| #include "builtin.h" |
| #include "alloc.h" |
| #include "config.h" |
| #include "parse-options.h" |
| #include "fsmonitor.h" |
| #include "fsmonitor-ipc.h" |
| #include "fsmonitor-path-utils.h" |
| #include "compat/fsmonitor/fsm-health.h" |
| #include "compat/fsmonitor/fsm-listen.h" |
| #include "fsmonitor--daemon.h" |
| #include "simple-ipc.h" |
| #include "khash.h" |
| #include "pkt-line.h" |
| |
| static const char * const builtin_fsmonitor__daemon_usage[] = { |
| N_("git fsmonitor--daemon start [<options>]"), |
| N_("git fsmonitor--daemon run [<options>]"), |
| "git fsmonitor--daemon stop", |
| "git fsmonitor--daemon status", |
| NULL |
| }; |
| |
| #ifdef HAVE_FSMONITOR_DAEMON_BACKEND |
| /* |
| * Global state loaded from config. |
| */ |
| #define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads" |
| static int fsmonitor__ipc_threads = 8; |
| |
| #define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout" |
| static int fsmonitor__start_timeout_sec = 60; |
| |
| #define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup" |
| static int fsmonitor__announce_startup = 0; |
| |
| static int fsmonitor_config(const char *var, const char *value, void *cb) |
| { |
| if (!strcmp(var, FSMONITOR__IPC_THREADS)) { |
| int i = git_config_int(var, value); |
| if (i < 1) |
| return error(_("value of '%s' out of range: %d"), |
| FSMONITOR__IPC_THREADS, i); |
| fsmonitor__ipc_threads = i; |
| return 0; |
| } |
| |
| if (!strcmp(var, FSMONITOR__START_TIMEOUT)) { |
| int i = git_config_int(var, value); |
| if (i < 0) |
| return error(_("value of '%s' out of range: %d"), |
| FSMONITOR__START_TIMEOUT, i); |
| fsmonitor__start_timeout_sec = i; |
| return 0; |
| } |
| |
| if (!strcmp(var, FSMONITOR__ANNOUNCE_STARTUP)) { |
| int is_bool; |
| int i = git_config_bool_or_int(var, value, &is_bool); |
| if (i < 0) |
| return error(_("value of '%s' not bool or int: %d"), |
| var, i); |
| fsmonitor__announce_startup = i; |
| return 0; |
| } |
| |
| return git_default_config(var, value, cb); |
| } |
| |
| /* |
| * Acting as a CLIENT. |
| * |
| * Send a "quit" command to the `git-fsmonitor--daemon` (if running) |
| * and wait for it to shutdown. |
| */ |
| static int do_as_client__send_stop(void) |
| { |
| struct strbuf answer = STRBUF_INIT; |
| int ret; |
| |
| ret = fsmonitor_ipc__send_command("quit", &answer); |
| |
| /* The quit command does not return any response data. */ |
| strbuf_release(&answer); |
| |
| if (ret) |
| return ret; |
| |
| trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL); |
| while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING) |
| sleep_millisec(50); |
| trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL); |
| |
| return 0; |
| } |
| |
| static int do_as_client__status(void) |
| { |
| enum ipc_active_state state = fsmonitor_ipc__get_state(); |
| |
| switch (state) { |
| case IPC_STATE__LISTENING: |
| printf(_("fsmonitor-daemon is watching '%s'\n"), |
| the_repository->worktree); |
| return 0; |
| |
| default: |
| printf(_("fsmonitor-daemon is not watching '%s'\n"), |
| the_repository->worktree); |
| return 1; |
| } |
| } |
| |
| enum fsmonitor_cookie_item_result { |
| FCIR_ERROR = -1, /* could not create cookie file ? */ |
| FCIR_INIT, |
| FCIR_SEEN, |
| FCIR_ABORT, |
| }; |
| |
| struct fsmonitor_cookie_item { |
| struct hashmap_entry entry; |
| char *name; |
| enum fsmonitor_cookie_item_result result; |
| }; |
| |
| static int cookies_cmp(const void *data, const struct hashmap_entry *he1, |
| const struct hashmap_entry *he2, const void *keydata) |
| { |
| const struct fsmonitor_cookie_item *a = |
| container_of(he1, const struct fsmonitor_cookie_item, entry); |
| const struct fsmonitor_cookie_item *b = |
| container_of(he2, const struct fsmonitor_cookie_item, entry); |
| |
| return strcmp(a->name, keydata ? keydata : b->name); |
| } |
| |
| static enum fsmonitor_cookie_item_result with_lock__wait_for_cookie( |
| struct fsmonitor_daemon_state *state) |
| { |
| /* assert current thread holding state->main_lock */ |
| |
| int fd; |
| struct fsmonitor_cookie_item *cookie; |
| struct strbuf cookie_pathname = STRBUF_INIT; |
| struct strbuf cookie_filename = STRBUF_INIT; |
| enum fsmonitor_cookie_item_result result; |
| int my_cookie_seq; |
| |
| CALLOC_ARRAY(cookie, 1); |
| |
| my_cookie_seq = state->cookie_seq++; |
| |
| strbuf_addf(&cookie_filename, "%i-%i", getpid(), my_cookie_seq); |
| |
| strbuf_addbuf(&cookie_pathname, &state->path_cookie_prefix); |
| strbuf_addbuf(&cookie_pathname, &cookie_filename); |
| |
| cookie->name = strbuf_detach(&cookie_filename, NULL); |
| cookie->result = FCIR_INIT; |
| hashmap_entry_init(&cookie->entry, strhash(cookie->name)); |
| |
| hashmap_add(&state->cookies, &cookie->entry); |
| |
| trace_printf_key(&trace_fsmonitor, "cookie-wait: '%s' '%s'", |
| cookie->name, cookie_pathname.buf); |
| |
| /* |
| * Create the cookie file on disk and then wait for a notification |
| * that the listener thread has seen it. |
| */ |
| fd = open(cookie_pathname.buf, O_WRONLY | O_CREAT | O_EXCL, 0600); |
| if (fd < 0) { |
| error_errno(_("could not create fsmonitor cookie '%s'"), |
| cookie->name); |
| |
| cookie->result = FCIR_ERROR; |
| goto done; |
| } |
| |
| /* |
| * Technically, close() and unlink() can fail, but we don't |
| * care here. We only created the file to trigger a watch |
| * event from the FS to know that when we're up to date. |
| */ |
| close(fd); |
| unlink(cookie_pathname.buf); |
| |
| /* |
| * Technically, this is an infinite wait (well, unless another |
| * thread sends us an abort). I'd like to change this to |
| * use `pthread_cond_timedwait()` and return an error/timeout |
| * and let the caller do the trivial response thing, but we |
| * don't have that routine in our thread-utils. |
| * |
| * After extensive beta testing I'm not really worried about |
| * this. Also note that the above open() and unlink() calls |
| * will cause at least two FS events on that path, so the odds |
| * of getting stuck are pretty slim. |
| */ |
| while (cookie->result == FCIR_INIT) |
| pthread_cond_wait(&state->cookies_cond, |
| &state->main_lock); |
| |
| done: |
| hashmap_remove(&state->cookies, &cookie->entry, NULL); |
| |
| result = cookie->result; |
| |
| free(cookie->name); |
| free(cookie); |
| strbuf_release(&cookie_pathname); |
| |
| return result; |
| } |
| |
| /* |
| * Mark these cookies as _SEEN and wake up the corresponding client threads. |
| */ |
| static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state *state, |
| const struct string_list *cookie_names) |
| { |
| /* assert current thread holding state->main_lock */ |
| |
| int k; |
| int nr_seen = 0; |
| |
| for (k = 0; k < cookie_names->nr; k++) { |
| struct fsmonitor_cookie_item key; |
| struct fsmonitor_cookie_item *cookie; |
| |
| key.name = cookie_names->items[k].string; |
| hashmap_entry_init(&key.entry, strhash(key.name)); |
| |
| cookie = hashmap_get_entry(&state->cookies, &key, entry, NULL); |
| if (cookie) { |
| trace_printf_key(&trace_fsmonitor, "cookie-seen: '%s'", |
| cookie->name); |
| cookie->result = FCIR_SEEN; |
| nr_seen++; |
| } |
| } |
| |
| if (nr_seen) |
| pthread_cond_broadcast(&state->cookies_cond); |
| } |
| |
| /* |
| * Set _ABORT on all pending cookies and wake up all client threads. |
| */ |
| static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state *state) |
| { |
| /* assert current thread holding state->main_lock */ |
| |
| struct hashmap_iter iter; |
| struct fsmonitor_cookie_item *cookie; |
| int nr_aborted = 0; |
| |
| hashmap_for_each_entry(&state->cookies, &iter, cookie, entry) { |
| trace_printf_key(&trace_fsmonitor, "cookie-abort: '%s'", |
| cookie->name); |
| cookie->result = FCIR_ABORT; |
| nr_aborted++; |
| } |
| |
| if (nr_aborted) |
| pthread_cond_broadcast(&state->cookies_cond); |
| } |
| |
| /* |
| * Requests to and from a FSMonitor Protocol V2 provider use an opaque |
| * "token" as a virtual timestamp. Clients can request a summary of all |
| * created/deleted/modified files relative to a token. In the response, |
| * clients receive a new token for the next (relative) request. |
| * |
| * |
| * Token Format |
| * ============ |
| * |
| * The contents of the token are private and provider-specific. |
| * |
| * For the built-in fsmonitor--daemon, we define a token as follows: |
| * |
| * "builtin" ":" <token_id> ":" <sequence_nr> |
| * |
| * The "builtin" prefix is used as a namespace to avoid conflicts |
| * with other providers (such as Watchman). |
| * |
| * The <token_id> is an arbitrary OPAQUE string, such as a GUID, |
| * UUID, or {timestamp,pid}. It is used to group all filesystem |
| * events that happened while the daemon was monitoring (and in-sync |
| * with the filesystem). |
| * |
| * Unlike FSMonitor Protocol V1, it is not defined as a timestamp |
| * and does not define less-than/greater-than relationships. |
| * (There are too many race conditions to rely on file system |
| * event timestamps.) |
| * |
| * The <sequence_nr> is a simple integer incremented whenever the |
| * daemon needs to make its state public. For example, if 1000 file |
| * system events come in, but no clients have requested the data, |
| * the daemon can continue to accumulate file changes in the same |
| * bin and does not need to advance the sequence number. However, |
| * as soon as a client does arrive, the daemon needs to start a new |
| * bin and increment the sequence number. |
| * |
| * The sequence number serves as the boundary between 2 sets |
| * of bins -- the older ones that the client has already seen |
| * and the newer ones that it hasn't. |
| * |
| * When a new <token_id> is created, the <sequence_nr> is reset to |
| * zero. |
| * |
| * |
| * About Token Ids |
| * =============== |
| * |
| * A new token_id is created: |
| * |
| * [1] each time the daemon is started. |
| * |
| * [2] any time that the daemon must re-sync with the filesystem |
| * (such as when the kernel drops or we miss events on a very |
| * active volume). |
| * |
| * [3] in response to a client "flush" command (for dropped event |
| * testing). |
| * |
| * When a new token_id is created, the daemon is free to discard all |
| * cached filesystem events associated with any previous token_ids. |
| * Events associated with a non-current token_id will never be sent |
| * to a client. A token_id change implicitly means that the daemon |
| * has gap in its event history. |
| * |
| * Therefore, clients that present a token with a stale (non-current) |
| * token_id will always be given a trivial response. |
| */ |
| struct fsmonitor_token_data { |
| struct strbuf token_id; |
| struct fsmonitor_batch *batch_head; |
| struct fsmonitor_batch *batch_tail; |
| uint64_t client_ref_count; |
| }; |
| |
| struct fsmonitor_batch { |
| struct fsmonitor_batch *next; |
| uint64_t batch_seq_nr; |
| const char **interned_paths; |
| size_t nr, alloc; |
| time_t pinned_time; |
| }; |
| |
| static struct fsmonitor_token_data *fsmonitor_new_token_data(void) |
| { |
| static int test_env_value = -1; |
| static uint64_t flush_count = 0; |
| struct fsmonitor_token_data *token; |
| struct fsmonitor_batch *batch; |
| |
| CALLOC_ARRAY(token, 1); |
| batch = fsmonitor_batch__new(); |
| |
| strbuf_init(&token->token_id, 0); |
| token->batch_head = batch; |
| token->batch_tail = batch; |
| token->client_ref_count = 0; |
| |
| if (test_env_value < 0) |
| test_env_value = git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0); |
| |
| if (!test_env_value) { |
| struct timeval tv; |
| struct tm tm; |
| time_t secs; |
| |
| gettimeofday(&tv, NULL); |
| secs = tv.tv_sec; |
| gmtime_r(&secs, &tm); |
| |
| strbuf_addf(&token->token_id, |
| "%"PRIu64".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ", |
| flush_count++, |
| getpid(), |
| tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, |
| tm.tm_hour, tm.tm_min, tm.tm_sec, |
| (long)tv.tv_usec); |
| } else { |
| strbuf_addf(&token->token_id, "test_%08x", test_env_value++); |
| } |
| |
| /* |
| * We created a new <token_id> and are starting a new series |
| * of tokens with a zero <seq_nr>. |
| * |
| * Since clients cannot guess our new (non test) <token_id> |
| * they will always receive a trivial response (because of the |
| * mismatch on the <token_id>). The trivial response will |
| * tell them our new <token_id> so that subsequent requests |
| * will be relative to our new series. (And when sending that |
| * response, we pin the current head of the batch list.) |
| * |
| * Even if the client correctly guesses the <token_id>, their |
| * request of "builtin:<token_id>:0" asks for all changes MORE |
| * RECENT than batch/bin 0. |
| * |
| * This implies that it is a waste to accumulate paths in the |
| * initial batch/bin (because they will never be transmitted). |
| * |
| * So the daemon could be running for days and watching the |
| * file system, but doesn't need to actually accumulate any |
| * paths UNTIL we need to set a reference point for a later |
| * relative request. |
| * |
| * However, it is very useful for testing to always have a |
| * reference point set. Pin batch 0 to force early file system |
| * events to accumulate. |
| */ |
| if (test_env_value) |
| batch->pinned_time = time(NULL); |
| |
| return token; |
| } |
| |
| struct fsmonitor_batch *fsmonitor_batch__new(void) |
| { |
| struct fsmonitor_batch *batch; |
| |
| CALLOC_ARRAY(batch, 1); |
| |
| return batch; |
| } |
| |
| void fsmonitor_batch__free_list(struct fsmonitor_batch *batch) |
| { |
| while (batch) { |
| struct fsmonitor_batch *next = batch->next; |
| |
| /* |
| * The actual strings within the array of this batch |
| * are interned, so we don't own them. We only own |
| * the array. |
| */ |
| free(batch->interned_paths); |
| free(batch); |
| |
| batch = next; |
| } |
| } |
| |
| void fsmonitor_batch__add_path(struct fsmonitor_batch *batch, |
| const char *path) |
| { |
| const char *interned_path = strintern(path); |
| |
| trace_printf_key(&trace_fsmonitor, "event: %s", interned_path); |
| |
| ALLOC_GROW(batch->interned_paths, batch->nr + 1, batch->alloc); |
| batch->interned_paths[batch->nr++] = interned_path; |
| } |
| |
| static void fsmonitor_batch__combine(struct fsmonitor_batch *batch_dest, |
| const struct fsmonitor_batch *batch_src) |
| { |
| size_t k; |
| |
| ALLOC_GROW(batch_dest->interned_paths, |
| batch_dest->nr + batch_src->nr + 1, |
| batch_dest->alloc); |
| |
| for (k = 0; k < batch_src->nr; k++) |
| batch_dest->interned_paths[batch_dest->nr++] = |
| batch_src->interned_paths[k]; |
| } |
| |
| /* |
| * To keep the batch list from growing unbounded in response to filesystem |
| * activity, we try to truncate old batches from the end of the list as |
| * they become irrelevant. |
| * |
| * We assume that the .git/index will be updated with the most recent token |
| * any time the index is updated. And future commands will only ask for |
| * recent changes *since* that new token. So as tokens advance into the |
| * future, older batch items will never be requested/needed. So we can |
| * truncate them without loss of functionality. |
| * |
| * However, multiple commands may be talking to the daemon concurrently |
| * or perform a slow command, so a little "token skew" is possible. |
| * Therefore, we want this to be a little bit lazy and have a generous |
| * delay. |
| * |
| * The current reader thread walked backwards in time from `token->batch_head` |
| * back to `batch_marker` somewhere in the middle of the batch list. |
| * |
| * Let's walk backwards in time from that marker an arbitrary delay |
| * and truncate the list there. Note that these timestamps are completely |
| * artificial (based on when we pinned the batch item) and not on any |
| * filesystem activity. |
| * |
| * Return the obsolete portion of the list after we have removed it from |
| * the official list so that the caller can free it after leaving the lock. |
| */ |
| #define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */ |
| |
| static struct fsmonitor_batch *with_lock__truncate_old_batches( |
| struct fsmonitor_daemon_state *state, |
| const struct fsmonitor_batch *batch_marker) |
| { |
| /* assert current thread holding state->main_lock */ |
| |
| const struct fsmonitor_batch *batch; |
| struct fsmonitor_batch *remainder; |
| |
| if (!batch_marker) |
| return NULL; |
| |
| trace_printf_key(&trace_fsmonitor, "Truncate: mark (%"PRIu64",%"PRIu64")", |
| batch_marker->batch_seq_nr, |
| (uint64_t)batch_marker->pinned_time); |
| |
| for (batch = batch_marker; batch; batch = batch->next) { |
| time_t t; |
| |
| if (!batch->pinned_time) /* an overflow batch */ |
| continue; |
| |
| t = batch->pinned_time + MY_TIME_DELAY_SECONDS; |
| if (t > batch_marker->pinned_time) /* too close to marker */ |
| continue; |
| |
| goto truncate_past_here; |
| } |
| |
| return NULL; |
| |
| truncate_past_here: |
| state->current_token_data->batch_tail = (struct fsmonitor_batch *)batch; |
| |
| remainder = ((struct fsmonitor_batch *)batch)->next; |
| ((struct fsmonitor_batch *)batch)->next = NULL; |
| |
| return remainder; |
| } |
| |
| static void fsmonitor_free_token_data(struct fsmonitor_token_data *token) |
| { |
| if (!token) |
| return; |
| |
| assert(token->client_ref_count == 0); |
| |
| strbuf_release(&token->token_id); |
| |
| fsmonitor_batch__free_list(token->batch_head); |
| |
| free(token); |
| } |
| |
| /* |
| * Flush all of our cached data about the filesystem. Call this if we |
| * lose sync with the filesystem and miss some notification events. |
| * |
| * [1] If we are missing events, then we no longer have a complete |
| * history of the directory (relative to our current start token). |
| * We should create a new token and start fresh (as if we just |
| * booted up). |
| * |
| * [2] Some of those lost events may have been for cookie files. We |
| * should assume the worst and abort them rather letting them starve. |
| * |
| * If there are no concurrent threads reading the current token data |
| * series, we can free it now. Otherwise, let the last reader free |
| * it. |
| * |
| * Either way, the old token data series is no longer associated with |
| * our state data. |
| */ |
| static void with_lock__do_force_resync(struct fsmonitor_daemon_state *state) |
| { |
| /* assert current thread holding state->main_lock */ |
| |
| struct fsmonitor_token_data *free_me = NULL; |
| struct fsmonitor_token_data *new_one = NULL; |
| |
| new_one = fsmonitor_new_token_data(); |
| |
| if (state->current_token_data->client_ref_count == 0) |
| free_me = state->current_token_data; |
| state->current_token_data = new_one; |
| |
| fsmonitor_free_token_data(free_me); |
| |
| with_lock__abort_all_cookies(state); |
| } |
| |
| void fsmonitor_force_resync(struct fsmonitor_daemon_state *state) |
| { |
| pthread_mutex_lock(&state->main_lock); |
| with_lock__do_force_resync(state); |
| pthread_mutex_unlock(&state->main_lock); |
| } |
| |
| /* |
| * Format an opaque token string to send to the client. |
| */ |
| static void with_lock__format_response_token( |
| struct strbuf *response_token, |
| const struct strbuf *response_token_id, |
| const struct fsmonitor_batch *batch) |
| { |
| /* assert current thread holding state->main_lock */ |
| |
| strbuf_reset(response_token); |
| strbuf_addf(response_token, "builtin:%s:%"PRIu64, |
| response_token_id->buf, batch->batch_seq_nr); |
| } |
| |
| /* |
| * Parse an opaque token from the client. |
| * Returns -1 on error. |
| */ |
| static int fsmonitor_parse_client_token(const char *buf_token, |
| struct strbuf *requested_token_id, |
| uint64_t *seq_nr) |
| { |
| const char *p; |
| char *p_end; |
| |
| strbuf_reset(requested_token_id); |
| *seq_nr = 0; |
| |
| if (!skip_prefix(buf_token, "builtin:", &p)) |
| return -1; |
| |
| while (*p && *p != ':') |
| strbuf_addch(requested_token_id, *p++); |
| if (!*p++) |
| return -1; |
| |
| *seq_nr = (uint64_t)strtoumax(p, &p_end, 10); |
| if (*p_end) |
| return -1; |
| |
| return 0; |
| } |
| |
| KHASH_INIT(str, const char *, int, 0, kh_str_hash_func, kh_str_hash_equal) |
| |
| static int do_handle_client(struct fsmonitor_daemon_state *state, |
| const char *command, |
| ipc_server_reply_cb *reply, |
| struct ipc_server_reply_data *reply_data) |
| { |
| struct fsmonitor_token_data *token_data = NULL; |
| struct strbuf response_token = STRBUF_INIT; |
| struct strbuf requested_token_id = STRBUF_INIT; |
| struct strbuf payload = STRBUF_INIT; |
| uint64_t requested_oldest_seq_nr = 0; |
| uint64_t total_response_len = 0; |
| const char *p; |
| const struct fsmonitor_batch *batch_head; |
| const struct fsmonitor_batch *batch; |
| struct fsmonitor_batch *remainder = NULL; |
| intmax_t count = 0, duplicates = 0; |
| kh_str_t *shown; |
| int hash_ret; |
| int do_trivial = 0; |
| int do_flush = 0; |
| int do_cookie = 0; |
| enum fsmonitor_cookie_item_result cookie_result; |
| |
| /* |
| * We expect `command` to be of the form: |
| * |
| * <command> := quit NUL |
| * | flush NUL |
| * | <V1-time-since-epoch-ns> NUL |
| * | <V2-opaque-fsmonitor-token> NUL |
| */ |
| |
| if (!strcmp(command, "quit")) { |
| /* |
| * A client has requested over the socket/pipe that the |
| * daemon shutdown. |
| * |
| * Tell the IPC thread pool to shutdown (which completes |
| * the await in the main thread (which can stop the |
| * fsmonitor listener thread)). |
| * |
| * There is no reply to the client. |
| */ |
| return SIMPLE_IPC_QUIT; |
| |
| } else if (!strcmp(command, "flush")) { |
| /* |
| * Flush all of our cached data and generate a new token |
| * just like if we lost sync with the filesystem. |
| * |
| * Then send a trivial response using the new token. |
| */ |
| do_flush = 1; |
| do_trivial = 1; |
| |
| } else if (!skip_prefix(command, "builtin:", &p)) { |
| /* assume V1 timestamp or garbage */ |
| |
| char *p_end; |
| |
| strtoumax(command, &p_end, 10); |
| trace_printf_key(&trace_fsmonitor, |
| ((*p_end) ? |
| "fsmonitor: invalid command line '%s'" : |
| "fsmonitor: unsupported V1 protocol '%s'"), |
| command); |
| do_trivial = 1; |
| do_cookie = 1; |
| |
| } else { |
| /* We have "builtin:*" */ |
| if (fsmonitor_parse_client_token(command, &requested_token_id, |
| &requested_oldest_seq_nr)) { |
| trace_printf_key(&trace_fsmonitor, |
| "fsmonitor: invalid V2 protocol token '%s'", |
| command); |
| do_trivial = 1; |
| do_cookie = 1; |
| |
| } else { |
| /* |
| * We have a V2 valid token: |
| * "builtin:<token_id>:<seq_nr>" |
| */ |
| do_cookie = 1; |
| } |
| } |
| |
| pthread_mutex_lock(&state->main_lock); |
| |
| if (!state->current_token_data) |
| BUG("fsmonitor state does not have a current token"); |
| |
| /* |
| * Write a cookie file inside the directory being watched in |
| * an effort to flush out existing filesystem events that we |
| * actually care about. Suspend this client thread until we |
| * see the filesystem events for this cookie file. |
| * |
| * Creating the cookie lets us guarantee that our FS listener |
| * thread has drained the kernel queue and we are caught up |
| * with the kernel. |
| * |
| * If we cannot create the cookie (or otherwise guarantee that |
| * we are caught up), we send a trivial response. We have to |
| * assume that there might be some very, very recent activity |
| * on the FS still in flight. |
| */ |
| if (do_cookie) { |
| cookie_result = with_lock__wait_for_cookie(state); |
| if (cookie_result != FCIR_SEEN) { |
| error(_("fsmonitor: cookie_result '%d' != SEEN"), |
| cookie_result); |
| do_trivial = 1; |
| } |
| } |
| |
| if (do_flush) |
| with_lock__do_force_resync(state); |
| |
| /* |
| * We mark the current head of the batch list as "pinned" so |
| * that the listener thread will treat this item as read-only |
| * (and prevent any more paths from being added to it) from |
| * now on. |
| */ |
| token_data = state->current_token_data; |
| batch_head = token_data->batch_head; |
| ((struct fsmonitor_batch *)batch_head)->pinned_time = time(NULL); |
| |
| /* |
| * FSMonitor Protocol V2 requires that we send a response header |
| * with a "new current token" and then all of the paths that changed |
| * since the "requested token". We send the seq_nr of the just-pinned |
| * head batch so that future requests from a client will be relative |
| * to it. |
| */ |
| with_lock__format_response_token(&response_token, |
| &token_data->token_id, batch_head); |
| |
| reply(reply_data, response_token.buf, response_token.len + 1); |
| total_response_len += response_token.len + 1; |
| |
| trace2_data_string("fsmonitor", the_repository, "response/token", |
| response_token.buf); |
| trace_printf_key(&trace_fsmonitor, "response token: %s", |
| response_token.buf); |
| |
| if (!do_trivial) { |
| if (strcmp(requested_token_id.buf, token_data->token_id.buf)) { |
| /* |
| * The client last spoke to a different daemon |
| * instance -OR- the daemon had to resync with |
| * the filesystem (and lost events), so reject. |
| */ |
| trace2_data_string("fsmonitor", the_repository, |
| "response/token", "different"); |
| do_trivial = 1; |
| |
| } else if (requested_oldest_seq_nr < |
| token_data->batch_tail->batch_seq_nr) { |
| /* |
| * The client wants older events than we have for |
| * this token_id. This means that the end of our |
| * batch list was truncated and we cannot give the |
| * client a complete snapshot relative to their |
| * request. |
| */ |
| trace_printf_key(&trace_fsmonitor, |
| "client requested truncated data"); |
| do_trivial = 1; |
| } |
| } |
| |
| if (do_trivial) { |
| pthread_mutex_unlock(&state->main_lock); |
| |
| reply(reply_data, "/", 2); |
| |
| trace2_data_intmax("fsmonitor", the_repository, |
| "response/trivial", 1); |
| |
| goto cleanup; |
| } |
| |
| /* |
| * We're going to hold onto a pointer to the current |
| * token-data while we walk the list of batches of files. |
| * During this time, we will NOT be under the lock. |
| * So we ref-count it. |
| * |
| * This allows the listener thread to continue prepending |
| * new batches of items to the token-data (which we'll ignore). |
| * |
| * AND it allows the listener thread to do a token-reset |
| * (and install a new `current_token_data`). |
| */ |
| token_data->client_ref_count++; |
| |
| pthread_mutex_unlock(&state->main_lock); |
| |
| /* |
| * The client request is relative to the token that they sent, |
| * so walk the batch list backwards from the current head back |
| * to the batch (sequence number) they named. |
| * |
| * We use khash to de-dup the list of pathnames. |
| * |
| * NEEDSWORK: each batch contains a list of interned strings, |
| * so we only need to do pointer comparisons here to build the |
| * hash table. Currently, we're still comparing the string |
| * values. |
| */ |
| shown = kh_init_str(); |
| for (batch = batch_head; |
| batch && batch->batch_seq_nr > requested_oldest_seq_nr; |
| batch = batch->next) { |
| size_t k; |
| |
| for (k = 0; k < batch->nr; k++) { |
| const char *s = batch->interned_paths[k]; |
| size_t s_len; |
| |
| if (kh_get_str(shown, s) != kh_end(shown)) |
| duplicates++; |
| else { |
| kh_put_str(shown, s, &hash_ret); |
| |
| trace_printf_key(&trace_fsmonitor, |
| "send[%"PRIuMAX"]: %s", |
| count, s); |
| |
| /* Each path gets written with a trailing NUL */ |
| s_len = strlen(s) + 1; |
| |
| if (payload.len + s_len >= |
| LARGE_PACKET_DATA_MAX) { |
| reply(reply_data, payload.buf, |
| payload.len); |
| total_response_len += payload.len; |
| strbuf_reset(&payload); |
| } |
| |
| strbuf_add(&payload, s, s_len); |
| count++; |
| } |
| } |
| } |
| |
| if (payload.len) { |
| reply(reply_data, payload.buf, payload.len); |
| total_response_len += payload.len; |
| } |
| |
| kh_release_str(shown); |
| |
| pthread_mutex_lock(&state->main_lock); |
| |
| if (token_data->client_ref_count > 0) |
| token_data->client_ref_count--; |
| |
| if (token_data->client_ref_count == 0) { |
| if (token_data != state->current_token_data) { |
| /* |
| * The listener thread did a token-reset while we were |
| * walking the batch list. Therefore, this token is |
| * stale and can be discarded completely. If we are |
| * the last reader thread using this token, we own |
| * that work. |
| */ |
| fsmonitor_free_token_data(token_data); |
| } else if (batch) { |
| /* |
| * We are holding the lock and are the only |
| * reader of the ref-counted portion of the |
| * list, so we get the honor of seeing if the |
| * list can be truncated to save memory. |
| * |
| * The main loop did not walk to the end of the |
| * list, so this batch is the first item in the |
| * batch-list that is older than the requested |
| * end-point sequence number. See if the tail |
| * end of the list is obsolete. |
| */ |
| remainder = with_lock__truncate_old_batches(state, |
| batch); |
| } |
| } |
| |
| pthread_mutex_unlock(&state->main_lock); |
| |
| if (remainder) |
| fsmonitor_batch__free_list(remainder); |
| |
| trace2_data_intmax("fsmonitor", the_repository, "response/length", total_response_len); |
| trace2_data_intmax("fsmonitor", the_repository, "response/count/files", count); |
| trace2_data_intmax("fsmonitor", the_repository, "response/count/duplicates", duplicates); |
| |
| cleanup: |
| strbuf_release(&response_token); |
| strbuf_release(&requested_token_id); |
| strbuf_release(&payload); |
| |
| return 0; |
| } |
| |
| static ipc_server_application_cb handle_client; |
| |
| static int handle_client(void *data, |
| const char *command, size_t command_len, |
| ipc_server_reply_cb *reply, |
| struct ipc_server_reply_data *reply_data) |
| { |
| struct fsmonitor_daemon_state *state = data; |
| int result; |
| |
| /* |
| * The Simple IPC API now supports {char*, len} arguments, but |
| * FSMonitor always uses proper null-terminated strings, so |
| * we can ignore the command_len argument. (Trust, but verify.) |
| */ |
| if (command_len != strlen(command)) |
| BUG("FSMonitor assumes text messages"); |
| |
| trace_printf_key(&trace_fsmonitor, "requested token: %s", command); |
| |
| trace2_region_enter("fsmonitor", "handle_client", the_repository); |
| trace2_data_string("fsmonitor", the_repository, "request", command); |
| |
| result = do_handle_client(state, command, reply, reply_data); |
| |
| trace2_region_leave("fsmonitor", "handle_client", the_repository); |
| |
| return result; |
| } |
| |
| #define FSMONITOR_DIR "fsmonitor--daemon" |
| #define FSMONITOR_COOKIE_DIR "cookies" |
| #define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/") |
| |
| enum fsmonitor_path_type fsmonitor_classify_path_workdir_relative( |
| const char *rel) |
| { |
| if (fspathncmp(rel, ".git", 4)) |
| return IS_WORKDIR_PATH; |
| rel += 4; |
| |
| if (!*rel) |
| return IS_DOT_GIT; |
| if (*rel != '/') |
| return IS_WORKDIR_PATH; /* e.g. .gitignore */ |
| rel++; |
| |
| if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX, |
| strlen(FSMONITOR_COOKIE_PREFIX))) |
| return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX; |
| |
| return IS_INSIDE_DOT_GIT; |
| } |
| |
| enum fsmonitor_path_type fsmonitor_classify_path_gitdir_relative( |
| const char *rel) |
| { |
| if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX, |
| strlen(FSMONITOR_COOKIE_PREFIX))) |
| return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX; |
| |
| return IS_INSIDE_GITDIR; |
| } |
| |
| static enum fsmonitor_path_type try_classify_workdir_abs_path( |
| struct fsmonitor_daemon_state *state, |
| const char *path) |
| { |
| const char *rel; |
| |
| if (fspathncmp(path, state->path_worktree_watch.buf, |
| state->path_worktree_watch.len)) |
| return IS_OUTSIDE_CONE; |
| |
| rel = path + state->path_worktree_watch.len; |
| |
| if (!*rel) |
| return IS_WORKDIR_PATH; /* it is the root dir exactly */ |
| if (*rel != '/') |
| return IS_OUTSIDE_CONE; |
| rel++; |
| |
| return fsmonitor_classify_path_workdir_relative(rel); |
| } |
| |
| enum fsmonitor_path_type fsmonitor_classify_path_absolute( |
| struct fsmonitor_daemon_state *state, |
| const char *path) |
| { |
| const char *rel; |
| enum fsmonitor_path_type t; |
| |
| t = try_classify_workdir_abs_path(state, path); |
| if (state->nr_paths_watching == 1) |
| return t; |
| if (t != IS_OUTSIDE_CONE) |
| return t; |
| |
| if (fspathncmp(path, state->path_gitdir_watch.buf, |
| state->path_gitdir_watch.len)) |
| return IS_OUTSIDE_CONE; |
| |
| rel = path + state->path_gitdir_watch.len; |
| |
| if (!*rel) |
| return IS_GITDIR; /* it is the <gitdir> exactly */ |
| if (*rel != '/') |
| return IS_OUTSIDE_CONE; |
| rel++; |
| |
| return fsmonitor_classify_path_gitdir_relative(rel); |
| } |
| |
| /* |
| * We try to combine small batches at the front of the batch-list to avoid |
| * having a long list. This hopefully makes it a little easier when we want |
| * to truncate and maintain the list. However, we don't want the paths array |
| * to just keep growing and growing with realloc, so we insert an arbitrary |
| * limit. |
| */ |
| #define MY_COMBINE_LIMIT (1024) |
| |
| void fsmonitor_publish(struct fsmonitor_daemon_state *state, |
| struct fsmonitor_batch *batch, |
| const struct string_list *cookie_names) |
| { |
| if (!batch && !cookie_names->nr) |
| return; |
| |
| pthread_mutex_lock(&state->main_lock); |
| |
| if (batch) { |
| struct fsmonitor_batch *head; |
| |
| head = state->current_token_data->batch_head; |
| if (!head) { |
| BUG("token does not have batch"); |
| } else if (head->pinned_time) { |
| /* |
| * We cannot alter the current batch list |
| * because: |
| * |
| * [a] it is being transmitted to at least one |
| * client and the handle_client() thread has a |
| * ref-count, but not a lock on the batch list |
| * starting with this item. |
| * |
| * [b] it has been transmitted in the past to |
| * at least one client such that future |
| * requests are relative to this head batch. |
| * |
| * So, we can only prepend a new batch onto |
| * the front of the list. |
| */ |
| batch->batch_seq_nr = head->batch_seq_nr + 1; |
| batch->next = head; |
| state->current_token_data->batch_head = batch; |
| } else if (!head->batch_seq_nr) { |
| /* |
| * Batch 0 is unpinned. See the note in |
| * `fsmonitor_new_token_data()` about why we |
| * don't need to accumulate these paths. |
| */ |
| fsmonitor_batch__free_list(batch); |
| } else if (head->nr + batch->nr > MY_COMBINE_LIMIT) { |
| /* |
| * The head batch in the list has never been |
| * transmitted to a client, but folding the |
| * contents of the new batch onto it would |
| * exceed our arbitrary limit, so just prepend |
| * the new batch onto the list. |
| */ |
| batch->batch_seq_nr = head->batch_seq_nr + 1; |
| batch->next = head; |
| state->current_token_data->batch_head = batch; |
| } else { |
| /* |
| * We are free to add the paths in the given |
| * batch onto the end of the current head batch. |
| */ |
| fsmonitor_batch__combine(head, batch); |
| fsmonitor_batch__free_list(batch); |
| } |
| } |
| |
| if (cookie_names->nr) |
| with_lock__mark_cookies_seen(state, cookie_names); |
| |
| pthread_mutex_unlock(&state->main_lock); |
| } |
| |
| static void *fsm_health__thread_proc(void *_state) |
| { |
| struct fsmonitor_daemon_state *state = _state; |
| |
| trace2_thread_start("fsm-health"); |
| |
| fsm_health__loop(state); |
| |
| trace2_thread_exit(); |
| return NULL; |
| } |
| |
| static void *fsm_listen__thread_proc(void *_state) |
| { |
| struct fsmonitor_daemon_state *state = _state; |
| |
| trace2_thread_start("fsm-listen"); |
| |
| trace_printf_key(&trace_fsmonitor, "Watching: worktree '%s'", |
| state->path_worktree_watch.buf); |
| if (state->nr_paths_watching > 1) |
| trace_printf_key(&trace_fsmonitor, "Watching: gitdir '%s'", |
| state->path_gitdir_watch.buf); |
| |
| fsm_listen__loop(state); |
| |
| pthread_mutex_lock(&state->main_lock); |
| if (state->current_token_data && |
| state->current_token_data->client_ref_count == 0) |
| fsmonitor_free_token_data(state->current_token_data); |
| state->current_token_data = NULL; |
| pthread_mutex_unlock(&state->main_lock); |
| |
| trace2_thread_exit(); |
| return NULL; |
| } |
| |
| static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state *state) |
| { |
| struct ipc_server_opts ipc_opts = { |
| .nr_threads = fsmonitor__ipc_threads, |
| |
| /* |
| * We know that there are no other active threads yet, |
| * so we can let the IPC layer temporarily chdir() if |
| * it needs to when creating the server side of the |
| * Unix domain socket. |
| */ |
| .uds_disallow_chdir = 0 |
| }; |
| int health_started = 0; |
| int listener_started = 0; |
| int err = 0; |
| |
| /* |
| * Start the IPC thread pool before the we've started the file |
| * system event listener thread so that we have the IPC handle |
| * before we need it. |
| */ |
| if (ipc_server_run_async(&state->ipc_server_data, |
| state->path_ipc.buf, &ipc_opts, |
| handle_client, state)) |
| return error_errno( |
| _("could not start IPC thread pool on '%s'"), |
| state->path_ipc.buf); |
| |
| /* |
| * Start the fsmonitor listener thread to collect filesystem |
| * events. |
| */ |
| if (pthread_create(&state->listener_thread, NULL, |
| fsm_listen__thread_proc, state)) { |
| ipc_server_stop_async(state->ipc_server_data); |
| err = error(_("could not start fsmonitor listener thread")); |
| goto cleanup; |
| } |
| listener_started = 1; |
| |
| /* |
| * Start the health thread to watch over our process. |
| */ |
| if (pthread_create(&state->health_thread, NULL, |
| fsm_health__thread_proc, state)) { |
| ipc_server_stop_async(state->ipc_server_data); |
| err = error(_("could not start fsmonitor health thread")); |
| goto cleanup; |
| } |
| health_started = 1; |
| |
| /* |
| * The daemon is now fully functional in background threads. |
| * Our primary thread should now just wait while the threads |
| * do all the work. |
| */ |
| cleanup: |
| /* |
| * Wait for the IPC thread pool to shutdown (whether by client |
| * request, from filesystem activity, or an error). |
| */ |
| ipc_server_await(state->ipc_server_data); |
| |
| /* |
| * The fsmonitor listener thread may have received a shutdown |
| * event from the IPC thread pool, but it doesn't hurt to tell |
| * it again. And wait for it to shutdown. |
| */ |
| if (listener_started) { |
| fsm_listen__stop_async(state); |
| pthread_join(state->listener_thread, NULL); |
| } |
| |
| if (health_started) { |
| fsm_health__stop_async(state); |
| pthread_join(state->health_thread, NULL); |
| } |
| |
| if (err) |
| return err; |
| if (state->listen_error_code) |
| return state->listen_error_code; |
| if (state->health_error_code) |
| return state->health_error_code; |
| return 0; |
| } |
| |
| static int fsmonitor_run_daemon(void) |
| { |
| struct fsmonitor_daemon_state state; |
| const char *home; |
| int err; |
| |
| memset(&state, 0, sizeof(state)); |
| |
| hashmap_init(&state.cookies, cookies_cmp, NULL, 0); |
| pthread_mutex_init(&state.main_lock, NULL); |
| pthread_cond_init(&state.cookies_cond, NULL); |
| state.listen_error_code = 0; |
| state.health_error_code = 0; |
| state.current_token_data = fsmonitor_new_token_data(); |
| |
| /* Prepare to (recursively) watch the <worktree-root> directory. */ |
| strbuf_init(&state.path_worktree_watch, 0); |
| strbuf_addstr(&state.path_worktree_watch, absolute_path(get_git_work_tree())); |
| state.nr_paths_watching = 1; |
| |
| strbuf_init(&state.alias.alias, 0); |
| strbuf_init(&state.alias.points_to, 0); |
| if ((err = fsmonitor__get_alias(state.path_worktree_watch.buf, &state.alias))) |
| goto done; |
| |
| /* |
| * We create and delete cookie files somewhere inside the .git |
| * directory to help us keep sync with the file system. If |
| * ".git" is not a directory, then <gitdir> is not inside the |
| * cone of <worktree-root>, so set up a second watch to watch |
| * the <gitdir> so that we get events for the cookie files. |
| */ |
| strbuf_init(&state.path_gitdir_watch, 0); |
| strbuf_addbuf(&state.path_gitdir_watch, &state.path_worktree_watch); |
| strbuf_addstr(&state.path_gitdir_watch, "/.git"); |
| if (!is_directory(state.path_gitdir_watch.buf)) { |
| strbuf_reset(&state.path_gitdir_watch); |
| strbuf_addstr(&state.path_gitdir_watch, absolute_path(get_git_dir())); |
| state.nr_paths_watching = 2; |
| } |
| |
| /* |
| * We will write filesystem syncing cookie files into |
| * <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>. |
| * |
| * The extra layers of subdirectories here keep us from |
| * changing the mtime on ".git/" or ".git/foo/" when we create |
| * or delete cookie files. |
| * |
| * There have been problems with some IDEs that do a |
| * non-recursive watch of the ".git/" directory and run a |
| * series of commands any time something happens. |
| * |
| * For example, if we place our cookie files directly in |
| * ".git/" or ".git/foo/" then a `git status` (or similar |
| * command) from the IDE will cause a cookie file to be |
| * created in one of those dirs. This causes the mtime of |
| * those dirs to change. This triggers the IDE's watch |
| * notification. This triggers the IDE to run those commands |
| * again. And the process repeats and the machine never goes |
| * idle. |
| * |
| * Adding the extra layers of subdirectories prevents the |
| * mtime of ".git/" and ".git/foo" from changing when a |
| * cookie file is created. |
| */ |
| strbuf_init(&state.path_cookie_prefix, 0); |
| strbuf_addbuf(&state.path_cookie_prefix, &state.path_gitdir_watch); |
| |
| strbuf_addch(&state.path_cookie_prefix, '/'); |
| strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_DIR); |
| mkdir(state.path_cookie_prefix.buf, 0777); |
| |
| strbuf_addch(&state.path_cookie_prefix, '/'); |
| strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_COOKIE_DIR); |
| mkdir(state.path_cookie_prefix.buf, 0777); |
| |
| strbuf_addch(&state.path_cookie_prefix, '/'); |
| |
| /* |
| * We create a named-pipe or unix domain socket inside of the |
| * ".git" directory. (Well, on Windows, we base our named |
| * pipe in the NPFS on the absolute path of the git |
| * directory.) |
| */ |
| strbuf_init(&state.path_ipc, 0); |
| strbuf_addstr(&state.path_ipc, |
| absolute_path(fsmonitor_ipc__get_path(the_repository))); |
| |
| /* |
| * Confirm that we can create platform-specific resources for the |
| * filesystem listener before we bother starting all the threads. |
| */ |
| if (fsm_listen__ctor(&state)) { |
| err = error(_("could not initialize listener thread")); |
| goto done; |
| } |
| |
| if (fsm_health__ctor(&state)) { |
| err = error(_("could not initialize health thread")); |
| goto done; |
| } |
| |
| /* |
| * CD out of the worktree root directory. |
| * |
| * The common Git startup mechanism causes our CWD to be the |
| * root of the worktree. On Windows, this causes our process |
| * to hold a locked handle on the CWD. This prevents the |
| * worktree from being moved or deleted while the daemon is |
| * running. |
| * |
| * We assume that our FS and IPC listener threads have either |
| * opened all of the handles that they need or will do |
| * everything using absolute paths. |
| */ |
| home = getenv("HOME"); |
| if (home && *home && chdir(home)) |
| die_errno(_("could not cd home '%s'"), home); |
| |
| err = fsmonitor_run_daemon_1(&state); |
| |
| done: |
| pthread_cond_destroy(&state.cookies_cond); |
| pthread_mutex_destroy(&state.main_lock); |
| fsm_listen__dtor(&state); |
| fsm_health__dtor(&state); |
| |
| ipc_server_free(state.ipc_server_data); |
| |
| strbuf_release(&state.path_worktree_watch); |
| strbuf_release(&state.path_gitdir_watch); |
| strbuf_release(&state.path_cookie_prefix); |
| strbuf_release(&state.path_ipc); |
| strbuf_release(&state.alias.alias); |
| strbuf_release(&state.alias.points_to); |
| |
| return err; |
| } |
| |
| static int try_to_run_foreground_daemon(int detach_console) |
| { |
| /* |
| * Technically, we don't need to probe for an existing daemon |
| * process, since we could just call `fsmonitor_run_daemon()` |
| * and let it fail if the pipe/socket is busy. |
| * |
| * However, this method gives us a nicer error message for a |
| * common error case. |
| */ |
| if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING) |
| die(_("fsmonitor--daemon is already running '%s'"), |
| the_repository->worktree); |
| |
| if (fsmonitor__announce_startup) { |
| fprintf(stderr, _("running fsmonitor-daemon in '%s'\n"), |
| the_repository->worktree); |
| fflush(stderr); |
| } |
| |
| #ifdef GIT_WINDOWS_NATIVE |
| if (detach_console) |
| FreeConsole(); |
| #endif |
| |
| return !!fsmonitor_run_daemon(); |
| } |
| |
| static start_bg_wait_cb bg_wait_cb; |
| |
| static int bg_wait_cb(const struct child_process *cp, void *cb_data) |
| { |
| enum ipc_active_state s = fsmonitor_ipc__get_state(); |
| |
| switch (s) { |
| case IPC_STATE__LISTENING: |
| /* child is "ready" */ |
| return 0; |
| |
| case IPC_STATE__NOT_LISTENING: |
| case IPC_STATE__PATH_NOT_FOUND: |
| /* give child more time */ |
| return 1; |
| |
| default: |
| case IPC_STATE__INVALID_PATH: |
| case IPC_STATE__OTHER_ERROR: |
| /* all the time in world won't help */ |
| return -1; |
| } |
| } |
| |
| static int try_to_start_background_daemon(void) |
| { |
| struct child_process cp = CHILD_PROCESS_INIT; |
| enum start_bg_result sbgr; |
| |
| /* |
| * Before we try to create a background daemon process, see |
| * if a daemon process is already listening. This makes it |
| * easier for us to report an already-listening error to the |
| * console, since our spawn/daemon can only report the success |
| * of creating the background process (and not whether it |
| * immediately exited). |
| */ |
| if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING) |
| die(_("fsmonitor--daemon is already running '%s'"), |
| the_repository->worktree); |
| |
| if (fsmonitor__announce_startup) { |
| fprintf(stderr, _("starting fsmonitor-daemon in '%s'\n"), |
| the_repository->worktree); |
| fflush(stderr); |
| } |
| |
| cp.git_cmd = 1; |
| |
| strvec_push(&cp.args, "fsmonitor--daemon"); |
| strvec_push(&cp.args, "run"); |
| strvec_push(&cp.args, "--detach"); |
| strvec_pushf(&cp.args, "--ipc-threads=%d", fsmonitor__ipc_threads); |
| |
| cp.no_stdin = 1; |
| cp.no_stdout = 1; |
| cp.no_stderr = 1; |
| |
| sbgr = start_bg_command(&cp, bg_wait_cb, NULL, |
| fsmonitor__start_timeout_sec); |
| |
| switch (sbgr) { |
| case SBGR_READY: |
| return 0; |
| |
| default: |
| case SBGR_ERROR: |
| case SBGR_CB_ERROR: |
| return error(_("daemon failed to start")); |
| |
| case SBGR_TIMEOUT: |
| return error(_("daemon not online yet")); |
| |
| case SBGR_DIED: |
| return error(_("daemon terminated")); |
| } |
| } |
| |
| int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix) |
| { |
| const char *subcmd; |
| enum fsmonitor_reason reason; |
| int detach_console = 0; |
| |
| struct option options[] = { |
| OPT_BOOL(0, "detach", &detach_console, N_("detach from console")), |
| OPT_INTEGER(0, "ipc-threads", |
| &fsmonitor__ipc_threads, |
| N_("use <n> ipc worker threads")), |
| OPT_INTEGER(0, "start-timeout", |
| &fsmonitor__start_timeout_sec, |
| N_("max seconds to wait for background daemon startup")), |
| |
| OPT_END() |
| }; |
| |
| git_config(fsmonitor_config, NULL); |
| |
| argc = parse_options(argc, argv, prefix, options, |
| builtin_fsmonitor__daemon_usage, 0); |
| if (argc != 1) |
| usage_with_options(builtin_fsmonitor__daemon_usage, options); |
| subcmd = argv[0]; |
| |
| if (fsmonitor__ipc_threads < 1) |
| die(_("invalid 'ipc-threads' value (%d)"), |
| fsmonitor__ipc_threads); |
| |
| prepare_repo_settings(the_repository); |
| /* |
| * If the repo is fsmonitor-compatible, explicitly set IPC-mode |
| * (without bothering to load the `core.fsmonitor` config settings). |
| * |
| * If the repo is not compatible, the repo-settings will be set to |
| * incompatible rather than IPC, so we can use one of the __get |
| * routines to detect the discrepancy. |
| */ |
| fsm_settings__set_ipc(the_repository); |
| |
| reason = fsm_settings__get_reason(the_repository); |
| if (reason > FSMONITOR_REASON_OK) |
| die("%s", |
| fsm_settings__get_incompatible_msg(the_repository, |
| reason)); |
| |
| if (!strcmp(subcmd, "start")) |
| return !!try_to_start_background_daemon(); |
| |
| if (!strcmp(subcmd, "run")) |
| return !!try_to_run_foreground_daemon(detach_console); |
| |
| if (!strcmp(subcmd, "stop")) |
| return !!do_as_client__send_stop(); |
| |
| if (!strcmp(subcmd, "status")) |
| return !!do_as_client__status(); |
| |
| die(_("Unhandled subcommand '%s'"), subcmd); |
| } |
| |
| #else |
| int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix) |
| { |
| struct option options[] = { |
| OPT_END() |
| }; |
| |
| if (argc == 2 && !strcmp(argv[1], "-h")) |
| usage_with_options(builtin_fsmonitor__daemon_usage, options); |
| |
| die(_("fsmonitor--daemon not supported on this platform")); |
| } |
| #endif |