(buf); |
| return 0; |
| } |
| sha1write(f, header, hdrlen); |
| sha1write(f, dheader + pos, sizeof(dheader) - pos); |
| hdrlen += sizeof(dheader) - pos; |
| } else if (type == OBJ_REF_DELTA) { |
| /* |
| * Deltas with a base reference contain |
| * an additional 20 bytes for the base sha1. |
| */ |
| if (limit && hdrlen + 20 + datalen + 20 >= limit) { |
| if (st) |
| close_istream(st); |
| free(buf); |
| return 0; |
| } |
| sha1write(f, header, hdrlen); |
| sha1write(f, entry->delta->idx.oid.hash, 20); |
| hdrlen += 20; |
| } else { |
| if (limit && hdrlen + datalen + 20 >= limit) { |
| if (st) |
| close_istream(st); |
| free(buf); |
| return 0; |
| } |
| sha1write(f, header, hdrlen); |
| } |
| if (st) { |
| datalen = write_large_blob_data(st, f, entry->idx.oid.hash); |
| close_istream(st); |
| } else { |
| sha1write(f, buf, datalen); |
| free(buf); |
| } |
| |
| return hdrlen + datalen; |
| } |
| |
| /* Return 0 if we will bust the pack-size limit */ |
| static off_t write_reuse_object(struct sha1file *f, struct object_entry *entry, |
| unsigned long limit, int usable_delta) |
| { |
| struct packed_git *p = entry->in_pack; |
| struct pack_window *w_curs = NULL; |
| struct revindex_entry *revidx; |
| off_t offset; |
| enum object_type type = entry->type; |
| off_t datalen; |
| unsigned char header[MAX_PACK_OBJECT_HEADER], |
| dheader[MAX_PACK_OBJECT_HEADER]; |
| unsigned hdrlen; |
| |
| if (entry->delta) |
| type = (allow_ofs_delta && entry->delta->idx.offset) ? |
| OBJ_OFS_DELTA : OBJ_REF_DELTA; |
| hdrlen = encode_in_pack_object_header(header, sizeof(header), |
| type, entry->size); |
| |
| offset = entry->in_pack_offset; |
| revidx = find_pack_revindex(p, offset); |
| datalen = revidx[1].offset - offset; |
| if (!pack_to_stdout && p->index_version > 1 && |
| check_pack_crc(p, &w_curs, offset, datalen, revidx->nr)) { |
| error("bad packed object CRC for %s", |
| oid_to_hex(&entry->idx.oid)); |
| unuse_pack(&w_curs); |
| return write_no_reuse_object(f, entry, limit, usable_delta); |
| } |
| |
| offset += entry->in_pack_header_size; |
| datalen -= entry->in_pack_header_size; |
| |
| if (!pack_to_stdout && p->index_version == 1 && |
| check_pack_inflate(p, &w_curs, offset, datalen, entry->size)) { |
| error("corrupt packed object for %s", |
| oid_to_hex(&entry->idx.oid)); |
| unuse_pack(&w_curs); |
| return write_no_reuse_object(f, entry, limit, usable_delta); |
| } |
| |
| if (type == OBJ_OFS_DELTA) { |
| off_t ofs = entry->idx.offset - entry->delta->idx.offset; |
| unsigned pos = sizeof(dheader) - 1; |
| dheader[pos] = ofs & 127; |
| while (ofs >>= 7) |
| dheader[--pos] = 128 | (--ofs & 127); |
| if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) { |
| unuse_pack(&w_curs); |
| return 0; |
| } |
| sha1write(f, header, hdrlen); |
| sha1write(f, dheader + pos, sizeof(dheader) - pos); |
| hdrlen += sizeof(dheader) - pos; |
| reused_delta++; |
| } else if (type == OBJ_REF_DELTA) { |
| if (limit && hdrlen + 20 + datalen + 20 >= limit) { |
| unuse_pack(&w_curs); |
| return 0; |
| } |
| sha1write(f, header, hdrlen); |
| sha1write(f, entry->delta->idx.oid.hash, 20); |
| hdrlen += 20; |
| reused_delta++; |
| } else { |
| if (limit && hdrlen + datalen + 20 >= limit) { |
| unuse_pack(&w_curs); |
| return 0; |
| } |
| sha1write(f, header, hdrlen); |
| } |
| copy_pack_data(f, p, &w_curs, offset, datalen); |
| unuse_pack(&w_curs); |
| reused++; |
| return hdrlen + datalen; |
| } |
| |
| /* Return 0 if we will bust the pack-size limit */ |
| static off_t write_object(struct sha1file *f, |
| struct object_entry *entry, |
| off_t write_offset) |
| { |
| unsigned long limit; |
| off_t len; |
| int usable_delta, to_reuse; |
| |
| if (!pack_to_stdout) |
| crc32_begin(f); |
| |
| /* apply size limit if limited packsize and not first object */ |
| if (!pack_size_limit || !nr_written) |
| limit = 0; |
| else if (pack_size_limit <= write_offset) |
| /* |
| * the earlier object did not fit the limit; avoid |
| * mistaking this with unlimited (i.e. limit = 0). |
| */ |
| limit = 1; |
| else |
| limit = pack_size_limit - write_offset; |
| |
| if (!entry->delta) |
| usable_delta = 0; /* no delta */ |
| else if (!pack_size_limit) |
| usable_delta = 1; /* unlimited packfile */ |
| else if (entry->delta->idx.offset == (off_t)-1) |
| usable_delta = 0; /* base was written to another pack */ |
| else if (entry->delta->idx.offset) |
| usable_delta = 1; /* base already exists in this pack */ |
| else |
| usable_delta = 0; /* base could end up in another pack */ |
| |
| if (!reuse_object) |
| to_reuse = 0; /* explicit */ |
| else if (!entry->in_pack) |
| to_reuse = 0; /* can't reuse what we don't have */ |
| else if (entry->type == OBJ_REF_DELTA || entry->type == OBJ_OFS_DELTA) |
| /* check_object() decided it for us ... */ |
| to_reuse = usable_delta; |
| /* ... but pack split may override that */ |
| else if (entry->type != entry->in_pack_type) |
| to_reuse = 0; /* pack has delta which is unusable */ |
| else if (entry->delta) |
| to_reuse = 0; /* we want to pack afresh */ |
| else |
| to_reuse = 1; /* we have it in-pack undeltified, |
| * and we do not need to deltify it. |
| */ |
| |
| if (!to_reuse) |
| len = write_no_reuse_object(f, entry, limit, usable_delta); |
| else |
| len = write_reuse_object(f, entry, limit, usable_delta); |
| if (!len) |
| return 0; |
| |
| if (usable_delta) |
| written_delta++; |
| written++; |
| if (!pack_to_stdout) |
| entry->idx.crc32 = crc32_end(f); |
| return len; |
| } |
| |
| enum write_one_status { |
| WRITE_ONE_SKIP = -1, /* already written */ |
| WRITE_ONE_BREAK = 0, /* writing this will bust the limit; not written */ |
| WRITE_ONE_WRITTEN = 1, /* normal */ |
| WRITE_ONE_RECURSIVE = 2 /* already scheduled to be written */ |
| }; |
| |
| static enum write_one_status write_one(struct sha1file *f, |
| struct object_entry *e, |
| off_t *offset) |
| { |
| off_t size; |
| int recursing; |
| |
| /* |
| * we set offset to 1 (which is an impossible value) to mark |
| * the fact that this object is involved in "write its base |
| * first before writing a deltified object" recursion. |
| */ |
| recursing = (e->idx.offset == 1); |
| if (recursing) { |
| warning("recursive delta detected for object %s", |
| oid_to_hex(&e->idx.oid)); |
| return WRITE_ONE_RECURSIVE; |
| } else if (e->idx.offset || e->preferred_base) { |
| /* offset is non zero if object is written already. */ |
| return WRITE_ONE_SKIP; |
| } |
| |
| /* if we are deltified, write out base object first. */ |
| if (e->delta) { |
| e->idx.offset = 1; /* now recurse */ |
| switch (write_one(f, e->delta, offset)) { |
| case WRITE_ONE_RECURSIVE: |
| /* we cannot depend on this one */ |
| e->delta = NULL; |
| break; |
| default: |
| break; |
| case WRITE_ONE_BREAK: |
| e->idx.offset = recursing; |
| return WRITE_ONE_BREAK; |
| } |
| } |
| |
| e->idx.offset = *offset; |
| size = write_object(f, e, *offset); |
| if (!size) { |
| e->idx.offset = recursing; |
| return WRITE_ONE_BREAK; |
| } |
| written_list[nr_written++] = &e->idx; |
| |
| /* make sure off_t is sufficiently large not to wrap */ |
| if (signed_add_overflows(*offset, size)) |
| die("pack too large for current definition of off_t"); |
| *offset += size; |
| return WRITE_ONE_WRITTEN; |
| } |
| |
| static int mark_tagged(const char *path, const struct object_id *oid, int flag, |
| void *cb_data) |
| { |
| unsigned char peeled[20]; |
| struct object_entry *entry = packlist_find(&to_pack, oid->hash, NULL); |
| |
| if (entry) |
| entry->tagged = 1; |
| if (!peel_ref(path, peeled)) { |
| entry = packlist_find(&to_pack, peeled, NULL); |
| if (entry) |
| entry->tagged = 1; |
| } |
| return 0; |
| } |
| |
| static inline void add_to_write_order(struct object_entry **wo, |
| unsigned int *endp, |
| struct object_entry *e) |
| { |
| if (e->filled) |
| return; |
| wo[(*endp)++] = e; |
| e->filled = 1; |
| } |
| |
| static void add_descendants_to_write_order(struct object_entry **wo, |
| unsigned int *endp, |
| struct object_entry *e) |
| { |
| int add_to_order = 1; |
| while (e) { |
| if (add_to_order) { |
| struct object_entry *s; |
| /* add this node... */ |
| add_to_write_order(wo, endp, e); |
| /* all its siblings... */ |
| for (s = e->delta_sibling; s; s = s->delta_sibling) { |
| add_to_write_order(wo, endp, s); |
| } |
| } |
| /* drop down a level to add left subtree nodes if possible */ |
| if (e->delta_child) { |
| add_to_order = 1; |
| e = e->delta_child; |
| } else { |
| add_to_order = 0; |
| /* our sibling might have some children, it is next */ |
| if (e->delta_sibling) { |
| e = e->delta_sibling; |
| continue; |
| } |
| /* go back to our parent node */ |
| e = e->delta; |
| while (e && !e->delta_sibling) { |
| /* we're on the right side of a subtree, keep |
| * going up until we can go right again */ |
| e = e->delta; |
| } |
| if (!e) { |
| /* done- we hit our original root node */ |
| return; |
| } |
| /* pass it off to sibling at this level */ |
| e = e->delta_sibling; |
| } |
| }; |
| } |
| |
| static void add_family_to_write_order(struct object_entry **wo, |
| unsigned int *endp, |
| struct object_entry *e) |
| { |
| struct object_entry *root; |
| |
| for (root = e; root->delta; root = root->delta) |
| ; /* nothing */ |
| add_descendants_to_write_order(wo, endp, root); |
| } |
| |
| static struct object_entry **compute_write_order(void) |
| { |
| unsigned int i, wo_end, last_untagged; |
| |
| struct object_entry **wo; |
| struct object_entry *objects = to_pack.objects; |
| |
| for (i = 0; i < to_pack.nr_objects; i++) { |
| objects[i].tagged = 0; |
| objects[i].filled = 0; |
| objects[i].delta_child = NULL; |
| objects[i].delta_sibling = NULL; |
| } |
| |
| /* |
| * Fully connect delta_child/delta_sibling network. |
| * Make sure delta_sibling is sorted in the original |
| * recency order. |
| */ |
| for (i = to_pack.nr_objects; i > 0;) { |
| struct object_entry *e = &objects[--i]; |
| if (!e->delta) |
| continue; |
| /* Mark me as the first child */ |
| e->delta_sibling = e->delta->delta_child; |
| e->delta->delta_child = e; |
| } |
| |
| /* |
| * Mark objects that are at the tip of tags. |
| */ |
| for_each_tag_ref(mark_tagged, NULL); |
| |
| /* |
| * Give the objects in the original recency order until |
| * we see a tagged tip. |
| */ |
| ALLOC_ARRAY(wo, to_pack.nr_objects); |
| for (i = wo_end = 0; i < to_pack.nr_objects; i++) { |
| if (objects[i].tagged) |
| break; |
| add_to_write_order(wo, &wo_end, &objects[i]); |
| } |
| last_untagged = i; |
| |
| /* |
| * Then fill all the tagged tips. |
| */ |
| for (; i < to_pack.nr_objects; i++) { |
| if (objects[i].tagged) |
| add_to_write_order(wo, &wo_end, &objects[i]); |
| } |
| |
| /* |
| * And then all remaining commits and tags. |
| */ |
| for (i = last_untagged; i < to_pack.nr_objects; i++) { |
| if (objects[i].type != OBJ_COMMIT && |
| objects[i].type != OBJ_TAG) |
| continue; |
| add_to_write_order(wo, &wo_end, &objects[i]); |
| } |
| |
| /* |
| * And then all the trees. |
| */ |
| for (i = last_untagged; i < to_pack.nr_objects; i++) { |
| if (objects[i].type != OBJ_TREE) |
| continue; |
| add_to_write_order(wo, &wo_end, &objects[i]); |
| } |
| |
| /* |
| * Finally all the rest in really tight order |
| */ |
| for (i = last_untagged; i < to_pack.nr_objects; i++) { |
| if (!objects[i].filled) |
| add_family_to_write_order(wo, &wo_end, &objects[i]); |
| } |
| |
| if (wo_end != to_pack.nr_objects) |
| die("ordered %u objects, expected %"PRIu32, wo_end, to_pack.nr_objects); |
| |
| return wo; |
| } |
| |
| static off_t write_reused_pack(struct sha1file *f) |
| { |
| unsigned char buffer[8192]; |
| off_t to_write, total; |
| int fd; |
| |
| if (!is_pack_valid(reuse_packfile)) |
| die("packfile is invalid: %s", reuse_packfile->pack_name); |
| |
| fd = git_open(reuse_packfile->pack_name); |
| if (fd < 0) |
| die_errno("unable to open packfile for reuse: %s", |
| reuse_packfile->pack_name); |
| |
| if (lseek(fd, sizeof(struct pack_header), SEEK_SET) == -1) |
| die_errno("unable to seek in reused packfile"); |
| |
| if (reuse_packfile_offset < 0) |
| reuse_packfile_offset = reuse_packfile->pack_size - 20; |
| |
| total = to_write = reuse_packfile_offset - sizeof(struct pack_header); |
| |
| while (to_write) { |
| int read_pack = xread(fd, buffer, sizeof(buffer)); |
| |
| if (read_pack <= 0) |
| die_errno("unable to read from reused packfile"); |
| |
| if (read_pack > to_write) |
| read_pack = to_write; |
| |
| sha1write(f, buffer, read_pack); |
| to_write -= read_pack; |
| |
| /* |
| * We don't know the actual number of objects written, |
| * only how many bytes written, how many bytes total, and |
| * how many objects total. So we can fake it by pretending all |
| * objects we are writing are the same size. This gives us a |
| * smooth progress meter, and at the end it matches the true |
| * answer. |
| */ |
| written = reuse_packfile_objects * |
| (((double)(total - to_write)) / total); |
| display_progress(progress_state, written); |
| } |
| |
| close(fd); |
| written = reuse_packfile_objects; |
| display_progress(progress_state, written); |
| return reuse_packfile_offset - sizeof(struct pack_header); |
| } |
| |
| static const char no_split_warning[] = N_( |
| "disabling bitmap writing, packs are split due to pack.packSizeLimit" |
| ); |
| |
| static void write_pack_file(void) |
| { |
| uint32_t i = 0, j; |
| struct sha1file *f; |
| off_t offset; |
| uint32_t nr_remaining = nr_result; |
| time_t last_mtime = 0; |
| struct object_entry **write_order; |
| |
| if (progress > pack_to_stdout) |
| progress_state = start_progress(_("Writing objects"), nr_result); |
| ALLOC_ARRAY(written_list, to_pack.nr_objects); |
| write_order = compute_write_order(); |
| |
| do { |
| unsigned char sha1[20]; |
| char *pack_tmp_name = NULL; |
| |
| if (pack_to_stdout) |
| f = sha1fd_throughput(1, "<stdout>", progress_state); |
| else |
| f = create_tmp_packfile(&pack_tmp_name); |
| |
| offset = write_pack_header(f, nr_remaining); |
| |
| if (reuse_packfile) { |
| off_t packfile_size; |
| assert(pack_to_stdout); |
| |
| packfile_size = write_reused_pack(f); |
| offset += packfile_size; |
| } |
| |
| nr_written = 0; |
| for (; i < to_pack.nr_objects; i++) { |
| struct object_entry *e = write_order[i]; |
| if (write_one(f, e, &offset) == WRITE_ONE_BREAK) |
| break; |
| display_progress(progress_state, written); |
| } |
| |
| /* |
| * Did we write the wrong # entries in the header? |
| * If so, rewrite it like in fast-import |
| */ |
| if (pack_to_stdout) { |
| sha1close(f, sha1, CSUM_CLOSE); |
| } else if (nr_written == nr_remaining) { |
| sha1close(f, sha1, CSUM_FSYNC); |
| } else { |
| int fd = sha1close(f, sha1, 0); |
| fixup_pack_header_footer(fd, sha1, pack_tmp_name, |
| nr_written, sha1, offset); |
| close(fd); |
| if (write_bitmap_index) { |
| warning(_(no_split_warning)); |
| write_bitmap_index = 0; |
| } |
| } |
| |
| if (!pack_to_stdout) { |
| struct stat st; |
| struct strbuf tmpname = STRBUF_INIT; |
| |
| /* |
| * Packs are runtime accessed in their mtime |
| * order since newer packs are more likely to contain |
| * younger objects. So if we are creating multiple |
| * packs then we should modify the mtime of later ones |
| * to preserve this property. |
| */ |
| if (stat(pack_tmp_name, &st) < 0) { |
| warning_errno("failed to stat %s", pack_tmp_name); |
| } else if (!last_mtime) { |
| last_mtime = st.st_mtime; |
| } else { |
| struct utimbuf utb; |
| utb.actime = st.st_atime; |
| utb.modtime = --last_mtime; |
| if (utime(pack_tmp_name, &utb) < 0) |
| warning_errno("failed utime() on %s", pack_tmp_name); |
| } |
| |
| strbuf_addf(&tmpname, "%s-", base_name); |
| |
| if (write_bitmap_index) { |
| bitmap_writer_set_checksum(sha1); |
| bitmap_writer_build_type_index(written_list, nr_written); |
| } |
| |
| finish_tmp_packfile(&tmpname, pack_tmp_name, |
| written_list, nr_written, |
| &pack_idx_opts, sha1); |
| |
| if (write_bitmap_index) { |
| strbuf_addf(&tmpname, "%s.bitmap", sha1_to_hex(sha1)); |
| |
| stop_progress(&progress_state); |
| |
| bitmap_writer_show_progress(progress); |
| bitmap_writer_reuse_bitmaps(&to_pack); |
| bitmap_writer_select_commits(indexed_commits, indexed_commits_nr, -1); |
| bitmap_writer_build(&to_pack); |
| bitmap_writer_finish(written_list, nr_written, |
| tmpname.buf, write_bitmap_options); |
| write_bitmap_index = 0; |
| } |
| |
| strbuf_release(&tmpname); |
| free(pack_tmp_name); |
| puts(sha1_to_hex(sha1)); |
| } |
| |
| /* mark written objects as written to previous pack */ |
| for (j = 0; j < nr_written; j++) { |
| written_list[j]->offset = (off_t)-1; |
| } |
| nr_remaining -= nr_written; |
| } while (nr_remaining && i < to_pack.nr_objects); |
| |
| free(written_list); |
| free(write_order); |
| stop_progress(&progress_state); |
| if (written != nr_result) |
| die("wrote %"PRIu32" objects while expecting %"PRIu32, |
| written, nr_result); |
| } |
| |
| static int no_try_delta(const char *path) |
| { |
| static struct attr_check *check; |
| |
| if (!check) |
| check = attr_check_initl("delta", NULL); |
| if (git_check_attr(path, check)) |
| return 0; |
| if (ATTR_FALSE(check->items[0].value)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * When adding an object, check whether we have already added it |
| * to our packing list. If so, we can skip. However, if we are |
| * being asked to excludei t, but the previous mention was to include |
| * it, make sure to adjust its flags and tweak our numbers accordingly. |
| * |
| * As an optimization, we pass out the index position where we would have |
| * found the item, since that saves us from having to look it up again a |
| * few lines later when we want to add the new entry. |
| */ |
| static int have_duplicate_entry(const unsigned char *sha1, |
| int exclude, |
| uint32_t *index_pos) |
| { |
| struct object_entry *entry; |
| |
| entry = packlist_find(&to_pack, sha1, index_pos); |
| if (!entry) |
| return 0; |
| |
| if (exclude) { |
| if (!entry->preferred_base) |
| nr_result--; |
| entry->preferred_base = 1; |
| } |
| |
| return 1; |
| } |
| |
| static int want_found_object(int exclude, struct packed_git *p) |
| { |
| if (exclude) |
| return 1; |
| if (incremental) |
| return 0; |
| |
| /* |
| * When asked to do --local (do not include an object that appears in a |
| * pack we borrow from elsewhere) or --honor-pack-keep (do not include |
| * an object that appears in a pack marked with .keep), finding a pack |
| * that matches the criteria is sufficient for us to decide to omit it. |
| * However, even if this pack does not satisfy the criteria, we need to |
| * make sure no copy of this object appears in _any_ pack that makes us |
| * to omit the object, so we need to check all the packs. |
| * |
| * We can however first check whether these options can possible matter; |
| * if they do not matter we know we want the object in generated pack. |
| * Otherwise, we signal "-1" at the end to tell the caller that we do |
| * not know either way, and it needs to check more packs. |
| */ |
| if (!ignore_packed_keep && |
| (!local || !have_non_local_packs)) |
| return 1; |
| |
| if (local && !p->pack_local) |
| return 0; |
| if (ignore_packed_keep && p->pack_local && p->pack_keep) |
| return 0; |
| |
| /* we don't know yet; keep looking for more packs */ |
| return -1; |
| } |
| |
| /* |
| * Check whether we want the object in the pack (e.g., we do not want |
| * objects found in non-local stores if the "--local" option was used). |
| * |
| * If the caller already knows an existing pack it wants to take the object |
| * from, that is passed in *found_pack and *found_offset; otherwise this |
| * function finds if there is any pack that has the object and returns the pack |
| * and its offset in these variables. |
| */ |
| static int want_object_in_pack(const unsigned char *sha1, |
| int exclude, |
| struct packed_git **found_pack, |
| off_t *found_offset) |
| { |
| struct mru_entry *entry; |
| int want; |
| |
| if (!exclude && local && has_loose_object_nonlocal(sha1)) |
| return 0; |
| |
| /* |
| * If we already know the pack object lives in, start checks from that |
| * pack - in the usual case when neither --local was given nor .keep files |
| * are present we will determine the answer right now. |
| */ |
| if (*found_pack) { |
| want = want_found_object(exclude, *found_pack); |
| if (want != -1) |
| return want; |
| } |
| |
| for (entry = packed_git_mru->head; entry; entry = entry->next) { |
| struct packed_git *p = entry->item; |
| off_t offset; |
| |
| if (p == *found_pack) |
| offset = *found_offset; |
| else |
| offset = find_pack_entry_one(sha1, p); |
| |
| if (offset) { |
| if (!*found_pack) { |
| if (!is_pack_valid(p)) |
| continue; |
| *found_offset = offset; |
| *found_pack = p; |
| } |
| want = want_found_object(exclude, p); |
| if (!exclude && want > 0) |
| mru_mark(packed_git_mru, entry); |
| if (want != -1) |
| return want; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static void create_object_entry(const unsigned char *sha1, |
| enum object_type type, |
| uint32_t hash, |
| int exclude, |
| int no_try_delta, |
| uint32_t index_pos, |
| struct packed_git *found_pack, |
| off_t found_offset) |
| { |
| struct object_entry *entry; |
| |
| entry = packlist_alloc(&to_pack, sha1, index_pos); |
| entry->hash = hash; |
| if (type) |
| entry->type = type; |
| if (exclude) |
| entry->preferred_base = 1; |
| else |
| nr_result++; |
| if (found_pack) { |
| entry->in_pack = found_pack; |
| entry->in_pack_offset = found_offset; |
| } |
| |
| entry->no_try_delta = no_try_delta; |
| } |
| |
| static const char no_closure_warning[] = N_( |
| "disabling bitmap writing, as some objects are not being packed" |
| ); |
| |
| static int add_object_entry(const unsigned char *sha1, enum object_type type, |
| const char *name, int exclude) |
| { |
| struct packed_git *found_pack = NULL; |
| off_t found_offset = 0; |
| uint32_t index_pos; |
| |
| if (have_duplicate_entry(sha1, exclude, &index_pos)) |
| return 0; |
| |
| if (!want_object_in_pack(sha1, exclude, &found_pack, &found_offset)) { |
| /* The pack is missing an object, so it will not have closure */ |
| if (write_bitmap_index) { |
| warning(_(no_closure_warning)); |
| write_bitmap_index = 0; |
| } |
| return 0; |
| } |
| |
| create_object_entry(sha1, type, pack_name_hash(name), |
| exclude, name && no_try_delta(name), |
| index_pos, found_pack, found_offset); |
| |
| display_progress(progress_state, nr_result); |
| return 1; |
| } |
| |
| static int add_object_entry_from_bitmap(const unsigned char *sha1, |
| enum object_type type, |
| int flags, uint32_t name_hash, |
| struct packed_git *pack, off_t offset) |
| { |
| uint32_t index_pos; |
| |
| if (have_duplicate_entry(sha1, 0, &index_pos)) |
| return 0; |
| |
| if (!want_object_in_pack(sha1, 0, &pack, &offset)) |
| return 0; |
| |
| create_object_entry(sha1, type, name_hash, 0, 0, index_pos, pack, offset); |
| |
| display_progress(progress_state, nr_result); |
| return 1; |
| } |
| |
| struct pbase_tree_cache { |
| unsigned char sha1[20]; |
| int ref; |
| int temporary; |
| void *tree_data; |
| unsigned long tree_size; |
| }; |
| |
| static struct pbase_tree_cache *(pbase_tree_cache[256]); |
| static int pbase_tree_cache_ix(const unsigned char *sha1) |
| { |
| return sha1[0] % ARRAY_SIZE(pbase_tree_cache); |
| } |
| static int pbase_tree_cache_ix_incr(int ix) |
| { |
| return (ix+1) % ARRAY_SIZE(pbase_tree_cache); |
| } |
| |
| static struct pbase_tree { |
| struct pbase_tree *next; |
| /* This is a phony "cache" entry; we are not |
| * going to evict it or find it through _get() |
| * mechanism -- this is for the toplevel node that |
| * would almost always change with any commit. |
| */ |
| struct pbase_tree_cache pcache; |
| } *pbase_tree; |
| |
| static struct pbase_tree_cache *pbase_tree_get(const unsigned char *sha1) |
| { |
| struct pbase_tree_cache *ent, *nent; |
| void *data; |
| unsigned long size; |
| enum object_type type; |
| int neigh; |
| int my_ix = pbase_tree_cache_ix(sha1); |
| int available_ix = -1; |
| |
| /* pbase-tree-cache acts as a limited hashtable. |
| * your object will be found at your index or within a few |
| * slots after that slot if it is cached. |
| */ |
| for (neigh = 0; neigh < 8; neigh++) { |
| ent = pbase_tree_cache[my_ix]; |
| if (ent && !hashcmp(ent->sha1, sha1)) { |
| ent->ref++; |
| return ent; |
| } |
| else if (((available_ix < 0) && (!ent || !ent->ref)) || |
| ((0 <= available_ix) && |
| (!ent && pbase_tree_cache[available_ix]))) |
| available_ix = my_ix; |
| if (!ent) |
| break; |
| my_ix = pbase_tree_cache_ix_incr(my_ix); |
| } |
| |
| /* Did not find one. Either we got a bogus request or |
| * we need to read and perhaps cache. |
| */ |
| data = read_sha1_file(sha1, &type, &size); |
| if (!data) |
| return NULL; |
| if (type != OBJ_TREE) { |
| free(data); |
| return NULL; |
| } |
| |
| /* We need to either cache or return a throwaway copy */ |
| |
| if (available_ix < 0) |
| ent = NULL; |
| else { |
| ent = pbase_tree_cache[available_ix]; |
| my_ix = available_ix; |
| } |
| |
| if (!ent) { |
| nent = xmalloc(sizeof(*nent)); |
| nent->temporary = (available_ix < 0); |
| } |
| else { |
| /* evict and reuse */ |
| free(ent->tree_data); |
| nent = ent; |
| } |
| hashcpy(nent->sha1, sha1); |
| nent->tree_data = data; |
| nent->tree_size = size; |
| nent->ref = 1; |
| if (!nent->temporary) |
| pbase_tree_cache[my_ix] = nent; |
| return nent; |
| } |
| |
| static void pbase_tree_put(struct pbase_tree_cache *cache) |
| { |
| if (!cache->temporary) { |
| cache->ref--; |
| return; |
| } |
| free(cache->tree_data); |
| free(cache); |
| } |
| |
| static int name_cmp_len(const char *name) |
| { |
| int i; |
| for (i = 0; name[i] && name[i] != '\n' && name[i] != '/'; i++) |
| ; |
| return i; |
| } |
| |
| static void add_pbase_object(struct tree_desc *tree, |
| const char *name, |
| int cmplen, |
| const char *fullname) |
| { |
| struct name_entry entry; |
| int cmp; |
| |
| while (tree_entry(tree,&entry)) { |
| if (S_ISGITLINK(entry.mode)) |
| continue; |
| cmp = tree_entry_len(&entry) != cmplen ? 1 : |
| memcmp(name, entry.path, cmplen); |
| if (cmp > 0) |
| continue; |
| if (cmp < 0) |
| return; |
| if (name[cmplen] != '/') { |
| add_object_entry(entry.oid->hash, |
| object_type(entry.mode), |
| fullname, 1); |
| return; |
| } |
| if (S_ISDIR(entry.mode)) { |
| struct tree_desc sub; |
| struct pbase_tree_cache *tree; |
| const char *down = name+cmplen+1; |
| int downlen = name_cmp_len(down); |
| |
| tree = pbase_tree_get(entry.oid->hash); |
| if (!tree) |
| return; |
| init_tree_desc(&sub, tree->tree_data, tree->tree_size); |
| |
| add_pbase_object(&sub, down, downlen, fullname); |
| pbase_tree_put(tree); |
| } |
| } |
| } |
| |
| static unsigned *done_pbase_paths; |
| static int done_pbase_paths_num; |
| static int done_pbase_paths_alloc; |
| static int done_pbase_path_pos(unsigned hash) |
| { |
| int lo = 0; |
| int hi = done_pbase_paths_num; |
| while (lo < hi) { |
| int mi = (hi + lo) / 2; |
| if (done_pbase_paths[mi] == hash) |
| return mi; |
| if (done_pbase_paths[mi] < hash) |
| hi = mi; |
| else |
| lo = mi + 1; |
| } |
| return -lo-1; |
| } |
| |
| static int check_pbase_path(unsigned hash) |
| { |
| int pos = (!done_pbase_paths) ? -1 : done_pbase_path_pos(hash); |
| if (0 <= pos) |
| return 1; |
| pos = -pos - 1; |
| ALLOC_GROW(done_pbase_paths, |
| done_pbase_paths_num + 1, |
| done_pbase_paths_alloc); |
| done_pbase_paths_num++; |
| if (pos < done_pbase_paths_num) |
| memmove(done_pbase_paths + pos + 1, |
| done_pbase_paths + pos, |
| (done_pbase_paths_num - pos - 1) * sizeof(unsigned)); |
| done_pbase_paths[pos] = hash; |
| return 0; |
| } |
| |
| static void add_preferred_base_object(const char *name) |
| { |
| struct pbase_tree *it; |
| int cmplen; |
| unsigned hash = pack_name_hash(name); |
| |
| if (!num_preferred_base || check_pbase_path(hash)) |
| return; |
| |
| cmplen = name_cmp_len(name); |
| for (it = pbase_tree; it; it = it->next) { |
| if (cmplen == 0) { |
| add_object_entry(it->pcache.sha1, OBJ_TREE, NULL, 1); |
| } |
| else { |
| struct tree_desc tree; |
| init_tree_desc(&tree, it->pcache.tree_data, it->pcache.tree_size); |
| add_pbase_object(&tree, name, cmplen, name); |
| } |
| } |
| } |
| |
| static void add_preferred_base(unsigned char *sha1) |
| { |
| struct pbase_tree *it; |
| void *data; |
| unsigned long size; |
| unsigned char tree_sha1[20]; |
| |
| if (window <= num_preferred_base++) |
| return; |
| |
| data = read_object_with_reference(sha1, tree_type, &size, tree_sha1); |
| if (!data) |
| return; |
| |
| for (it = pbase_tree; it; it = it->next) { |
| if (!hashcmp(it->pcache.sha1, tree_sha1)) { |
| free(data); |
| return; |
| } |
| } |
| |
| it = xcalloc(1, sizeof(*it)); |
| it->next = pbase_tree; |
| pbase_tree = it; |
| |
| hashcpy(it->pcache.sha1, tree_sha1); |
| it->pcache.tree_data = data; |
| it->pcache.tree_size = size; |
| } |
| |
| static void cleanup_preferred_base(void) |
| { |
| struct pbase_tree *it; |
| unsigned i; |
| |
| it = pbase_tree; |
| pbase_tree = NULL; |
| while (it) { |
| struct pbase_tree *this = it; |
| it = this->next; |
| free(this->pcache.tree_data); |
| free(this); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(pbase_tree_cache); i++) { |
| if (!pbase_tree_cache[i]) |
| continue; |
| free(pbase_tree_cache[i]->tree_data); |
| FREE_AND_NULL(pbase_tree_cache[i]); |
| } |
| |
| FREE_AND_NULL(done_pbase_paths); |
| done_pbase_paths_num = done_pbase_paths_alloc = 0; |
| } |
| |
| static void check_object(struct object_entry *entry) |
| { |
| if (entry->in_pack) { |
| struct packed_git *p = entry->in_pack; |
| struct pack_window *w_curs = NULL; |
| const unsigned char *base_ref = NULL; |
| struct object_entry *base_entry; |
| unsigned long used, used_0; |
| unsigned long avail; |
| off_t ofs; |
| unsigned char *buf, c; |
| |
| buf = use_pack(p, &w_curs, entry->in_pack_offset, &avail); |
| |
| /* |
| * We want in_pack_type even if we do not reuse delta |
| * since non-delta representations could still be reused. |
| */ |
| used = unpack_object_header_buffer(buf, avail, |
| &entry->in_pack_type, |
| &entry->size); |
| if (used == 0) |
| goto give_up; |
| |
| /* |
| * Determine if this is a delta and if so whether we can |
| * reuse it or not. Otherwise let's find out as cheaply as |
| * possible what the actual type and size for this object is. |
| */ |
| switch (entry->in_pack_type) { |
| default: |
| /* Not a delta hence we've already got all we need. */ |
| entry->type = entry->in_pack_type; |
| entry->in_pack_header_size = used; |
| if (entry->type < OBJ_COMMIT || entry->type > OBJ_BLOB) |
| goto give_up; |
| unuse_pack(&w_curs); |
| return; |
| case OBJ_REF_DELTA: |
| if (reuse_delta && !entry->preferred_base) |
| base_ref = use_pack(p, &w_curs, |
| entry->in_pack_offset + used, NULL); |
| entry->in_pack_header_size = used + 20; |
| break; |
| case OBJ_OFS_DELTA: |
| buf = use_pack(p, &w_curs, |
| entry->in_pack_offset + used, NULL); |
| used_0 = 0; |
| c = buf[used_0++]; |
| ofs = c & 127; |
| while (c & 128) { |
| ofs += 1; |
| if (!ofs || MSB(ofs, 7)) { |
| error("delta base offset overflow in pack for %s", |
| oid_to_hex(&entry->idx.oid)); |
| goto give_up; |
| } |
| c = buf[used_0++]; |
| ofs = (ofs << 7) + (c & 127); |
| } |
| ofs = entry->in_pack_offset - ofs; |
| if (ofs <= 0 || ofs >= entry->in_pack_offset) { |
| error("delta base offset out of bound for %s", |
| oid_to_hex(&entry->idx.oid)); |
| goto give_up; |
| } |
| if (reuse_delta && !entry->preferred_base) { |
| struct revindex_entry *revidx; |
| revidx = find_pack_revindex(p, ofs); |
| if (!revidx) |
| goto give_up; |
| base_ref = nth_packed_object_sha1(p, revidx->nr); |
| } |
| entry->in_pack_header_size = used + used_0; |
| break; |
| } |
| |
| if (base_ref && (base_entry = packlist_find(&to_pack, base_ref, NULL))) { |
| /* |
| * If base_ref was set above that means we wish to |
| * reuse delta data, and we even found that base |
| * in the list of objects we want to pack. Goodie! |
| * |
| * Depth value does not matter - find_deltas() will |
| * never consider reused delta as the base object to |
| * deltify other objects against, in order to avoid |
| * circular deltas. |
| */ |
| entry->type = entry->in_pack_type; |
| entry->delta = base_entry; |
| entry->delta_size = entry->size; |
| entry->delta_sibling = base_entry->delta_child; |
| base_entry->delta_child = entry; |
| unuse_pack(&w_curs); |
| return; |
| } |
| |
| if (entry->type) { |
| /* |
| * This must be a delta and we already know what the |
| * final object type is. Let's extract the actual |
| * object size from the delta header. |
| */ |
| entry->size = get_size_from_delta(p, &w_curs, |
| entry->in_pack_offset + entry->in_pack_header_size); |
| if (entry->size == 0) |
| goto give_up; |
| unuse_pack(&w_curs); |
| return; |
| } |
| |
| /* |
| * No choice but to fall back to the recursive delta walk |
| * with sha1_object_info() to find about the object type |
| * at this point... |
| */ |
| give_up: |
| unuse_pack(&w_curs); |
| } |
| |
| entry->type = sha1_object_info(entry->idx.oid.hash, &entry->size); |
| /* |
| * The error condition is checked in prepare_pack(). This is |
| * to permit a missing preferred base object to be ignored |
| * as a preferred base. Doing so can result in a larger |
| * pack file, but the transfer will still take place. |
| */ |
| } |
| |
| static int pack_offset_sort(const void *_a, const void *_b) |
| { |
| const struct object_entry *a = *(struct object_entry **)_a; |
| const struct object_entry *b = *(struct object_entry **)_b; |
| |
| /* avoid filesystem trashing with loose objects */ |
| if (!a->in_pack && !b->in_pack) |
| return oidcmp(&a->idx.oid, &b->idx.oid); |
| |
| if (a->in_pack < b->in_pack) |
| return -1; |
| if (a->in_pack > b->in_pack) |
| return 1; |
| return a->in_pack_offset < b->in_pack_offset ? -1 : |
| (a->in_pack_offset > b->in_pack_offset); |
| } |
| |
| /* |
| * Drop an on-disk delta we were planning to reuse. Naively, this would |
| * just involve blanking out the "delta" field, but we have to deal |
| * with some extra book-keeping: |
| * |
| * 1. Removing ourselves from the delta_sibling linked list. |
| * |
| * 2. Updating our size/type to the non-delta representation. These were |
| * either not recorded initially (size) or overwritten with the delta type |
| * (type) when check_object() decided to reuse the delta. |
| * |
| * 3. Resetting our delta depth, as we are now a base object. |
| */ |
| static void drop_reused_delta(struct object_entry *entry) |
| { |
| struct object_entry **p = &entry->delta->delta_child; |
| struct object_info oi = OBJECT_INFO_INIT; |
| |
| while (*p) { |
| if (*p == entry) |
| *p = (*p)->delta_sibling; |
| else |
| p = &(*p)->delta_sibling; |
| } |
| entry->delta = NULL; |
| entry->depth = 0; |
| |
| oi.sizep = &entry->size; |
| oi.typep = &entry->type; |
| if (packed_object_info(entry->in_pack, entry->in_pack_offset, &oi) < 0) { |
| /* |
| * We failed to get the info from this pack for some reason; |
| * fall back to sha1_object_info, which may find another copy. |
| * And if that fails, the error will be recorded in entry->type |
| * and dealt with in prepare_pack(). |
| */ |
| entry->type = sha1_object_info(entry->idx.oid.hash, |
| &entry->size); |
| } |
| } |
| |
| /* |
| * Follow the chain of deltas from this entry onward, throwing away any links |
| * that cause us to hit a cycle (as determined by the DFS state flags in |
| * the entries). |
| * |
| * We also detect too-long reused chains that would violate our --depth |
| * limit. |
| */ |
| static void break_delta_chains(struct object_entry *entry) |
| { |
| /* |
| * The actual depth of each object we will write is stored as an int, |
| * as it cannot exceed our int "depth" limit. But before we break |
| * changes based no that limit, we may potentially go as deep as the |
| * number of objects, which is elsewhere bounded to a uint32_t. |
| */ |
| uint32_t total_depth; |
| struct object_entry *cur, *next; |
| |
| for (cur = entry, total_depth = 0; |
| cur; |
| cur = cur->delta, total_depth++) { |
| if (cur->dfs_state == DFS_DONE) { |
| /* |
| * We've already seen this object and know it isn't |
| * part of a cycle. We do need to append its depth |
| * to our count. |
| */ |
| total_depth += cur->depth; |
| break; |
| } |
| |
| /* |
| * We break cycles before looping, so an ACTIVE state (or any |
| * other cruft which made its way into the state variable) |
| * is a bug. |
| */ |
| if (cur->dfs_state != DFS_NONE) |
| die("BUG: confusing delta dfs state in first pass: %d", |
| cur->dfs_state); |
| |
| /* |
| * Now we know this is the first time we've seen the object. If |
| * it's not a delta, we're done traversing, but we'll mark it |
| * done to save time on future traversals. |
| */ |
| if (!cur->delta) { |
| cur->dfs_state = DFS_DONE; |
| break; |
| } |
| |
| /* |
| * Mark ourselves as active and see if the next step causes |
| * us to cycle to another active object. It's important to do |
| * this _before_ we loop, because it impacts where we make the |
| * cut, and thus how our total_depth counter works. |
| * E.g., We may see a partial loop like: |
| * |
| * A -> B -> C -> D -> B |
| * |
| * Cutting B->C breaks the cycle. But now the depth of A is |
| * only 1, and our total_depth counter is at 3. The size of the |
| * error is always one less than the size of the cycle we |
| * broke. Commits C and D were "lost" from A's chain. |
| * |
| * If we instead cut D->B, then the depth of A is correct at 3. |
| * We keep all commits in the chain that we examined. |
| */ |
| cur->dfs_state = DFS_ACTIVE; |
| if (cur->delta->dfs_state == DFS_ACTIVE) { |
| drop_reused_delta(cur); |
| cur->dfs_state = DFS_DONE; |
| break; |
| } |
| } |
| |
| /* |
| * And now that we've gone all the way to the bottom of the chain, we |
| * need to clear the active flags and set the depth fields as |
| * appropriate. Unlike the loop above, which can quit when it drops a |
| * delta, we need to keep going to look for more depth cuts. So we need |
| * an extra "next" pointer to keep going after we reset cur->delta. |
| */ |
| for (cur = entry; cur; cur = next) { |
| next = cur->delta; |
| |
| /* |
| * We should have a chain of zero or more ACTIVE states down to |
| * a final DONE. We can quit after the DONE, because either it |
| * has no bases, or we've already handled them in a previous |
| * call. |
| */ |
| if (cur->dfs_state == DFS_DONE) |
| break; |
| else if (cur->dfs_state != DFS_ACTIVE) |
| die("BUG: confusing delta dfs state in second pass: %d", |
| cur->dfs_state); |
| |
| /* |
| * If the total_depth is more than depth, then we need to snip |
| * the chain into two or more smaller chains that don't exceed |
| * the maximum depth. Most of the resulting chains will contain |
| * (depth + 1) entries (i.e., depth deltas plus one base), and |
| * the last chain (i.e., the one containing entry) will contain |
| * whatever entries are left over, namely |
| * (total_depth % (depth + 1)) of them. |
| * |
| * Since we are iterating towards decreasing depth, we need to |
| * decrement total_depth as we go, and we need to write to the |
| * entry what its final depth will be after all of the |
| * snipping. Since we're snipping into chains of length (depth |
| * + 1) entries, the final depth of an entry will be its |
| * original depth modulo (depth + 1). Any time we encounter an |
| * entry whose final depth is supposed to be zero, we snip it |
| * from its delta base, thereby making it so. |
| */ |
| cur->depth = (total_depth--) % (depth + 1); |
| if (!cur->depth) |
| drop_reused_delta(cur); |
| |
| cur->dfs_state = DFS_DONE; |
| } |
| } |
| |
| static void get_object_details(void) |
| { |
| uint32_t i; |
| struct object_entry **sorted_by_offset; |
| |
| sorted_by_offset = xcalloc(to_pack.nr_objects, sizeof(struct object_entry *)); |
| for (i = 0; i < to_pack.nr_objects; i++) |
| sorted_by_offset[i] = to_pack.objects + i; |
| QSORT(sorted_by_offset, to_pack.nr_objects, pack_offset_sort); |
| |
| for (i = 0; i < to_pack.nr_objects; i++) { |
| struct object_entry *entry = sorted_by_offset[i]; |
| check_object(entry); |
| if (big_file_threshold < entry->size) |
| entry->no_try_delta = 1; |
| } |
| |
| /* |
| * This must happen in a second pass, since we rely on the delta |
| * information for the whole list being completed. |
| */ |
| for (i = 0; i < to_pack.nr_objects; i++) |
| break_delta_chains(&to_pack.objects[i]); |
| |
| free(sorted_by_offset); |
| } |
| |
| /* |
| * We search for deltas in a list sorted by type, by filename hash, and then |
| * by size, so that we see progressively smaller and smaller files. |
| * That's because we prefer deltas to be from the bigger file |
| * to the smaller -- deletes are potentially cheaper, but perhaps |
| * more importantly, the bigger file is likely the more recent |
| * one. The deepest deltas are therefore the oldest objects which are |
| * less susceptible to be accessed often. |
| */ |
| static int type_size_sort(const void *_a, const void *_b) |
| { |
| const struct object_entry *a = *(struct object_entry **)_a; |
| const struct object_entry *b = *(struct object_entry **)_b; |
| |
| if (a->type > b->type) |
| return -1; |
| if (a->type < b->type) |
| return 1; |
| if (a->hash > b->hash) |
| return -1; |
| if (a->hash < b->hash) |
| return 1; |
| if (a->preferred_base > b->preferred_base) |
| return -1; |
| if (a->preferred_base < b->preferred_base) |
| return 1; |
| if (a->size > b->size) |
| return -1; |
| if (a->size < b->size) |
| return 1; |
| return a < b ? -1 : (a > b); /* newest first */ |
| } |
| |
| struct unpacked { |
| struct object_entry *entry; |
| void *data; |
| struct delta_index *index; |
| unsigned depth; |
| }; |
| |
| static int delta_cacheable(unsigned long src_size, unsigned long trg_size, |
| unsigned long delta_size) |
| { |
| if (max_delta_cache_size && delta_cache_size + delta_size > max_delta_cache_size) |
| return 0; |
| |
| if (delta_size < cache_max_small_delta_size) |
| return 1; |
| |
| /* cache delta, if objects are large enough compared to delta size */ |
| if ((src_size >> 20) + (trg_size >> 21) > (delta_size >> 10)) |
| return 1; |
| |
| return 0; |
| } |
| |
| #ifndef NO_PTHREADS |
| |
| static pthread_mutex_t read_mutex; |
| #define read_lock() pthread_mutex_lock(&read_mutex) |
| #define read_unlock() pthread_mutex_unlock(&read_mutex) |
| |
| static pthread_mutex_t cache_mutex; |
| #define cache_lock() pthread_mutex_lock(&cache_mutex) |
| #define cache_unlock() pthread_mutex_unlock(&cache_mutex) |
| |
| static pthread_mutex_t progress_mutex; |
| #define progress_lock() pthread_mutex_lock(&progress_mutex) |
| #define progress_unlock() pthread_mutex_unlock(&progress_mutex) |
| |
| #else |
| |
| #define read_lock() (void)0 |
| #define read_unlock() (void)0 |
| #define cache_lock() (void)0 |
| #define cache_unlock() (void)0 |
| #define progress_lock() (void)0 |
| #define progress_unlock() (void)0 |
| |
| #endif |
| |
| static int try_delta(struct unpacked *trg, struct unpacked *src, |
| unsigned max_depth, unsigned long *mem_usage) |
| { |
| struct object_entry *trg_entry = trg->entry; |
| struct object_entry *src_entry = src->entry; |
| unsigned long trg_size, src_size, delta_size, sizediff, max_size, sz; |
| unsigned ref_depth; |
| enum object_type type; |
| void *delta_buf; |
| |
| /* Don't bother doing diffs between different types */ |
| if (trg_entry->type != src_entry->type) |
| return -1; |
| |
| /* |
| * We do not bother to try a delta that we discarded on an |
| * earlier try, but only when reusing delta data. Note that |
| * src_entry that is marked as the preferred_base should always |
| * be considered, as even if we produce a suboptimal delta against |
| * it, we will still save the transfer cost, as we already know |
| * the other side has it and we won't send src_entry at all. |
| */ |
| if (reuse_delta && trg_entry->in_pack && |
| trg_entry->in_pack == src_entry->in_pack && |
| !src_entry->preferred_base && |
| trg_entry->in_pack_type != OBJ_REF_DELTA && |
| trg_entry->in_pack_type != OBJ_OFS_DELTA) |
| return 0; |
| |
| /* Let's not bust the allowed depth. */ |
| if (src->depth >= max_depth) |
| return 0; |
| |
| /* Now some size filtering heuristics. */ |
| trg_size = trg_entry->size; |
| if (!trg_entry->delta) { |
| max_size = trg_size/2 - 20; |
| ref_depth = 1; |
| } else { |
| max_size = trg_entry->delta_size; |
| ref_depth = trg->depth; |
| } |
| max_size = (uint64_t)max_size * (max_depth - src->depth) / |
| (max_depth - ref_depth + 1); |
| if (max_size == 0) |
| return 0; |
| src_size = src_entry->size; |
| sizediff = src_size < trg_size ? trg_size - src_size : 0; |
| if (sizediff >= max_size) |
| return 0; |
| if (trg_size < src_size / 32) |
| return 0; |
| |
| /* Load data if not already done */ |
| if (!trg->data) { |
| read_lock(); |
| trg->data = read_sha1_file(trg_entry->idx.oid.hash, &type, |
| &sz); |
| read_unlock(); |
| if (!trg->data) |
| die("object %s cannot be read", |
| oid_to_hex(&trg_entry->idx.oid)); |
| if (sz != trg_size) |
| die("object %s inconsistent object length (%lu vs %lu)", |
| oid_to_hex(&trg_entry->idx.oid), sz, |
| trg_size); |
| *mem_usage += sz; |
| } |
| if (!src->data) { |
| read_lock(); |
| src->data = read_sha1_file(src_entry->idx.oid.hash, &type, |
| &sz); |
| read_unlock(); |
| if (!src->data) { |
| if (src_entry->preferred_base) { |
| static int warned = 0; |
| if (!warned++) |
| warning("object %s cannot be read", |
| oid_to_hex(&src_entry->idx.oid)); |
| /* |
| * Those objects are not included in the |
| * resulting pack. Be resilient and ignore |
| * them if they can't be read, in case the |
| * pack could be created nevertheless. |
| */ |
| return 0; |
| } |
| die("object %s cannot be read", |
| oid_to_hex(&src_entry->idx.oid)); |
| } |
| if (sz != src_size) |
| die("object %s inconsistent object length (%lu vs %lu)", |
| oid_to_hex(&src_entry->idx.oid), sz, |
| src_size); |
| *mem_usage += sz; |
| } |
| if (!src->index) { |
| src->index = create_delta_index(src->data, src_size); |
| if (!src->index) { |
| static int warned = 0; |
| if (!warned++) |
| warning("suboptimal pack - out of memory"); |
| return 0; |
| } |
| *mem_usage += sizeof_delta_index(src->index); |
| } |
| |
| delta_buf = create_delta(src->index, trg->data, trg_size, &delta_size, max_size); |
| if (!delta_buf) |
| return 0; |
| |
| if (trg_entry->delta) { |
| /* Prefer only shallower same-sized deltas. */ |
| if (delta_size == trg_entry->delta_size && |
| src->depth + 1 >= trg->depth) { |
| free(delta_buf); |
| return 0; |
| } |
| } |
| |
| /* |
| * Handle memory allocation outside of the cache |
| * accounting lock. Compiler will optimize the strangeness |
| * away when NO_PTHREADS is defined. |
| */ |
| free(trg_entry->delta_data); |
| cache_lock(); |
| if (trg_entry->delta_data) { |
| delta_cache_size -= trg_entry->delta_size; |
| trg_entry->delta_data = NULL; |
| } |
| if (delta_cacheable(src_size, trg_size, delta_size)) { |
| delta_cache_size += delta_size; |
| cache_unlock(); |
| trg_entry->delta_data = xrealloc(delta_buf, delta_size); |
| } else { |
| cache_unlock(); |
| free(delta_buf); |
| } |
| |
| trg_entry->delta = src_entry; |
| trg_entry->delta_size = delta_size; |
| trg->depth = src->depth + 1; |
| |
| return 1; |
| } |
| |
| static unsigned int check_delta_limit(struct object_entry *me, unsigned int n) |
| { |
| struct object_entry *child = me->delta_child; |
| unsigned int m = n; |
| while (child) { |
| unsigned int c = check_delta_limit(child, n + 1); |
| if (m < c) |
| m = c; |
| child = child->delta_sibling; |
| } |
| return m; |
| } |
| |
| static unsigned long free_unpacked(struct unpacked *n) |
| { |
| unsigned long freed_mem = sizeof_delta_index(n->index); |
| free_delta_index(n->index); |
| n->index = NULL; |
| if (n->data) { |
| freed_mem += n->entry->size; |
| FREE_AND_NULL(n->data); |
| } |
| n->entry = NULL; |
| n->depth = 0; |
| return freed_mem; |
| } |
| |
| static void find_deltas(struct object_entry **list, unsigned *list_size, |
| int window, int depth, unsigned *processed) |
| { |
| uint32_t i, idx = 0, count = 0; |
| struct unpacked *array; |
| unsigned long mem_usage = 0; |
| |
| array = xcalloc(window, sizeof(struct unpacked)); |
| |
| for (;;) { |
| struct object_entry *entry; |
| struct unpacked *n = array + idx; |
| int j, max_depth, best_base = -1; |
| |
| progress_lock(); |
| if (!*list_size) { |
| progress_unlock(); |
| break; |
| } |
| entry = *list++; |
| (*list_size)--; |
| if (!entry->preferred_base) { |
| (*processed)++; |
| display_progress(progress_state, *processed); |
| } |
| progress_unlock(); |
| |
| mem_usage -= free_unpacked(n); |
| n->entry = entry; |
| |
| while (window_memory_limit && |
| mem_usage > window_memory_limit && |
| count > 1) { |
| uint32_t tail = (idx + window - count) % window; |
| mem_usage -= free_unpacked(array + tail); |
| count--; |
| } |
| |
| /* We do not compute delta to *create* objects we are not |
| * going to pack. |
| */ |
| if (entry->preferred_base) |
| goto next; |
| |
| /* |
| * If the current object is at pack edge, take the depth the |
| * objects that depend on the current object into account |
| * otherwise they would become too deep. |
| */ |
| max_depth = depth; |
| if (entry->delta_child) { |
| max_depth -= check_delta_limit(entry, 0); |
| if (max_depth <= 0) |
| goto next; |
| } |
| |
| j = window; |
| while (--j > 0) { |
| int ret; |
| uint32_t other_idx = idx + j; |
| struct unpacked *m; |
| if (other_idx >= window) |
| other_idx -= window; |
| m = array + other_idx; |
| if (!m->entry) |
| break; |
| ret = try_delta(n, m, max_depth, &mem_usage); |
| if (ret < 0) |
| break; |
| else if (ret > 0) |
| best_base = other_idx; |
| } |
| |
| /* |
| * If we decided to cache the delta data, then it is best |
| * to compress it right away. First because we have to do |
| * it anyway, and doing it here while we're threaded will |
| * save a lot of time in the non threaded write phase, |
| * as well as allow for caching more deltas within |
| * the same cache size limit. |
| * ... |
| * But only if not writing to stdout, since in that case |
| * the network is most likely throttling writes anyway, |
| * and therefore it is best to go to the write phase ASAP |
| * instead, as we can afford spending more time compressing |
| * between writes at that moment. |
| */ |
| if (entry->delta_data && !pack_to_stdout) { |
| entry->z_delta_size = do_compress(&entry->delta_data, |
| entry->delta_size); |
| cache_lock(); |
| delta_cache_size -= entry->delta_size; |
| delta_cache_size += entry->z_delta_size; |
| cache_unlock(); |
| } |
| |
| /* if we made n a delta, and if n is already at max |
| * depth, leaving it in the window is pointless. we |
| * should evict it first. |
| */ |
| if (entry->delta && max_depth <= n->depth) |
| continue; |
| |
| /* |
| * Move the best delta base up in the window, after the |
| * currently deltified object, to keep it longer. It will |
| * be the first base object to be attempted next. |
| */ |
| if (entry->delta) { |
| struct unpacked swap = array[best_base]; |
| int dist = (window + idx - best_base) % window; |
| int dst = best_base; |
| while (dist--) { |
| int src = (dst + 1) % window; |
| array[dst] = array[src]; |
| dst = src; |
| } |
| array[dst] = swap; |
| } |
| |
| next: |
| idx++; |
| if (count + 1 < window) |
| count++; |
| if (idx >= window) |
| idx = 0; |
| } |
| |
| for (i = 0; i < window; ++i) { |
| free_delta_index(array[i].index); |
| free(array[i].data); |
| } |
| free(array); |
| } |
| |
| #ifndef NO_PTHREADS |
| |
| static void try_to_free_from_threads(size_t size) |
| { |
| read_lock(); |
| release_pack_memory(size); |
| read_unlock(); |
| } |
| |
| static try_to_free_t old_try_to_free_routine; |
| |
| /* |
| * The main thread waits on the condition that (at least) one of the workers |
| * has stopped working (which is indicated in the .working member of |
| * struct thread_params). |
| * When a work thread has completed its work, it sets .working to 0 and |
| * signals the main thread and waits on the condition that .data_ready |
| * becomes 1. |
| */ |
| |
| struct thread_params { |
| pthread_t thread; |
| struct object_entry **list; |
| unsigned list_size; |
| unsigned remaining; |
| int window; |
| int depth; |
| int working; |
| int data_ready; |
| pthread_mutex_t mutex; |
| pthread_cond_t cond; |
| unsigned *processed; |
| }; |
| |
| static pthread_cond_t progress_cond; |
| |
| /* |
| * Mutex and conditional variable can't be statically-initialized on Windows. |
| */ |
| static void init_threaded_search(void) |
| { |
| init_recursive_mutex(&read_mutex); |
| pthread_mutex_init(&cache_mutex, NULL); |
| pthread_mutex_init(&progress_mutex, NULL); |
| pthread_cond_init(&progress_cond, NULL); |
| old_try_to_free_routine = set_try_to_free_routine(try_to_free_from_threads); |
| } |
| |
| static void cleanup_threaded_search(void) |
| { |
| set_try_to_free_routine(old_try_to_free_routine); |
| pthread_cond_destroy(&progress_cond); |
| pthread_mutex_destroy(&read_mutex); |
| pthread_mutex_destroy(&cache_mutex); |
| pthread_mutex_destroy(&progress_mutex); |
| } |
| |
| static void *threaded_find_deltas(void *arg) |
| { |
| struct thread_params *me = arg; |
| |
| while (me->remaining) { |
| find_deltas(me->list, &me->remaining, |
| me->window, me->depth, me->processed); |
| |
| progress_lock(); |
| me->working = 0; |
| pthread_cond_signal(&progress_cond); |
| progress_unlock(); |
| |
| /* |
| * We must not set ->data_ready before we wait on the |
| * condition because the main thread may have set it to 1 |
| * before we get here. In order to be sure that new |
| * work is available if we see 1 in ->data_ready, it |
| * was initialized to 0 before this thread was spawned |
| * and we reset it to 0 right away. |
| */ |
| pthread_mutex_lock(&me->mutex); |
| while (!me->data_ready) |
| pthread_cond_wait(&me->cond, &me->mutex); |
| me->data_ready = 0; |
| pthread_mutex_unlock(&me->mutex); |
| } |
| /* leave ->working 1 so that this doesn't get more work assigned */ |
| return NULL; |
| } |
| |
| static void ll_find_deltas(struct object_entry **list, unsigned list_size, |
| int window, int depth, unsigned *processed) |
| { |
| struct thread_params *p; |
| int i, ret, active_threads = 0; |
| |
| init_threaded_search(); |
| |
| if (delta_search_threads <= 1) { |
| find_deltas(list, &list_size, window, depth, processed); |
| cleanup_threaded_search(); |
| return; |
| } |
| if (progress > pack_to_stdout) |
| fprintf(stderr, "Delta compression using up to %d threads.\n", |
| delta_search_threads); |
| p = xcalloc(delta_search_threads, sizeof(*p)); |
| |
| /* Partition the work amongst work threads. */ |
| for (i = 0; i < delta_search_threads; i++) { |
| unsigned sub_size = list_size / (delta_search_threads - i); |
| |
| /* don't use too small segments or no deltas will be found */ |
| if (sub_size < 2*window && i+1 < delta_search_threads) |
| sub_size = 0; |
| |
| p[i].window = window; |
| p[i].depth = depth; |
| p[i].processed = processed; |
| p[i].working = 1; |
| p[i].data_ready = 0; |
| |
| /* try to split chunks on "path" boundaries */ |
| while (sub_size && sub_size < list_size && |
| list[sub_size]->hash && |
| list[sub_size]->hash == list[sub_size-1]->hash) |
| sub_size++; |
| |
| p[i].list = list; |
| p[i].list_size = sub_size; |
| p[i].remaining = sub_size; |
| |
| list += sub_size; |
| list_size -= sub_size; |
| } |
| |
| /* Start work threads. */ |
| for (i = 0; i < delta_search_threads; i++) { |
| if (!p[i].list_size) |
| continue; |
| pthread_mutex_init(&p[i].mutex, NULL); |
| pthread_cond_init(&p[i].cond, NULL); |
| ret = pthread_create(&p[i].thread, NULL, |
| threaded_find_deltas, &p[i]); |
| if (ret) |
| die("unable to create thread: %s", strerror(ret)); |
| active_threads++; |
| } |
| |
| /* |
| * Now let's wait for work completion. Each time a thread is done |
| * with its work, we steal half of the remaining work from the |
| * thread with the largest number of unprocessed objects and give |
| * it to that newly idle thread. This ensure good load balancing |
| * until the remaining object list segments are simply too short |
| * to be worth splitting anymore. |
| */ |
| while (active_threads) { |
| struct thread_params *target = NULL; |
| struct thread_params *victim = NULL; |
| unsigned sub_size = 0; |
| |
| progress_lock(); |
| for (;;) { |
| for (i = 0; !target && i < delta_search_threads; i++) |
| if (!p[i].working) |
| target = &p[i]; |
| if (target) |
| break; |
| pthread_cond_wait(&progress_cond, &progress_mutex); |
| } |
| |
| for (i = 0; i < delta_search_threads; i++) |
| if (p[i].remaining > 2*window && |
| (!victim || victim->remaining < p[i].remaining)) |
| victim = &p[i]; |
| if (victim) { |
| sub_size = victim->remaining / 2; |
| list = victim->list + victim->list_size - sub_size; |
| while (sub_size && list[0]->hash && |
| list[0]->hash == list[-1]->hash) { |
| list++; |
| sub_size--; |
| } |
| if (!sub_size) { |
| /* |
| * It is possible for some "paths" to have |
| * so many objects that no hash boundary |
| * might be found. Let's just steal the |
| * exact half in that case. |
| */ |
| sub_size = victim->remaining / 2; |
| list -= sub_size; |
| } |
| target->list = list; |
| victim->list_size -= sub_size; |
| victim->remaining -= sub_size; |
| } |
| target->list_size = sub_size; |
| target->remaining = sub_size; |
| target->working = 1; |
| progress_unlock(); |
| |
| pthread_mutex_lock(&target->mutex); |
| target->data_ready = 1; |
| pthread_cond_signal(&target->cond); |
| pthread_mutex_unlock(&target->mutex); |
| |
| if (!sub_size) { |
| pthread_join(target->thread, NULL); |
| pthread_cond_destroy(&target->cond); |
| pthread_mutex_destroy(&target->mutex); |
| active_threads--; |
| } |
| } |
| cleanup_threaded_search(); |
| free(p); |
| } |
| |
| #else |
| #define ll_find_deltas(l, s, w, d, p) find_deltas(l, &s, w, d, p) |
| #endif |
| |
| static void add_tag_chain(const struct object_id *oid) |
| { |
| struct tag *tag; |
| |
| /* |
| * We catch duplicates already in add_object_entry(), but we'd |
| * prefer to do this extra check to avoid having to parse the |
| * tag at all if we already know that it's being packed (e.g., if |
| * it was included via bitmaps, we would not have parsed it |
| * previously). |
| */ |
| if (packlist_find(&to_pack, oid->hash, NULL)) |
| return; |
| |
| tag = lookup_tag(oid); |
| while (1) { |
| if (!tag || parse_tag(tag) || !tag->tagged) |
| die("unable to pack objects reachable from tag %s", |
| oid_to_hex(oid)); |
| |
| add_object_entry(tag->object.oid.hash, OBJ_TAG, NULL, 0); |
| |
| if (tag->tagged->type != OBJ_TAG) |
| return; |
| |
| tag = (struct tag *)tag->tagged; |
| } |
| } |
| |
| static int add_ref_tag(const char *path, const struct object_id *oid, int flag, void *cb_data) |
| { |
| struct object_id peeled; |
| |
| if (starts_with(path, "refs/tags/") && /* is a tag? */ |
| !peel_ref(path, peeled.hash) && /* peelable? */ |
| packlist_find(&to_pack, peeled.hash, NULL)) /* object packed? */ |
| add_tag_chain(oid); |
| return 0; |
| } |
| |
| static void prepare_pack(int window, int depth) |
| { |
| struct object_entry **delta_list; |
| uint32_t i, nr_deltas; |
| unsigned n; |
| |
| get_object_details(); |
| |
| /* |
| * If we're locally repacking then we need to be doubly careful |
| * from now on in order to make sure no stealth corruption gets |
| * propagated to the new pack. Clients receiving streamed packs |
| * should validate everything they get anyway so no need to incur |
| * the additional cost here in that case. |
| */ |
| if (!pack_to_stdout) |
| do_check_packed_object_crc = 1; |
| |
| if (!to_pack.nr_objects || !window || !depth) |
| return; |
| |
| ALLOC_ARRAY(delta_list, to_pack.nr_objects); |
| nr_deltas = n = 0; |
| |
| for (i = 0; i < to_pack.nr_objects; i++) { |
| struct object_entry *entry = to_pack.objects + i; |
| |
| if (entry->delta) |
| /* This happens if we decided to reuse existing |
| * delta from a pack. "reuse_delta &&" is implied. |
| */ |
| continue; |
| |
| if (entry->size < 50) |
| continue; |
| |
| if (entry->no_try_delta) |
| continue; |
| |
| if (!entry->preferred_base) { |
| nr_deltas++; |
| if (entry->type < 0) |
| die("unable to get type of object %s", |
| oid_to_hex(&entry->idx.oid)); |
| } else { |
| if (entry->type < 0) { |
| /* |
| * This object is not found, but we |
| * don't have to include it anyway. |
| */ |
| continue; |
| } |
| } |
| |
| delta_list[n++] = entry; |
| } |
| |
| if (nr_deltas && n > 1) { |
| unsigned nr_done = 0; |
| if (progress) |
| progress_state = start_progress(_("Compressing objects"), |
| nr_deltas); |
| QSORT(delta_list, n, type_size_sort); |
| ll_find_deltas(delta_list, n, window+1, depth, &nr_done); |
| stop_progress(&progress_state); |
| if (nr_done != nr_deltas) |
| die("inconsistency with delta count"); |
| } |
| free(delta_list); |
| } |
| |
| static int git_pack_config(const char *k, const char *v, void *cb) |
| { |
| if (!strcmp(k, "pack.window")) { |
| window = git_config_int(k, v); |
| return 0; |
| } |
| if (!strcmp(k, "pack.windowmemory")) { |
| window_memory_limit = git_config_ulong(k, v); |
| return 0; |
| } |
| if (!strcmp(k, "pack.depth")) { |
| depth = git_config_int(k, v); |
| return 0; |
| } |
| if (!strcmp(k, "pack.deltacachesize")) { |
| max_delta_cache_size = git_config_int(k, v); |
| return 0; |
| } |
| if (!strcmp(k, "pack.deltacachelimit")) { |
| cache_max_small_delta_size = git_config_int(k, v); |
| return 0; |
| } |
| if (!strcmp(k, "pack.writebitmaphashcache")) { |
| if (git_config_bool(k, v)) |
| write_bitmap_options |= BITMAP_OPT_HASH_CACHE; |
| else |
| write_bitmap_options &= ~BITMAP_OPT_HASH_CACHE; |
| } |
| if (!strcmp(k, "pack.usebitmaps")) { |
| use_bitmap_index_default = git_config_bool(k, v); |
| return 0; |
| } |
| if (!strcmp(k, "pack.threads")) { |
| delta_search_threads = git_config_int(k, v); |
| if (delta_search_threads < 0) |
| die("invalid number of threads specified (%d)", |
| delta_search_threads); |
| #ifdef NO_PTHREADS |
| if (delta_search_threads != 1) { |
| warning("no threads support, ignoring %s", k); |
| delta_search_threads = 0; |
| } |
| #endif |
| return 0; |
| } |
| if (!strcmp(k, "pack.indexversion")) { |
| pack_idx_opts.version = git_config_int(k, v); |
| if (pack_idx_opts.version > 2) |
| die("bad pack.indexversion=%"PRIu32, |
| pack_idx_opts.version); |
| return 0; |
| } |
| return git_default_config(k, v, cb); |
| } |
| |
| static void read_object_list_from_stdin(void) |
| { |
| char line[40 + 1 + PATH_MAX + 2]; |
| unsigned char sha1[20]; |
| |
| for (;;) { |
| if (!fgets(line, sizeof(line), stdin)) { |
| if (feof(stdin)) |
| break; |
| if (!ferror(stdin)) |
| die("fgets returned NULL, not EOF, not error!"); |
| if (errno != EINTR) |
| die_errno("fgets"); |
| clearerr(stdin); |
| continue; |
| } |
| if (line[0] == '-') { |
| if (get_sha1_hex(line+1, sha1)) |
| die("expected edge sha1, got garbage:\n %s", |
| line); |
| add_preferred_base(sha1); |
| continue; |
| } |
| if (get_sha1_hex(line, sha1)) |
| die("expected sha1, got garbage:\n %s", line); |
| |
| add_preferred_base_object(line+41); |
| add_object_entry(sha1, 0, line+41, 0); |
| } |
| } |
| |
| #define OBJECT_ADDED (1u<<20) |
| |
| static void show_commit(struct commit *commit, void *data) |
| { |
| add_object_entry(commit->object.oid.hash, OBJ_COMMIT, NULL, 0); |
| commit->object.flags |= OBJECT_ADDED; |
| |
| if (write_bitmap_index) |
| index_commit_for_bitmap(commit); |
| } |
| |
| static void show_object(struct object *obj, const char *name, void *data) |
| { |
| add_preferred_base_object(name); |
| add_object_entry(obj->oid.hash, obj->type, name, 0); |
| obj->flags |= OBJECT_ADDED; |
| } |
| |
| static void show_edge(struct commit *commit) |
| { |
| add_preferred_base(commit->object.oid.hash); |
| } |
| |
| struct in_pack_object { |
| off_t offset; |
| struct object *object; |
| }; |
| |
| struct in_pack { |
| int alloc; |
| int nr; |
| struct in_pack_object *array; |
| }; |
| |
| static void mark_in_pack_object(struct object *object, struct packed_git *p, struct in_pack *in_pack) |
| { |
| in_pack->array[in_pack->nr].offset = find_pack_entry_one(object->oid.hash, p); |
| in_pack->array[in_pack->nr].object = object; |
| in_pack->nr++; |
| } |
| |
| /* |
| * Compare the objects in the offset order, in order to emulate the |
| * "git rev-list --objects" output that produced the pack originally. |
| */ |
| static int ofscmp(const void *a_, const void *b_) |
| { |
| struct in_pack_object *a = (struct in_pack_object *)a_; |
| struct in_pack_object *b = (struct in_pack_object *)b_; |
| |
| if (a->offset < b->offset) |
| return -1; |
| else if (a->offset > b->offset) |
| return 1; |
| else |
| return oidcmp(&a->object->oid, &b->object->oid); |
| } |
| |
| static void add_objects_in_unpacked_packs(struct rev_info *revs) |
| { |
| struct packed_git *p; |
| struct in_pack in_pack; |
| uint32_t i; |
| |
| memset(&in_pack, 0, sizeof(in_pack)); |
| |
| for (p = packed_git; p; p = p->next) { |
| const unsigned char *sha1; |
| struct object *o; |
| |
| if (!p->pack_local || p->pack_keep) |
| continue; |
| if (open_pack_index(p)) |
| die("cannot open pack index"); |
| |
| ALLOC_GROW(in_pack.array, |
| in_pack.nr + p->num_objects, |
| in_pack.alloc); |
| |
| for (i = 0; i < p->num_objects; i++) { |
| sha1 = nth_packed_object_sha1(p, i); |
| o = lookup_unknown_object(sha1); |
| if (!(o->flags & OBJECT_ADDED)) |
| mark_in_pack_object(o, p, &in_pack); |
| o->flags |= OBJECT_ADDED; |
| } |
| } |
| |
| if (in_pack.nr) { |
| QSORT(in_pack.array, in_pack.nr, ofscmp); |
| for (i = 0; i < in_pack.nr; i++) { |
| struct object *o = in_pack.array[i].object; |
| add_object_entry(o->oid.hash, o->type, "", 0); |
| } |
| } |
| free(in_pack.array); |
| } |
| |
| static int add_loose_object(const struct object_id *oid, const char *path, |
| void *data) |
| { |
| enum object_type type = sha1_object_info(oid->hash, NULL); |
| |
| if (type < 0) { |
| warning("loose object at %s could not be examined", path); |
| return 0; |
| } |
| |
| add_object_entry(oid->hash, type, "", 0); |
| return 0; |
| } |
| |
| /* |
| * We actually don't even have to worry about reachability here. |
| * add_object_entry will weed out duplicates, so we just add every |
| * loose object we find. |
| */ |
| static void add_unreachable_loose_objects(void) |
| { |
| for_each_loose_file_in_objdir(get_object_directory(), |
| add_loose_object, |
| NULL, NULL, NULL); |
| } |
| |
| static int has_sha1_pack_kept_or_nonlocal(const unsigned char *sha1) |
| { |
| static struct packed_git *last_found = (void *)1; |
| struct packed_git *p; |
| |
| p = (last_found != (void *)1) ? last_found : packed_git; |
| |
| while (p) { |
| if ((!p->pack_local || p->pack_keep) && |
| find_pack_entry_one(sha1, p)) { |
| last_found = p; |
| return 1; |
| } |
| if (p == last_found) |
| p = packed_git; |
| else |
| p = p->next; |
| if (p == last_found) |
| p = p->next; |
| } |
| return 0; |
| } |
| |
| /* |
| * Store a list of sha1s that are should not be discarded |
| * because they are either written too recently, or are |
| * reachable from another object that was. |
| * |
| * This is filled by get_object_list. |
| */ |
| static struct oid_array recent_objects; |
| |
| static int loosened_object_can_be_discarded(const struct object_id *oid, |
| timestamp_t mtime) |
| { |
| if (!unpack_unreachable_expiration) |
| return 0; |
| if (mtime > unpack_unreachable_expiration) |
| return 0; |
| if (oid_array_lookup(&recent_objects, oid) >= 0) |
| return 0; |
| return 1; |
| } |
| |
| static void loosen_unused_packed_objects(struct rev_info *revs) |
| { |
| struct packed_git *p; |
| uint32_t i; |
| struct object_id oid; |
| |
| for (p = packed_git; p; p = p->next) { |
| if (!p->pack_local || p->pack_keep) |
| continue; |
| |
| if (open_pack_index(p)) |
| die("cannot open pack index"); |
| |
| for (i = 0; i < p->num_objects; i++) { |
| nth_packed_object_oid(&oid, p, i); |
| if (!packlist_find(&to_pack, oid.hash, NULL) && |
| !has_sha1_pack_kept_or_nonlocal(oid.hash) && |
| !loosened_object_can_be_discarded(&oid, p->mtime)) |
| if (force_object_loose(oid.hash, p->mtime)) |
| die("unable to force loose object"); |
| } |
| } |
| } |
| |
| /* |
| * This tracks any options which pack-reuse code expects to be on, or which a |
| * reader of the pack might not understand, and which would therefore prevent |
| * blind reuse of what we have on disk. |
| */ |
| static int pack_options_allow_reuse(void) |
| { |
| return pack_to_stdout && |
| allow_ofs_delta && |
| !ignore_packed_keep && |
| (!local || !have_non_local_packs) && |
| !incremental; |
| } |
| |
| static int get_object_list_from_bitmap(struct rev_info *revs) |
| { |
| if (prepare_bitmap_walk(revs) < 0) |
| return -1; |
| |
| if (pack_options_allow_reuse() && |
| !reuse_partial_packfile_from_bitmap( |
| &reuse_packfile, |
| &reuse_packfile_objects, |
| &reuse_packfile_offset)) { |
| assert(reuse_packfile_objects); |
| nr_result += reuse_packfile_objects; |
| display_progress(progress_state, nr_result); |
| } |
| |
| traverse_bitmap_commit_list(&add_object_entry_from_bitmap); |
| return 0; |
| } |
| |
| static void record_recent_object(struct object *obj, |
| const char *name, |
| void *data) |
| { |
| oid_array_append(&recent_objects, &obj->oid); |
| } |
| |
| static void record_recent_commit(struct commit *commit, void *data) |
| { |
| oid_array_append(&recent_objects, &commit->object.oid); |
| } |
| |
| static void get_object_list(int ac, const char **av) |
| { |
| struct rev_info revs; |
| char line[1000]; |
| int flags = 0; |
| |
| init_revisions(&revs, NULL); |
| save_commit_buffer = 0; |
| setup_revisions(ac, av, &revs, NULL); |
| |
| /* make sure shallows are read */ |
| is_repository_shallow(); |
| |
| while (fgets(line, sizeof(line), stdin) != NULL) { |
| int len = strlen(line); |
| if (len && line[len - 1] == '\n') |
| line[--len] = 0; |
| if (!len) |
| break; |
| if (*line == '-') { |
| if (!strcmp(line, "--not")) { |
| flags ^= UNINTERESTING; |
| write_bitmap_index = 0; |
| continue; |
| } |
| if (starts_with(line, "--shallow ")) { |
| struct object_id oid; |
| if (get_oid_hex(line + 10, &oid)) |
| die("not an SHA-1 '%s'", line + 10); |
| register_shallow(&oid); |
| use_bitmap_index = 0; |
| continue; |
| } |
| die("not a rev '%s'", line); |
| } |
| if (handle_revision_arg(line, &revs, flags, REVARG_CANNOT_BE_FILENAME)) |
| die("bad revision '%s'", line); |
| } |
| |
| if (use_bitmap_index && !get_object_list_from_bitmap(&revs)) |
| return; |
| |
| if (prepare_revision_walk(&revs)) |
| die("revision walk setup failed"); |
| mark_edges_uninteresting(&revs, show_edge); |
| traverse_commit_list(&revs, show_commit, show_object, NULL); |
| |
| if (unpack_unreachable_expiration) { |
| revs.ignore_missing_links = 1; |
| if (add_unseen_recent_objects_to_traversal(&revs, |
| unpack_unreachable_expiration)) |
| die("unable to add recent objects"); |
| if (prepare_revision_walk(&revs)) |
| die("revision walk setup failed"); |
| traverse_commit_list(&revs, record_recent_commit, |
| record_recent_object, NULL); |
| } |
| |
| if (keep_unreachable) |
| add_objects_in_unpacked_packs(&revs); |
| if (pack_loose_unreachable) |
| add_unreachable_loose_objects(); |
| if (unpack_unreachable) |
| loosen_unused_packed_objects(&revs); |
| |
| oid_array_clear(&recent_objects); |
| } |
| |
| static int option_parse_index_version(const struct option *opt, |
| const char *arg, int unset) |
| { |
| char *c; |
| const char *val = arg; |
| pack_idx_opts.version = strtoul(val, &c, 10); |
| if (pack_idx_opts.version > 2) |
| die(_("unsupported index version %s"), val); |
| if (*c == ',' && c[1]) |
| pack_idx_opts.off32_limit = strtoul(c+1, &c, 0); |
| if (*c || pack_idx_opts.off32_limit & 0x80000000) |
| die(_("bad index version '%s'"), val); |
| return 0; |
| } |
| |
| static int option_parse_unpack_unreachable(const struct option *opt, |
| const char *arg, int unset) |
| { |
| if (unset) { |
| unpack_unreachable = 0; |
| unpack_unreachable_expiration = 0; |
| } |
| else { |
| unpack_unreachable = 1; |
| if (arg) |
| unpack_unreachable_expiration = approxidate(arg); |
| } |
| return 0; |
| } |
| |
| int cmd_pack_objects(int argc, const char **argv, const char *prefix) |
| { |
| int use_internal_rev_list = 0; |
| int thin = 0; |
| int shallow = 0; |
| int all_progress_implied = 0; |
| struct argv_array rp = ARGV_ARRAY_INIT; |
| int rev_list_unpacked = 0, rev_list_all = 0, rev_list_reflog = 0; |
| int rev_list_index = 0; |
| struct option pack_objects_options[] = { |
| OPT_SET_INT('q', "quiet", &progress, |
| N_("do not show progress meter"), 0), |
| OPT_SET_INT(0, "progress", &progress, |
| N_("show progress meter"), 1), |
| OPT_SET_INT(0, "all-progress", &progress, |
| N_("show progress meter during object writing phase"), 2), |
| OPT_BOOL(0, "all-progress-implied", |
| &all_progress_implied, |
| N_("similar to --all-progress when progress meter is shown")), |
| { OPTION_CALLBACK, 0, "index-version", NULL, N_("version[,offset]"), |
| N_("write the pack index file in the specified idx format version"), |
| 0, option_parse_index_version }, |
| OPT_MAGNITUDE(0, "max-pack-size", &pack_size_limit, |
| N_("maximum size of each output pack file")), |
| OPT_BOOL(0, "local", &local, |
| N_("ignore borrowed objects from alternate object store")), |
| OPT_BOOL(0, "incremental", &incremental, |
| N_("ignore packed objects")), |
| OPT_INTEGER(0, "window", &window, |
| N_("limit pack window by objects")), |
| OPT_MAGNITUDE(0, "window-memory", &window_memory_limit, |
| N_("limit pack window by memory in addition to object limit")), |
| OPT_INTEGER(0, "depth", &depth, |
| N_("maximum length of delta chain allowed in the resulting pack")), |
| OPT_BOOL(0, "reuse-delta", &reuse_delta, |
| N_("reuse existing deltas")), |
| OPT_BOOL(0, "reuse-object", &reuse_object, |
| N_("reuse existing objects")), |
| OPT_BOOL(0, "delta-base-offset", &allow_ofs_delta, |
| N_("use OFS_DELTA objects")), |
| OPT_INTEGER(0, "threads", &delta_search_threads, |
| N_("use threads when searching for best delta matches")), |
| OPT_BOOL(0, "non-empty", &non_empty, |
| N_("do not create an empty pack output")), |
| OPT_BOOL(0, "revs", &use_internal_rev_list, |
| N_("read revision arguments from standard input")), |
| { OPTION_SET_INT, 0, "unpacked", &rev_list_unpacked, NULL, |
| N_("limit the objects to those that are not yet packed"), |
| PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 }, |
| { OPTION_SET_INT, 0, "all", &rev_list_all, NULL, |
| N_("include objects reachable from any reference"), |
| PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 }, |
| { OPTION_SET_INT, 0, "reflog", &rev_list_reflog, NULL, |
| N_("include objects referred by reflog entries"), |
| PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 }, |
| { OPTION_SET_INT, 0, "indexed-objects", &rev_list_index, NULL, |
| N_("include objects referred to by the index"), |
| PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 }, |
| OPT_BOOL(0, "stdout", &pack_to_stdout, |
| N_("output pack to stdout")), |
| OPT_BOOL(0, "include-tag", &include_tag, |
| N_("include tag objects that refer to objects to be packed")), |
| OPT_BOOL(0, "keep-unreachable", &keep_unreachable, |
| N_("keep unreachable objects")), |
| OPT_BOOL(0, "pack-loose-unreachable", &pack_loose_unreachable, |
| N_("pack loose unreachable objects")), |
| { OPTION_CALLBACK, 0, "unpack-unreachable", NULL, N_("time"), |
| N_("unpack unreachable objects newer than <time>"), |
| PARSE_OPT_OPTARG, option_parse_unpack_unreachable }, |
| OPT_BOOL(0, "thin", &thin, |
| N_("create thin packs")), |
| OPT_BOOL(0, "shallow", &shallow, |
| N_("create packs suitable for shallow fetches")), |
| OPT_BOOL(0, "honor-pack-keep", &ignore_packed_keep, |
| N_("ignore packs that have companion .keep file")), |
| OPT_INTEGER(0, "compression", &pack_compression_level, |
| N_("pack compression level")), |
| OPT_SET_INT(0, "keep-true-parents", &grafts_replace_parents, |
| N_("do not hide commits by grafts"), 0), |
| OPT_BOOL(0, "use-bitmap-index", &use_bitmap_index, |
| N_("use a bitmap index if available to speed up counting objects")), |
| OPT_BOOL(0, "write-bitmap-index", &write_bitmap_index, |
| N_("write a bitmap index together with the pack index")), |
| OPT_END(), |
| }; |
| |
| check_replace_refs = 0; |
| |
| reset_pack_idx_option(&pack_idx_opts); |
| git_config(git_pack_config, NULL); |
| |
| progress = isatty(2); |
| argc = parse_options(argc, argv, prefix, pack_objects_options, |
| pack_usage, 0); |
| |
| if (argc) { |
| base_name = argv[0]; |
| argc--; |
| } |
| if (pack_to_stdout != !base_name || argc) |
| usage_with_options(pack_usage, pack_objects_options); |
| |
| argv_array_push(&rp, "pack-objects"); |
| if (thin) { |
| use_internal_rev_list = 1; |
| argv_array_push(&rp, shallow |
| ? "--objects-edge-aggressive" |
| : "--objects-edge"); |
| } else |
| argv_array_push(&rp, "--objects"); |
| |
| if (rev_list_all) { |
| use_internal_rev_list = 1; |
| argv_array_push(&rp, "--all"); |
| } |
| if (rev_list_reflog) { |
| use_internal_rev_list = 1; |
| argv_array_push(&rp, "--reflog"); |
| } |
| if (rev_list_index) { |
| use_internal_rev_list = 1; |
| argv_array_push(&rp, "--indexed-objects"); |
| } |
| if (rev_list_unpacked) { |
| use_internal_rev_list = 1; |
| argv_array_push(&rp, "--unpacked"); |
| } |
| |
| if (!reuse_object) |
| reuse_delta = 0; |
| if (pack_compression_level == -1) |
| pack_compression_level = Z_DEFAULT_COMPRESSION; |
| else if (pack_compression_level < 0 || pack_compression_level > Z_BEST_COMPRESSION) |
| die("bad pack compression level %d", pack_compression_level); |
| |
| if (!delta_search_threads) /* --threads=0 means autodetect */ |
| delta_search_threads = online_cpus(); |
| |
| #ifdef NO_PTHREADS |
| if (delta_search_threads != 1) |
| warning("no threads support, ignoring --threads"); |
| #endif |
| if (!pack_to_stdout && !pack_size_limit) |
| pack_size_limit = pack_size_limit_cfg; |
| if (pack_to_stdout && pack_size_limit) |
| die("--max-pack-size cannot be used to build a pack for transfer."); |
| if (pack_size_limit && pack_size_limit < 1024*1024) { |
| warning("minimum pack size limit is 1 MiB"); |
| pack_size_limit = 1024*1024; |
| } |
| |
| if (!pack_to_stdout && thin) |
| die("--thin cannot be used to build an indexable pack."); |
| |
| if (keep_unreachable && unpack_unreachable) |
| die("--keep-unreachable and --unpack-unreachable are incompatible."); |
| if (!rev_list_all || !rev_list_reflog || !rev_list_index) |
| unpack_unreachable_expiration = 0; |
| |
| /* |
| * "soft" reasons not to use bitmaps - for on-disk repack by default we want |
| * |
| * - to produce good pack (with bitmap index not-yet-packed objects are |
| * packed in suboptimal order). |
| * |
| * - to use more robust pack-generation codepath (avoiding possible |
| * bugs in bitmap code and possible bitmap index corruption). |
| */ |
| if (!pack_to_stdout) |
| use_bitmap_index_default = 0; |
| |
| if (use_bitmap_index < 0) |
| use_bitmap_index = use_bitmap_index_default; |
| |
| /* "hard" reasons not to use bitmaps; these just won't work at all */ |
| if (!use_internal_rev_list || (!pack_to_stdout && write_bitmap_index) || is_repository_shallow()) |
| use_bitmap_index = 0; |
| |
| if (pack_to_stdout || !rev_list_all) |
| write_bitmap_index = 0; |
| |
| if (progress && all_progress_implied) |
| progress = 2; |
| |
| prepare_packed_git(); |
| if (ignore_packed_keep) { |
| struct packed_git *p; |
| for (p = packed_git; p; p = p->next) |
| if (p->pack_local && p->pack_keep) |
| break; |
| if (!p) /* no keep-able packs found */ |
| ignore_packed_keep = 0; |
| } |
| if (local) { |
| /* |
| * unlike ignore_packed_keep above, we do not want to |
| * unset "local" based on looking at packs, as it |
| * also covers non-local objects |
| */ |
| struct packed_git *p; |
| for (p = packed_git; p; p = p->next) { |
| if (!p->pack_local) { |
| have_non_local_packs = 1; |
| break; |
| } |
| } |
| } |
| |
| if (progress) |
| progress_state = start_progress(_("Counting objects"), 0); |
| if (!use_internal_rev_list) |
| read_object_list_from_stdin(); |
| else { |
| get_object_list(rp.argc, rp.argv); |
| argv_array_clear(&rp); |
| } |
| cleanup_preferred_base(); |
| if (include_tag && nr_result) |
| for_each_ref(add_ref_tag, NULL); |
| stop_progress(&progress_state); |
| |
| if (non_empty && !nr_result) |
| return 0; |
| if (nr_result) |
| prepare_pack(window, depth); |
| write_pack_file(); |
| if (progress) |
| fprintf(stderr, "Total %"PRIu32" (delta %"PRIu32")," |
| " reused %"PRIu32" (delta %"PRIu32")\n", |
| written, written_delta, reused, reused_delta); |
| return 0; |
| } |